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Abstract9

We consider the maximum cardinality matching problem in bipartite graphs. There are a number10

of exact, deterministic algorithms for this purpose, whose complexities are high in practice. There11

are randomized approaches for special classes of bipartite graphs. Random 2-out bipartite graphs,12

where each vertex chooses two neighbors at random from the other side, form one class for which13

there is an O(m+ n logn)-time Monte Carlo algorithm. Regular bipartite graphs, where all vertices14

have the same degree, form another class for which there is an expected O(m+ n logn)-time Las15

Vegas algorithm. We investigate these two algorithms and turn them into practical heuristics with16

randomization. Experimental results show that the heuristics are fast and obtain near optimal17

matchings. They are also more robust than the state of the art heuristics used in the cardinality18

matching algorithms, and are generally more useful as initialization routines.19
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1 Introduction23

A matching in a graph is a set of edges, such that no two of them share a common vertex.24

We consider the maximum cardinality problem in bipartite graphs which asks for a matching25

with maximum cardinality. There are a number of exact algorithms for this problem. The26

best known algorithms [21] run in O(m
√
n) time for a graph with n vertices and m edges.27

Such complexity can be prohibiting for large instances. For this reason, there is significant28

interest in algorithms which can find large matchings in linear or near linear time [37]. The29

practical use of approximate matchings in applications [33] and as an initialization to exact30

algorithms [30] are well known.31

We investigate two randomized algorithms by Karp et al. [22] and Goel et al. [18], both32

of which run in O(m+ n logn) time. The former algorithm finds, almost surely, maximum33

cardinality matchings on random graphs formed by allowing each vertex to select two34

vertices from the other side uniformly at random. The latter algorithm finds maximum35

cardinality matchings in regular bipartite graphs, where all vertices have equal degree. In36

both of these classes of graphs, the bipartite graphs have equal number of vertices in each37

part, and the maximum cardinality matchings cover all vertices (such matchings are called38

perfect). We investigate these two theoretical algorithms for very special cases of bipartite39

graphs and convert them to efficient heuristics for general bipartite graphs. We discuss40

our implementations and investigate the performance of the resulting heuristics in terms of41

run time and the matching cardinality. Both heuristics run in near linear time and obtain42

matchings whose cardinality is more than 0.99 of the maximum, even in cases where the43

current state of the art approaches have difficulties.44
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The rest of the paper is organized as follows. In Section 2, we give the necessary45

background. In Sections 3.1 and 3.2 we review the existing randomized algorithms and then46

discuss how we adapt them. Section 4 contains the experimental results, and Section 547

concludes the paper. Appendices A–D provide some additional results and discussion.48

2 Background and notation49

Let G = (R ∪C,E) be a bipartite graph, where R and C are two disjoint set of vertices, and50

E is the set of edges. The bipartite graph G can be represented with a matrix AG. The51

vertex ri ∈ R corresponds to the ith row, and the vertex cj ∈ C corresponds to the jth52

column, so that AG(i, j) = 1 if and only if (ri, cj) ∈ E. We will refer to vertices of R as rows53

and to those of C as columns from this point on, and use A to refer to AG.54

LetM be a matching. For (u, v) ∈M, the vertices u and v are matched, and they are55

each other’s mate. A vertex is called free if it is not matched by M. If there are no free56

vertices in R or in C, thenM is called perfect. An augmenting path with respect toM is a57

path which starts with a free vertex and ends at another free vertex, where every second58

edge is inM. A matching is maximum if and only if there are no augmenting paths [7].59

A square matrix is called doubly stochastic if the sum of entries in each row and column is60

equal to one. An n× n matrix A has support if there is a perfect matching in the associated61

bipartite graph G. A is said to have total support if each edge in G is used in a perfect62

matching. A square matrix is fully indecomposable, if it has total support and cannot be63

permuted into a block diagonal matrix. Any nonnegative matrix A with total support can be64

scaled with two positive diagonal matrices DR and DC such that AS = DRADC is doubly65

stochastic, and if A is fully indecomposable, then the matrices DR and DC are unique. The66

Sinkhorn–Knopp algorithm [38] is a well-known method for finding such DR and DC for a67

given matrix. This is an iterative algorithm, where at each iteration each row is normalized to68

have unit length, and then each column is normalized to have unit length. If a given matrix69

A has total support, then Sinkhorn–Knopp algorithm finds the unique scaling matrices. If A70

has support but not total support, then entries that cannot be put into a perfect matching71

tend to zero. The method converges with an asymptotical convergence rate depending on72

the second singular value of the final doubly stochastic matrix. There are other iterative,73

faster converging methods [1, 10, 28], whose iterations are more sophisticated than that of74

Sinkhorn–Knopp’s.75

A k-out subgraph Gk of a host graph G is defined by allowing each vertex in G to76

randomly select uniformly k of its neighbors, and the union of all selections forms the edge77

set of Gk. Walkup [40] shows that in the pure random k-out setting, where the host graph is78

the complete bipartite graph, the resulting Gk has a perfect matching with high probability79

for k ≥ 2. We do not know any general result about properties of G2 sampled from any80

arbitrary host graph. Frieze and Johansson [17] investigate some other properties of Gks on81

host graphs where the minimum degree of a vertex is at least n/2. Dufossé et al. [16] propose82

using the doubly stochastic matrix AS (scaled version of the matrix representation) for83

sampling and show an approximation result for G1, when A has total support. We give some84

experiments in which G2s generated using the same probabilities have perfect matchings in85

majority of the cases.86

Two popular classes of randomized algorithms are Las Vegas and Monte Carlo algorithms.87

Las Vegas algorithms always return a correct answer, but their run time can depend on88

random choices, whereas Monte Carlo algorithms can fail with small probability, but their89

complexity is independent of the random choices made (see for example [34, p. 70]).90
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There are a number of heuristics for the cardinality matching problem [30, 37] (see91

Appendix A for a relevant discussion). Among those, that by Karp and Sipser [23] is very92

well known and widely used. This heuristic eliminates vertices of degree at most two in the93

following way. It matches any degree-1 vertices with their neighbors (and discards both), or94

merges the neighbors of a degree-2 vertex (which is then discarded) to a single node, and95

removes any parallel edges that occur. If neither operation can be done, it matches a pair of96

vertices randomly.97

3 Two heuristics98

We describe the original Monte Carlo algorithm [22] for finding perfect matchings in 2-out99

bipartite graphs in Section 3.1 and the original Las Vegas algorithm [18] for finding perfect100

matchings in d-regular bipartite graphs in Section 3.2. These two algorithms are based on101

uniform sampling. We generalize these two algorithms to general bipartite graphs within a102

common framework. The framework we propose scales the adjacency matrix of the input103

bipartite graph and uses the nonzero values of the scaled matrix for sampling. We also104

identify and fix an oversight in the description of the Monte Carlo algorithm, and describe105

efficient implementations of the two heuristics.106

3.1 2outMC: Monte Carlo on 2-out graphs107

3.1.1 Description of the algorithm108

The Monte Carlo algorithm by Karp et al. [22] finds a perfect matching, with high probability,109

in a random 2-out bipartite graph, sampled from the complete bipartite graph. A random110

2-out bipartite graph B2o is constructed by selecting uniformly at random two row vertices111

for each column, and two column vertices for each row. These selections form the edges112

of B2o. Given the edges of B2o, Karp et al. define two multigraphs. The Column-Graph113

(CG) is the multigraph whose vertices are the rows, and whose edges are the choices of the114

columns. That is, there is an edge in CG for a column vertex in B2o. Parallel edges occur115

if two columns select the same rows. The Row-Graph (RG) is defined similarly. The main116

idea to show that B2o has a perfect matching is the following. In a component of CG that117

contains a cycle, it is possible to match all rows (vertices in CG) with one of the columns118

that have selected them (edges in CG). On the other hand in a tree component of CG, in119

any matching (pairing of edges with vertices) there will always be a free row vertex. As a120

consequence, when one or more trees appear in CG, the choices of the columns alone do121

not suffice to find a perfect matching, and those of the rows must be used. The algorithm122

thus keeps track of the tree components of CG and tries to identify one row vertex per tree123

component whose selections should be taken into account. The columns selected by such a124

row could be used for a set of rows belonging in tree components. Thus one should go back125

and forth identifying trees in CG and analyzing components in RG. Karp et al.’s algorithm,126

which is described in Algorithm 1, formalizes this approach.127

The algorithm operates on H1, a copy of CG, and H2, a copy of RG initially devoid of128

edges. It furthermore uses two arrays checked for columns and marked for rows. These two129

arrays together signal whether a vertex will be matched with one of its two selections or not.130

More specifically, if a row vertex r is marked (i.e., marked[r]=true), then the algorithm will131

match r with one of its two selections. On the other hand, if a column c is checked (i.e.,132

checked[c]=true), then the algorithm will match c with one of the marked row vertices that133

have selected it.134
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Initially, all row vertices are unmarked and all column vertices are unchecked. The135

algorithm at each step picks a tree from H1 and marks one of its vertices x. This signifies136

that x can only be matched with one of its choices. Then, the edge of x is inserted in H2.137

The algorithm then finds the component Qx in H2 containing the edge x, and selects an138

unchecked column y from Qx. Column y is checked, which means that it can only be matched139

with a marked vertex. As y’s choices are rendered useless now, the corresponding edge is140

removed from H1 upon which new trees can arise. For each tree vertex x identified in H1, one141

should be able to find a vertex in the associated component Qx, so that x can be matched in142

that component. Otherwise, Qx has more edges than vertices, and any matching of vertices143

with edges in Qx will hence leave some edges unpaired. In other words, Algorithm 1 has144

decided that all columns that correspond to edges in Qx should be matched with one of their145

two selections. However, the union of the rows denoted by these selections has cardinality146

strictly smaler than the number of such columns, and that is why a column is always left147

unmatched by the algorithm if this scenario occurs. The algorithm returns failure upon148

detecting this case (Line 10). The algorithm terminates successfully if all trees have a marked149

vertex. If this happens, each component in H1 will have as many edges as unmarked vertices.150

Likewise, each component in H2 will have as many edges as checked vertices. It is therefore151

possible to orient the edges in either H1 or H2 such that each vertex (excluding marked rows152

or unchecked columns) is matched with a unique adjacent edge. This gives a perfect matching153

in B2o, which can be found by the Karp–Sipser heuristic in linear time. Algorithm 1 finds a154

perfect matching with probability 1−O(n−α), where α is a positive constant.155

Algorithm 1 2outMC: Monte Carlo on 2-out graphs

1: H1 ← CG, H2 ← empty graph with columns as vertices;
2: All vertices in H1 are unmarked, all vertices in H2 are unchecked;
3: CORE ← edges in cycles of CG
4: while there exists a tree T in H1 with no marked vertex do
5: Let x be a random vertex of T I x is a column vertex
6: marked[x] ← true I x must be matched with one of its choices
7: Add the edge of x in H2

8: Let Qx be the component in H2 containing the edge of x
9: if Qx has no unchecked vertices then
10: Return Fail I Qx has more edges than vertices (no 1-1 pairing possible)
11: else
12: Select an unchecked vertex y of Qx. In case of ties, prefer one from CORE
13: checked[y] ← true I y will be matched with a row that selected it
14: delete y in H1 I The algorithm forgets y’s choices
15: Create B′2o from B2o by keeping only edges between marked rows and checked columns (edges

in H2) or unmarked rows and unchecked columns (edges in H1)
16: Apply Karp–Sipser on B′2o to find a perfect matchin

The authors then describe how to efficiently implement the algorithm such that it runs156

in O(n logn) worst case time. They identify two main tasks:157

Task A: Keep track of the tree components during edge deletions in H1.158

Task B: Keep track of the connected components during edge insertions in H2, and the159

single unchecked vertex in each component.160

Task B can be efficiently done in amortized near linear time (over the course of the161

algorithm) by using a union-find data-structure and keeping the identity of the single162

unchecked vertex in a component of H2 at the root of the component. For Task A, Karp163

et al. propose the following. In the beginning, the edges of CG are labeled as F , if their164
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Figure 1 Algorithm 1 does not recognize new trees, if another edge is deleted after (u, v).

deletion creates a tree; T , if they belong to a tree component; and C otherwise. Let c-degree165

of a vertex v be the number of C edges incident on v. During deleting the edge (u, v) from166

H1, one of the following is performed depending on the label of (u, v).167

Case 1: (u, v) is C: The c-degrees of u and v are decreased by one. Then, while there is168

a vertex with a single C edge; its C edge is relabeled as F .169

Case 2: (u, v) is F : Using a dove-tailed depth-first search, where depth-first searches from170

u and v are interleaved, the tree component created can be found in time proportional to171

its size. One then changes the labels of all edges in this tree from F to T .172

Case 3: (u, v) is T : Deleting (u, v) creates two trees. As in the previous case, a dove-173

tailed DFS is used to find these two trees in time proportional to the size of the smaller174

one. The new trees are to be examined by the algorithm.175

We identify an oversight in this procedure, where the algorithm fails to keep track of some176

trees in H1. We demonstrate this by an example. In Figure 1, if the edge between vertices u177

and v gets deleted, then the connected component is split into two triangles. The c-degree of178

both u and v decreases to two, and as both are greater to one, the deletion procedure stops179

without any action. However, both triangles are unicylic. If an edge is deleted from either180

triangle, then Case-1 does not recognize that the remaining edges should be relabeled as T181

not F .182

If Algorithm 1 is not able to keep track of all the trees in H1, then it can exit the loop183

of Line 4 prematurely. As a consequence Karp–Sipser in Line 16 will return a suboptimal184

matching. We propose a fix for this oversight in Lemma 1.185

I Lemma 1. Let u be an endpoint of a deleted edge (u, v) with label C. Apply the procedure186

of Case-1 until we arrive at a vertex p with c-degree[p] 6= 1. If c-degree[p] = 0, then u’s187

component has become a tree.188

Proof. We claim that if c-degree[p] = 0, then p and v are the same vertex. Each vertex on189

the path from u to p had its c-degree affected twice (from 2 to 0), except p. Hence for p to190

become 0, its c-degree must have been equal to 1. If p 6= v, then p should had its C edge191

relabeled during another deletion process. Therefore, prior to the deletion of (u, v), there was192

a cycle on H1 with all vertices having c-degree equal to 2, and both their C edges participated193

in the cycle. Any outgoing edges from vertices of the cycle therefore were labeled F and by194

definition, their deletion led to a tree being formed. The component was hence unicyclic195

before. J196

Case 1-continuation is therefore as follows:197

Once there are no vertices with c-degree equal to 1, take the last vertex v whose c-degree198

was reduced. If c-degree[v] = 0, then relabel all edges in vs component from F to T .199

This addition has overall O(n) cost, because each edge can change label at most twice.200

3.1.2 Conversion to an efficient general heuristic201

Algorithm 1 works well when the random 2-out graph is sampled from Kn,n. However, in the202

case of an arbitrary host graph, the underlying theory is not shown to hold, and the algorithm203
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can make erroneous decisions. Here we discuss how to turn Algorithm 1 into a general204

heuristic. Apart from the aim of obtaining a practical heuristic for bipartite matching, there205

is another reason to investigate the matching problem in 2-out bipartite graphs. We show in206

Appendix D that an O(f(n,m)) time algorithm to find a maximum cardinality matching in207

a 2-out bipartite graph can be used to find a maximum cardinality matching in any bipartite208

graph with m edges in O(f(m,m)) time, where f is a function on the number of vertices n209

and edges m. Such a reduction is important because it shows that an algorithm for finding210

maximum cardinality matchings in 2-out graphs with similar complexity to 2outMC can be211

used to obtain an O(m logm) algorithm for matchings in general bipartite graphs.212

If the algorithm reaches Line 10 during execution, it quits immediately before examining213

all trees in H1. We instead propose to continue with the execution of the algorithm to make214

the returned matching as large as possible. To achieve this efficiently, we keep for each tree T215

a list LT of unmarked vertices. At Line 5 we randomly sample x from LT and discard it from216

LT . Contrary to Algorithm 1, we neither mark x nor insert it in H2 yet. Instead, we examine217

first whether the component in H2 of either of the two choices of x has an unchecked column218

y. If y exists, we mark x, insert it to H2 and continue by deleting y from H1. Otherwise,219

we perform the same set of actions with another randomly sampled vertex from LT . If LT220

becomes empty, and no vertex was marked, we abandon T and proceed to another tree. Each221

such tree in the final state of H1 decreases the cardinality of the returned matching by one,222

as a row is left free. If T is split into two trees, the lists of unmarked vertices for the new223

trees contain only those vertices still inside LT at the moment of splitting. This is necessary224

to avoid sampling vertices more than once.225

The overall algorithm 2outMC is as follows. It takes the matrix representation of the226

given bipartite graph and scales it with a few steps of the Sinkhorn–Knopp algorithm to227

obtain AS. It then chooses two random neighbors for each column and row using their228

respective probability distributions in the corresponding row and column of AS, which are229

given as input to Algorithm 1. Then, the auxiliary graph B2o is constructed and Karp–Sipser230

is run on this graph to retrieve a maximum cardinality matching in B2o. If one allows vertices231

to choose neighbors uniformly, then there are no guarantees on the maximum cardinality of232

a matching in B2o. As an example, consider the graph where the ith row and ith column233

are connected for i = 1, . . . , n, and additionally the first ` rows and columns are connected234

with every vertex on the opposite side. Then, in expectation O( `−1
`+1 · n) rows (resp. columns)235

make both choices from the first ` columns (resp. rows), such that in the generated B2o the236

maximum cardinality matching is of size O(n` + `). Using AS’s values to perform the random237

choices spreads the choices so that the maximum cardinality of the matching in the subgraph238

increases (see Theorem 2 and Lemmas 6–8 in [16] that examines the 1-out subgraph model).239

In Appendix B we describe two heuristics for 2outMC which can lead to an increase in240

the cardinality of the returned matching. The main idea of both heuristics is to reduce the241

chance that an edge deletion in H1 creates a new tree.242

3.2 TruncRW: Truncated random walk with nonuniform sampling243

3.2.1 Description of the algorithm for regular bipartite graphs244

Goel et al. [18] propose a randomized algorithm (of the Las Vegas type) that finds a perfect245

matching in a d-regular bipartite graph with n vertices in each side in O(n logn) time in246

expectation. This algorithm starts a random walk from a randomly chosen free column-vertex.247

At a column vertex c, the algorithm selects uniformly at random one of the row-vertices that248

are not matched to c, and goes to the chosen row vertex r. If r is free, then an augmenting249

path is obtained by removing possible loops from the walk. If r is matched, then the random250
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Figure 2 The matrix A associated with a 4× 4 Hessenberg matrix, the scaling matrices DR and

DC, and the resulting doubly stochastic matrix AS = DRADC. In general, AS(n, 1) = 1/2n−1.

walk goes to the mate of r. Goel et al. show that the total length of the random walks is251

O(n logn) in expectation, and thus the algorithm obtains a perfect matching in the stated252

time [18, Theorem 4]. They also show that one can obtain a Monte Carlo-type algorithm253

by truncating the random walks. The expected length of an augmenting path with respect254

to a given matching of cardinality j is 2(4 + 2n/(n− j)), and the random walks could be255

truncated at this length to obtain near optimal matchings in O(n logn) time.256

A random walk is easy to implement for d-regular bipartite graphs. At a column vertex c,257

one can create a random number between 1 and d in O(1) time and choose the neighbor at258

that position, and repeat the experiment if the mate of c is chosen. This will take O(1) time259

in expectation for each step of the walk, and the run time bound of O(n logn) is maintained.260

Goel et al. show that the random-walk based algorithm will work for finding perfect261

matchings in the bipartite graph representation of a doubly stochastic matrix. They also262

suggest using an existing data structure [20] when the row and column sums are constant263

with nonnegative integer entries bounded by a polynomial in n, to attain an O(n logn) run264

time bound. A more recent paper [32] removes the restriction on the entries, and obtains265

an expected constant time per update and sampling. Further investigations and a careful266

implementation are necessary to apply the mentioned sampling approaches in our context.267

Instead, for general doubly stochastic matrices without any bound on the entries, Goel et268

al. propose an augmented binary search tree with which each selection step of the random269

walk can be implemented in O(logn) time, and obtain a run time of O(m + n log2 n) in270

expectation, with a total of O(m) preprocessing time.271

3.2.2 Conversion to an efficient general heuristic272

Let c be a free column vertex with respect to a given matching of cardinality j. Assuming273

there is a perfect matching, one can find an augmenting path to match c, and a random walk274

can find it. The O( n
n−j ) bound on the expected length of such a path will not hold if the275

bipartite graph is not regular. One may perform more than m steps, which is the worst case276

time complexity of deterministically finding an augmenting path starting from a free vertex.277

We propose two methods to make the random walks more useful and to sample efficiently in278

a random walk. We also discuss an efficient implementation of the whole approach.279

The first proposed method is to scale the matrix representation A of a given bipartite280

graph to obtain a doubly stochastic matrix AS for random selections. The expected length281

of a random walk to find an augmenting path holds when AS has bounded nonzero entries.282

In general, ones does not have any bound on the entries of AS. Consider the matrix A283

associated with an upper Hessenberg matrix of size n. A has a full lower triangular part,284

and additional n− 1 entries A(i− 1, i) = 1 for i = 2, . . . , n, and fully indecomposable. The285

4× 4 example along with its unique scaling matrices are shown in Fig. 2. In the resulting286

scaled matrix AS(n, 1) = 1/2n−1 whose inverse is not bounded polynomially in n.287

As highlighted at the end of Section 3.2, one needs an O(logn) time algorithm to select a288

row vertex randomly from a given column vertex. The second proposed method is a simple289

yet efficient algorithm for this purpose, rather than a sophisticated augmented tree. The290

main components of the proposed sampling method are as follows. For each column vertex c,291

with dc neighbors, we have:292
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adjc[1, . . . , dc]: an array keeping the neighbors of c.293

wghtsc[1, . . . , dc]: the weight of the edges incident on c. This array is parallel to the first294

one so that the weight of the edge (c, adjc[i]) is wghtsc[i].295

medge[c]: the position of the mate of c in the array adjc, or −1 if c is not matched.296

At the beginning, we compute the prefix sum of wghtsc[1, . . . , dc]. After this operation, the297

total weight of the edges incident on c is wghtsc[dc], and the weight of the edge (c,mate[c])298

is wghtsc[medge[c]]− wghtsc[medge[c]− 1], assuming that wghtsc[0] signifies zero.299

Given the prefix sums in wghtsc[1, . . . , dc], the position of the mate of c at medge[c], we300

can choose a random neighbor (which is not equal to mate[c]) as shown in Algorithm 2. We301

use a binary search function, binSearch, which takes an array, the array’s start and end302

positions, a target value, and returns the smallest index of an array element which is larger303

than the given value with binary search (we skip the details of this search function). At304

Line 5, since c does not have a mate, we search in the whole list. At Line 8, since the prefix305

sum just before medge[c] is larger than the target value, we search in the first part of wghtsc306

until the current mate located at medge[c]. At Line 10, we search on the right of medge[c],307

by a modified target value. This last part is the gist of the algorithm’s efficiency as it avoids308

updating the prefix sums when the mate changes.309

Algorithm 2 Sampling a random neighbor of the column vertex c with dc neighbors.
Require: adjc[1, . . . , dc], wghtsc[1, . . . , dc], and medge[c].
1: mwght ← wghtsc[medge[c]]− wghtsc[medge[c]− 1] if medge[c] 6= −1, otherwise 0
2: totalW ← wghtsc[dc]−mwght I The total weight of the edges that can be sampled
3: create a random value rv between 0 and totalW
4: if medgec = −1 then
5: return binarySearch(wghtsc[1, . . . , dc], rv)
6: else
7: if wghtsc[medgec]−mwght ≥ rv then
8: return binSearch(wghtsc[1, . . . ,medge[c]− 1], rv)
9: else
10: return binSearch(wghtsc[medge[c] + 1, . . . , dc], rv + mwght) + medgec

The sampling algorithm returns the index of the neighbor in adjc different from the310

current mate in time O(log dc), independent of the values of the edges. It thus respects the311

required run time bound. If we were to apply the rejection sampling (as discussed before for312

the regular bipartite graphs), the run time would depend on the value of the matching edge313

that we want to avoid. This could of course lead to an expected run time of more than O(n).314

There are two key components of Algorithm 2. The first one is the prefix sum, which315

is computed once before the random walks start and does not change. The second one is316

medge[c], the position of mate[c] in adjc. The value medge[c] changes and needs to be updated317

when we perform an augmentation. We handle this update as follows. We keep the random318

walk in a stack by storing only the column vertices, as the row vertices direct the walk to319

their mate, or terminate the walk if not matched. We discard the cycles from the random320

walk as soon as they arise—this way we only store a path on the stack, and its length can321

be at most n. Storing a path also enables keeping the medge[·] up-to-date. Every time we322

sample an outgoing edge from a column vertex c, we assign the location of the sampled323

row vertex in adjc to a variable nmedge[c]. When we find a free row, the stack contains the324

column vertices of the corresponding augmenting path, whose new mates’ locations are in325

nmedge[·] and thus can be used to update medge[·].326

The described procedure will work gracefully in expected O(m+ n logn) time for regular327
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bipartite graphs and for doubly stochastic matrices where the nonzero values do not differ by328

large. On the other hand, when there are large differences in edge weights, a random walk can329

get stuck in a cycle. That is why truncating the long walks is necessary to make the algorithm330

work for any given doubly stochastic matrix. Furthermore, such a truncation is necessary331

with the proposed matrix scaling approach for defining random choices. For the overall332

approach to be practical, we should not apply the scaling algorithms until convergence. As333

in the previous approaches [15, 16], we allot a linear time of O(m+ n) for scaling. Applying334

Sinkhorn–Knopp algorithm for a few iterations will thus be allowable. The known convergence335

bounds for the Sinkhorn–Knopp algorithm [27, Thm. 4.5] apply asymptotically, therefore336

we do not have any bounds on the error after a few iterations; it can be large. That is why337

truncation makes the random walk based augmenting path search practical.338

The overall algorithm TruncRW is thus as follows. It takes the matrix representation of339

the given bipartite graph and scales it with a few steps of the Sinkhorn–Knopp algorithm.340

Then for j = 0 to n − 1, it uniformly at random picks a free column vertex, and starts a341

random walk starting from that column, for at most 2(4 + 2n/(n − j)) steps, after which342

the walk is truncated. Some follow discussion and experiments with different parameters for343

TruncRW may be found in Appendix C.344

4 Experiments345

We implemented 2outMC and TruncRW in C/C++, and the codes are accessible from346

https://gitlab.inria.fr/bora-ucar/fast-matching. The codes, all are sequential, were347

compiled with "-O3" and run on a machine with 2 x Intel Xeon CPU Gold 6136 CPUs and 187348

GB RAM. We evaluate 2outMC and TruncRW both on real-life and synthetic bipartite349

graphs with equal number of vertices in each side. We compared the two algorithms350

against KaSi, the widely used version of Karp–Sipser which applies degree-1 reduction351

(own implementation), and KaSi2, the original version of Karp–Sipser with both reduction352

rules. We use a publicly available implementation of KaSi2 (https://gitlab.inria.fr/353

bora-ucar/karp--sipser-reduction) which is the fastest of recent implementations [26,354

29]. We note that there are other heuristics (a short summary and further references are355

in Appendix A) which deliver very good results in practice. For most of these heuristics,356

especially for those based on vertex degree, there are known worst case upper bounds close357

to 1/2. We therefore restrict the focus on KaSi and KaSi2, which are efficient and very358

effective in practice [14, 25, 30]. We also investigated if random 2-out bipartite graphs of a359

general host graph have perfect matchings if rows and columns select neighbors with the360

probabilities in the scaled matrix representation. The quality of a matching refers to the361

ratio of the cardinality of the matching to the maximum cardinality of a matching in a given362

graph. The practical version of Sinkhorn-Knopp is referred to as SK-t, where t is the number363

of allowed iterations. All run times are reported in seconds.364

4.1 Investigation of perfect matchings in 2-out graphs365

Here, we investigate the claim that G2 will likely have a perfect matching for G, if created366

with the probabilities in the scaled matrix. We used a set of 39 large sparse square matrices367

from the SuiteSparse Collection [12], whose bipartite graphs have perfect matchings. These368

matrices are automatically selected from all square matrices available at the collection with369

106 ≤ n ≤ 28× 106, and with at least two nonzeros per row or column.370

We consider two different models to create G2. In the model M1, row choices are371

independent of the column choices. Under this model, a row and a column can select each372

other resulting in parallel edges—only one of them is kept. The model M2 tries to avoid373

https://gitlab.inria.fr/bora-ucar/fast-matching
https://gitlab.inria.fr/bora-ucar/karp--sipser-reduction
https://gitlab.inria.fr/bora-ucar/karp--sipser-reduction
https://gitlab.inria.fr/bora-ucar/karp--sipser-reduction
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m
n

[0,10) [10,20) [20,30) [30,40) [40,50)
#Instances 27 5 5 1 1

#PM deficiency #PM deficiency #PM deficiency #PM deficiency #PM deficiency
Model M1 0 223 0 8 1 20 0 2 1 0
Model M2 27 0 3 3 1 10 0 1 0 1
Table 1 We divide the real-life graphs into five groups. The ith group consists of graphs whose

m
n

ratio is between 10(i− 1) and 10i. For each group, we give the number of instances in which a
2-out graph built using the models M1 and M2 has a perfect matching and the largest difference
from the maximum cardinality of a matching.

2outMC TruncRW
h KaSi KaSi2 Uniform SK-5 Uniform SK-5
2 0.93 1.00 0.78 0.99 0.88 0.99
8 0.80 0.85 0.59 0.99 0.91 0.99
32 0.69 0.72 0.52 0.99 0.83 0.99

128 0.64 0.65 0.51 0.99 0.78 0.99
512 0.61 0.63 0.52 0.99 0.76 0.99

Table 2 Average quality of the matchings found by the algorithms on graphs from the synthetic
family I for n = 30000 and various values of h.

parallel edges. In this model, all columns perform their selections. Then, each row r attempts374

to randomly choose two columns, only from those that did not select r. These selections again375

are based on the scaled matrix. In this model, parallel edges can arise (and be discarded)376

only when a vertex v is connected in the 2-out graph with all of its neighbors in G, because377

it is impossible for v to select otherwise. We experimented three times with each real-life378

graph. Mi’s result is the maximum of those three experiments. In each test, we first created379

the choices of all columns. Then we allowed the two models to generate the choices of the380

rows accordingly.381

The results are shown in Table 1 for the 39 real-life graphs and are with SK-5. As seen in382

this table, the random G2 graphs generated with the model M1 have near perfect matchings,383

but they do not contain perfect matchings in most cases. In contrast, the random G2 graphs384

generated by M2 in many cases contain a perfect matching. In only a few graphs this does385

not hold true, and in these cases the deficiency is no more than 10.386

4.2 On synthetic graphs387

In Table 2, we give results with a synthetic family I of graphs from literature [16], whose388

matrix representations do not have total support. To create a member of I, we separate389

the vertex set R into R1 = {r1, . . . , rn/2} and R2 = {rn/2+1, . . . , rn} and likewise for C.390

All vertices of R1 are connected to all vertices of C1. Edges (ri, cn/2+i) and (rn/2+i, ci) for391

i = 1, . . . , n/2 are added to introduce a perfect matching. A parameter h is used to connect392

h vertices from R1, and h vertices from C1 to every vertex on the opposite side.393

As seen in Table 2, KaSi and KaSi2 have more and more difficulty with increasing h.394

The matching quality drops over 30% between h = 2 and h = 512 for KaSi and almost 40%395

for KaSi2. On the contrary, 2outMC and TruncRW both obtain a near perfect matching,396

with SK-5. Even though the matrices associated with the graphs of I lack total support,397

SK-5 sufficed to obtain near optimal matchings. We notice the effect of scaling: if vertices398

select without scaling (Uniform), the matching quality reduces. This is particularly true399

for 2outMC, which exhibits the worst overall performance with uniform selection. Family400

I shows the importance of scaling, and more importantly highlights the robustness of the401

proposed methods. An adversary can create graphs which make degree-based randomized402
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KaSi KaSi2 2outMC TruncRW
n quality quality uniform SK-5 SK-20 uniform SK-5 SK-20

10000 0.76 0.84 0.81 0.92 0.95 0.97 0.97 0.97
20000 0.73 0.83 0.81 0.92 0.95 0.97 0.97 0.97
30000 0.73 0.83 0.81 0.92 0.95 0.97 0.97 0.97

Table 3 Average quality of the matchings found by the algorithms on graphs from the synthetic
family J for n ∈ {10000, 20000, 30000}.

approaches lose quality—some of those heuristics are briefly mentioned in Appendix A, and403

the full details including negative results on KaSi2 can be found elsewhere [9]. On the other404

hand, the use of scaling helps to avoid such cases for 2outMC and TruncRW.405

We now discuss another synthetic family of graphs J in which the proposed approaches406

obtain matchings of much higher quality than KaSi and KaSi2. A bipartite graph with n407

vertices per side belonging to J contains the following edges: (ri, cj) for all i ≤ j; (r2, c1),408

(rn, cn−1); (r3, c1), (r3, c2), (rn, cn−2); and (rn−1, cn−2). The graphs in J are hard for409

Karp–Sipser-based heuristics because only few of the edges participate in a perfect matching,410

the deterministic rules do not apply, and hence they resort to multiple suboptimal random411

decisions. Likewise, due to the large number of entries without support in the matrix412

representation, Sinkhorn–Knopp will take many iterations to properly scale the matrix.413

In Table 3, we give results of the algorithms for a few graphs from this family. In the414

table, we also show the effects of scaling on 2outMC and TruncRW by showing results415

without scaling (under column “uniform”, in which a column vertex chooses a neighbor416

uniformly at random), with SK-5, and with SK-20. As can be seen, despite the lack of417

total support, both 2outMC and TruncRW obtain matchings whose cardinality is more418

than 0.92 of the maximum, when SK-5 or SK-20 is used. TruncRW in particular is nearly419

optimal. These results are always better than that of KaSi and KaSi2, with the difference420

in matching quality being about 20–25% for the former, and 10–15% for the latter. With421

increased iterations of Sinkhorn–Knopp, 2outMC increases the cardinality of its matchings422

by 3%. If we do not use scaling (“uniform”), while there’s no noticeable effect on TruncRW’s423

matchings, 2outMC matchings decrease by roughly 10%. Even so, its results remain better424

than KaSi’s and on par with those of KaSi2.425

4.3 On real-life graphs426

We compared TruncRW and 2outMC with KaSi and KaSi2 on all 39 real-life graphs from427

Section 4.1. Figure 3a and Figure 3b present the high level picture. For the experiments, we428

did not permute the matrices randomly, which generally increases the experimentation time.429

The results for matching quality can be seen in Figure 3a, where we plot the ratio of the430

cardinality of the matchings found by different algorithms to the maximum cardinality of431

the matching. The graphs are indexed in nondecreasing number of edges. 2outMC and432

TruncRW use SK-3 for scaling. As can be observed, both 2outMC and TruncRW obtain433

near perfect matchings. The average matching quality obtained by 2outMC is 0.9979 and434

that obtained by TruncRW is 0.9984. Both algorithms never drop below 0.9900 in any of435

the 39 cases.436

Figure 3a also shows the matching quality of KaSi2 and KaSi. KaSi obtains matchings437

of quality 0.9862 on average, with always smaller cardinality than TruncRW and 2outMC.438

KaSi2 fares better and its average quality is 0.9968. Even so, in the majority of cases, it439

obtains matchings that are inferior quality-wise to both TruncRW and 2outMC.440

While all algorithms obtain matchings of high quality, the absolute different is remarkable441

in some cases. For example, the largest difference observed between the matching cardinalities442
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Figure 3 Quality (left) and run time (right) results for all 39 graphs from Section 4.1.

obtained by 2outMC and KaSi was 346577, in favor of 2outMC.443

Figure 3b shows the run time of all examined heuristics, where the graphs are again444

indexed in nondecreasing number of edges. KaSi is in general the fastest of these four445

algorithms when there are not too many edges. TruncRW and 2outMC are close run-time446

wise to KaSi and in some instances faster than it. This is especially true in instances with447

many edges because KaSi depends more on m. KaSi2 has the slowest performance overall.448

For a detailed study, we show results on the five largest graphs from the mentioned dataset449

and Circuit5M, which was identified as a challenging instance in earlier work [25]. Degree-450

1 vertices from Circuit5M are removed by applying Rule-1 of KaSi2 as a preprocessing451

step—this is without loss of generality of the heuristics. For each graph we relabeled its452

row-vertices randomly and executed five tests with each algorithm.453

Table 4 shows the matching quality and the run time of the four heuristics. 2outMC454

and TruncRW used SK-3 for this set of experiments for speed. For each graph, we give the455

minimum, maximum, and averages over five runs. As already discussed, all heuristics obtain456

high quality matchings. On a closer look, we see that TruncRW, on average, matched457

158410 more edges than KaSi, and 50847 more edges than KaSi2. Similarly 2outMC458

matched 139220 more edges than KaSi on average, and 31652 more edges than KaSi2.459

Interestingly, on graph Channel-500 TruncRW was able to find the maximum matching.460

Concerning run time, as KaSi is a linear time heuristic it is expected to be the fastest.461

Surprisingly, TruncRW even with the scaling time added is faster than KaSi in three462

instances. This is due to the fact that each iteration of the scaling algorithm takes linear time463

with small constants. As an algorithm on its own (without scaling time), TruncRW becomes464

the fastest one, thanks to its run time not depending on m after the initialization. 2outMC,465

though slower, also exhibits good behavior, except in nlpkkt240. KaSi2 has the worst run466

time overall. Its initialization takes more time, and its implementation is more involved.467

SK-3 is fast except for nlpkkt240 where it requires about 30 seconds. The reason that SK-3468

requires 30 seconds for this particular graph is due to the random permutation of its rows,469

which is not cache-friendly (if SK-3 is run on nlpkkt240 using the initial ordering of rows, it470

finishes in less than 10 seconds). In the other cases and despite the large size of the graphs,471

scaling finishes in less than seven seconds. Table 4 additionally shows that TruncRW and472

2outMC’s run time performance does not seem to be affected by their random decisions.473

The largest difference between the result of the minimum, and the maximum run is no more474

than two seconds for both of these algorithms.475
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KaSi KaSi2 SK-3 2outMC TruncRW
name n statistics quality time quality time time quality time quality time

cage15 5.15
min. 0.99 12.67 0.99 26.89 4.59 0.99 8.82 0.99 8.27
avg. 0.99 12.81 0.99 27.08 4.68 0.99 8.88 0.99 9.32
max. 0.99 13.17 0.99 27.27 4.83 0.99 8.96 0.99 10.23

Channel-500 4.80
min. 0.99 10.12 0.99 20.63 2.74 0.99 7.63 1.00 3.86
avg. 0.99 10.16 0.99 20.94 2.75 0.99 7.66 1.00 4.48
max. 0.99 10.18 0.99 21.87 2.75 0.99 7.70 1.00 5.11

Circuit5M 5.55
min. 0.99 6.57 0.99 24.74 2.45 0.99 4.40 0.99 2.07
avg. 0.99 6.76 0.99 24.93 2.84 0.99 4.56 0.99 2.19
max. 0.99 7.03 0.99 25.33 4.16 0.99 4.81 0.99 2.35

Delaunay_24 16.00
min. 0.99 11.58 0.99 65.97 4.32 0.99 23.34 0.99 11.21
avg. 0.99 11.61 0.99 68.30 4.44 0.99 23.58 0.99 11.31
max. 0.99 11.66 0.99 72.47 4.48 0.99 24.38 0.99 11.37

Hugebub-20 21.19
min. 0.99 14.97 0.99 91.42 6.26 0.99 30.96 0.99 14.25
avg. 0.99 15.04 0.99 97.77 6.29 0.99 31.28 0.99 14.38
max. 0.99 15.15 0.99 106.78 6.31 0.99 31.59 0.99 14.57

nlpkkt240 27.99
min. 0.98 98.58 0.99 182.08 29.77 0.99 52.34 0.99 34.34
avg. 0.98 98.66 0.99 183.10 29.92 0.99 52.53 0.99 34.50
max. 0.98 98.76 0.99 186.08 30.27 0.99 52.76 0.99 34.70

Table 4 Full run time comparisons with heuristics for the graphs of Section 4.3. The run time of
SK-3 should be added to TruncRW and 2outMC. For each instance we give the minimum, the
average, and the maximum of five runs for all columns regarding the quality and the run time. The
number of vertices n per side is in the order of millions. Hugebub-20 stands for Hugebubbles-0020.

Combined with the results in the previous section, we conclude thus that (i) 2outMC476

and TruncRW always obtain near perfect matchings, while KaSi and KaSi2 are not as477

robust; (ii) 2outMC and TruncRW are nearly as fast as the linear time algorithm KaSi,478

and are much faster than KaSi2.479

Next, we consider the impact of our heuristics as initialization to an exact algorithm for480

finding a maximum cardinality matching. We first run the heuristics to obtain an initial481

matching, then call an exact algorithm to augment the initial matchings for maximum482

cardinality. We consider three different exact algorithms MC21, PR, and PF+ for the483

augmentation steps. MC21 [13] from mmaker [14, 25] visits free vertices one by one and484

tries to match the visited vertex with a depth-first search, and hence is closely related485

to TruncRW. In this setting, differences among the qualities of initial matchings should486

be observable while computing an exact matching. PR [25] is based on the Push-Relabel487

method [19], and PF+ which is a depth-first search based method [14, 36]. The last two488

algorithms are more elaborate than MC21, and the cardinality difference between two different489

initial matchings does not necessarily correlate with the run time.490

The statistics of five runs with MC21 are given in Table 5. In this table, the time491

spent in augmentations is given in column “augment.”. The overall time to compute a492

maximum cardinality matching is given in column “overall’, which includes the time spent in493

heuristics—in case of 2outMC and TruncRW it includes the scaling time as well. The494

runs on nlpkkt240 did not finish within an hour and are not presented. As seen in the495

table, the overall time to obtain a maximum cardinality matching is always the smallest496

with TruncRW initialization. 2outMC is usually competitive with the faster of KaSi2497

and KaSi, without a clear winner. It is also interesting to note that in all graphs the worst498

behavior of TruncRW is better than the best behavior of KaSi2 and KaSi and in some499

cases (see cage15 or Channel-500) significantly so. The same is almost true for 2outMC as500

well except for graphs Delaunay_24 and Hugebbubles-0020 where 2outMC’s worst result501

is only a few seconds slower than KaSi’s best result, or cage15 versus KaSi2.502
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KaSi KaSi2 2outMC TruncRW
name statistics augment overall. augment overall. augment overall. augment overall

cage15
min. 133.85 146.52 7.42 34.47 27.29 40.75 0.22 14.07
avg. 140.13 152.94 8.81 35.90 31.44 45.00 1.85 15.84
max. 144.42 157.28 10.70 37.59 37.84 51.47 2.46 16.84

Channel-500
min. 64.29 74.46 9.15 29.81 12.18 22.62 0.04 6.65
avg. 71.61 81.76 10.93 31.86 15.28 25.68 0.14 7.36
max. 78.81 88.98 11.71 33.58 18.84 29.25 0.25 8.11

Circuit5M
min. 14.33 20.94 10.51 35.32 4.38 12.21 0.50 5.02
avg. 15.26 22.01 13.11 38.04 5.70 13.09 0.77 5.80
max. 16.00 22.72 14.42 39.43 6.81 13.68 1.31 7.79

Delaunay_24
min. 49.95 61.54 26.93 94.02 35.10 63.71 26.77 42.49
avg. 54.79 66.40 29.99 98.29 36.68 64.70 31.06 46.81
max. 61.23 72.81 32.70 104.13 40.30 68.11 34.09 49.77

Hugebub-20
min. 68.17 83.14 55.79 148.64 44.83 82.31 42.02 62.56
avg. 73.15 88.20 58.95 156.72 50.65 88.21 44.54 65.21
max. 75.99 91.10 61.18 166.98 54.35 91.60 47.11 67.68

Table 5 Detailed run times when MC21 is used for augmentations on the graphs described in
Section 4.3. The quality of heuristics are in Table 4. We have omitted graph nlpkkt240 for which
MC21 did not finish within a reasonable amount of time. For each instance we give the minimum,
the average, and the maximum run time of five runs. Hugebub-20 stands for Hugebubbles-0020.

In Table 6, we observe the behavior of the heuristics when used for initializing the PF+503

algorithm. The table shows the minimum, average, and maximum time over the five runs. As504

can be observed, TruncRW exhibits the best overall behavior. TruncRW has the fastest505

performance in four out of six instances, and in the remaining two instances it is very close506

to KaSi. The largest difference between the two can be observed in nlpkkt240 where KaSi507

is overall almost 50 seconds slower. The total run time with KaSi2 is never better than that508

with TruncRW. It roughly takes the same amount of time for PF+ to augment 2outMC’s509

initial matching, as it takes for it to augment the matching of TruncRW. Therefore, when510

2outMC has a run time similar to TruncRW their overall run times are similar. In the511

largest of instances 2outMC’s and TruncRW’s performance diverge, but 2outMC’s overall512

behavior is superior to KaSi2 and competitive with that of KaSi.513

In Table 7, we observe the behavior of the heuristics when used for initializing the514

PR algorithm. The behavior of KaSi in Circuit5M demonstrates the robustness of our515

approaches. The average behavior of PR initialized with KaSi is 339 seconds with the516

maximum run time exceeding 500 seconds. In stark contrast, PR with TruncRW’s input517

never needs more than 25 seconds, whereas with 2outMC it never surpasses 150 seconds. In518

the remaining instances, the proposed algorithms are competitive with KaSi or even faster.519

In summary, the effects of the proposed methods as an initialization routine are more520

observable with MC21 on all instances. With PF+, we see that the augmentations take521

less time on average with 2outMC and TruncRW, but the overall time with KaSi can522

be sometimes better than that of TruncRW slightly thanks to KaSi being faster. When523

PR is used, the augmentations take less time with KaSi in three instances compared to524

TruncRW; and in four instances compared to 2outMC. When 2outMC and TruncRW525

serve better than KaSi as an initialization to PR, the difference is more significant. The526

above results with three different algorithms demonstrate the merits of the two proposed527

algorithms for use as initialization routines in exact matching algorithms.528
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KaSi KaSi2 2outMC TruncRW
name statistics augment. overall augment. overall augment. overall augment. overall

cage15
min. 2.19 14.89 2.11 29.18 1.90 15.46 0.73 14.22
avg. 2.51 15.33 2.59 29.67 1.97 15.53 1.16 15.15
max. 2.98 16.15 3.16 30.43 2.01 15.69 1.55 15.63

Channel-500
min. 1.70 11.84 1.82 22.50 1.19 11.60 0.04 6.66
avg. 1.91 12.06 2.07 23.01 1.30 11.71 0.04 7.27
max. 2.60 12.77 2.89 23.69 1.40 11.84 0.05 7.90

Circuit5M
min. 0.63 7.20 0.45 25.28 0.45 7.34 0.48 5.01
avg. 0.77 7.53 0.62 25.55 0.53 7.93 0.58 5.61
max. 0.97 7.97 0.90 25.92 0.67 9.55 0.64 7.04

Delaunay_24
min. 18.47 30.06 13.88 80.75 14.24 42.05 14.20 29.92
avg. 20.83 32.44 14.89 83.19 15.47 43.49 17.67 33.41
max. 22.33 33.91 16.17 86.35 17.12 44.98 20.40 36.09

Hugebub-20
min. 23.09 38.09 14.99 106.41 23.27 60.75 21.97 42.54
avg. 28.13 43.17 19.63 117.40 26.97 64.53 24.49 45.16
max. 34.11 49.26 23.00 127.49 30.38 68.17 29.65 50.53

nlpkkt240
min. 27.01 125.69 28.19 210.27 14.91 97.26 13.76 77.87
avg. 27.09 125.76 29.63 212.73 17.56 100.01 13.96 78.38
max. 27.24 125.83 30.27 216.15 20.99 103.47 14.09 79.06

Table 6 Detailed run times when PF+ is used for augmentations on the graphs described in
Section 4.3. The quality of heuristics are in Table 4. For each instance we give the minimum, the
average, and the maximum run time of five runs. Hugebub-20 stands for Hugebubbles-0020.

KaSi KaSi2 2outMC TruncRW
name statistics augment. overall augment. overall augment overall augment overall

cage15
min. 2.15 14.85 3.63 30.52 1.19 14.67 1.10 14.03
avg. 2.41 15.22 3.80 30.88 1.39 14.95 1.28 15.28
max. 2.68 15.85 4.01 31.08 1.69 15.32 1.69 16.59

Channel-500
min. 1.57 11.75 2.83 23.47 1.63 12.03 0.04 6.68
avg. 1.66 11.81 2.92 23.86 1.75 12.16 0.06 7.28
max. 1.70 11.85 3.01 24.88 2.02 12.44 0.08 7.92

Circuit5M
min. 116.67 123.24 107.51 132.34 2.02 8.89 0.74 5.26
avg. 332.29 339.05 235.54 260.47 37.11 44.51 5.37 10.40
max. 559.09 566.09 378.31 403.12 139.61 148.58 18.30 24.78

Delaunay_24
min. 40.52 52.15 32.09 98.89 41.66 69.52 48.63 64.32
avg. 45.48 57.09 36.90 105.20 46.94 74.96 52.48 68.23
max. 52.47 64.06 43.74 110.18 53.19 81.04 58.07 73.91

Hugebub-20
min. 41.01 56.16 55.22 146.78 44.71 81.96 49.46 70.34
avg. 47.53 62.58 58.56 156.33 51.59 89.15 53.16 73.84
max. 52.59 67.56 61.17 166.57 58.54 96.15 54.82 75.36

nlpkkt240
min. 13.98 112.59 22.87 205.18 15.49 97.63 19.74 84.26
avg. 14.13 112.80 24.17 207.27 17.34 99.79 28.70 93.13
max. 14.51 113.27 25.77 211.10 19.01 101.46 47.31 112.28

Table 7 Detailed run times when PR is used for augmentations on the graphs described in
Section 4.3. The quality of heuristics are in Table 4. For each instance we give the minimum, the
average, and the maximum run time of five runs. Hugebub-20 stands for Hugebubbles-0020.
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5 Conclusions529

We have examined two randomized algorithms for the maximum cardinality matching problem530

in bipartite graphs. These algorithms originally were designed for two very special classes of531

bipartite graphs. We have discussed how to convert them into efficient and effective heuristics.532

Our experimental results show that these approaches obtain near perfect matchings in real-life533

and synthetic instances and have a near linear time run time. The two approaches are also534

shown to be more robust than the state of the art heuristics used in the cardinality matching535

algorithms, and are generally more useful as initialization routines.536

Our adaptation of 2outMC is based on the premise that 2-out graphs sampled from537

a host graph have perfect matchings, assuming that the matrix representation of the host538

graph have total support. We showed evidence that this may be true and even if not, the539

sampled graphs have close to perfect matchings. A proof or the disproof of such 2-out graphs540

having perfect matchings is certainly welcome. Furthermore, this was the first attempt to541

implement 2outMC, and there is room for improved performance.542

A Other heuristics for bipartite matching and recent work543

In the main text, we compared the proposed heuristics with KaSi and KaSi2. There are a544

few other effective heuristics, which we briefly review here (see a recent survey [37]).545

Hopcroft and Karp’s original algorithm [21] proceeds in phases. At each phase, it finds546

shortest augmenting paths, and augments the current matching along a maximal set of547

disjoint such paths, where each phase runs in O(n+m) time. Stopping when the shortest548

augmenting paths is of length 2k + 1 at a phase no larger than k results in an 1− 1/(k + 1)549

approximate matching in O(k(m+ n)) time in the worst case. Greedy [39] chooses a random550

edge and matches the two endpoints and discards both vertices and the edges incident on551

them. Modified Greedy [39] chooses a free vertex and then randomly matches it to one of552

the available neighbors. MinGreedy [39] (see also Magun [31] and Langguth et al. [30] for553

related algorithms) improves upon Modified Greedy by selecting a random vertex with the554

minimum degree at the first step. The Greedy-like algorithms obtain maximal matchings555

and therefore are 1/2 approximate. Slight improvements in the form of 1/2 + ε are shown556

for these algorithms [2, 35], but there are theoretical bounds in the same vicinity [9]. Duff et557

al. [14] and Langguth et al. [25, 30] compare these algorithms for initialization in maximum558

cardinality matching algorithms and suggest using KaSi as initialization for general problems559

especially with the push-relabel based algorithms.560

Another class of heuristics use randomization for breaking the 1/2 barrier. RANKING [24]561

algorithm achieves an approximation ratio of 1 − 1/e, where e is the base of the natural562

logarithm. The same approximation ration is also achieved by a very simple parallel algorithm563

[16] whose most involved step is the application of a matrix scaling algorithm. This last564

paper also proposes an algorithm based on sampling 1-out subgraphs of a general bipartite565

graph (as we did in this paper) to obtain matchings of size about 0.86 times the maximum566

cardinality.567

Matching has stirred some recent interest in the theoretical computer science community,568

with works focusing on parallel and distributed settings [4, 5, 11, 3] or on the fully dynamic569

version [6, 8] among others. Among the recent work, a method by Assadi et al. [4] shares570

similarities with the 2outMC algorithm. Their approach similarly sparsifies a given graph571

G to produce a subgraph with some approximation guarantees for the maximum cardinality572

matching. A detailed experimentation with this sparsification approach will reveal useful.573
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B Further comments on 2outMC574

As demonstrated in the experiments in Section 4, 2outMC obtains matchings of very high575

cardinality. We can improve its matching quality by the following two heuristics. These two576

heuristics are not used in the given experiments. We plan to improve their run time.577

B.1 Heuristic 1: Delayed tree vertex selection during Line 5578

The ideal case at Line 5 of Algorithm 1 is to select an x such that x’s insertion as an edge579

to H2 does not lead to a new tree in H1 after the deletion of the edge corresponding to the580

unchecked vertex of the connected component Qx. This is only possible if Qx contains an581

unchecked column labeled as C in H1. Otherwise, a new tree will be created in H1, and the582

algorithm will have to process it in a future step. For the first heuristic, we greedily select583

an x such that, if possible, the creation of a tree in H1 is avoided.584

We replace LT is with two lists L1
T and L2

T . The lists L1
T contains those unmarked585

vertices of T whose insertion in H2 leads to a new tree; L2
T contains all other LT vertices586

that have not been tried yet. At first, we sample x from L2
T and see whether the components587

of x’s choices in H2 have an unchecked vertex of type C in H1. If they have, x is marked and588

inserted to H2. Otherwise, x is inserted in L1
T , and we consider another random vertex of589

L2
T . If L2

T becomes empty, we start sampling from L1
T .590

With the union-find data structure, this heuristic requires constant amortized time per591

sample and each vertex can be sampled at most twice. Therefore the overhead associated592

with this heuristic is almost linear in n.593

B.2 Heuristic 2: Online creation of the RG multigraph594

In this heuristic, the decisions of the rows are not given as input, but are instead defined595

during the course of the algorithm. Similar to the previous idea, this heuristic aims to reduce596

the possibility that a tree in H1 gets created following an edge insertion into H2.597

More specifically, consider a vertex x randomly chosen at Line 5. In this heuristic, x598

has not picked its two choices yet, and we let x choose them at this point, in the way that599

benefits the algorithm the most. This is done as follows. Initially, we iterate over all of x’s600

neighbors in the host graph G. Let c be one of x’s neighbors and c∗ be the sole unchecked601

vertex in c’s connected component in H2, or c∗ = −1 if no unchecked vertices exist. We602

assign values to x’s neighbors to classify them. If c∗ is equal to −1, c’s value is 0. If c∗ has603

label F or T in H1, c’s value is 1. Otherwise, c’s value is 2. Based on these assigned values,604

we partition the neighbors of x in G into three disjoint sets C0, C1 and C2 such that Ci605

contains all neighbors of x with value equal to i. Selecting columns from C2 is preferred, as606

they can avoid creating a tree in H1. Vertex x will attempt to sample first from C2, and if607

needed from C1 or C0, with a preference for C1 over C0. The sets C0, C1 and C2 are kept608

implicitly, and each vertex x requires amortized O(dx) to make its choices, where dx is its609

degree. Hence, the overhead associated with this heuristic is almost linear in m.610

B.3 Comparison with 2outMC611

Here, we briefly discuss the effects that the above two heuristics have on the performance of the612

2outMC algorithm. Since 2outMC obtains high quality results, the two heuristics can only613

yield a relatively small improvement. When they are enabled and used with SK-5 2outMC614

finds matchings with average quality of 0.9997 for the real-world graphs from Section 4.3 for615
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which 2outMC obtained matchings of quality 0.9983. This difference corresponds to about616

13113 additionally matched edges, and hence signals that 13113 augmentations are avoided.617

It is also interesting to consider the effects that these heuristics can have on cases where618

2outMC did not deliver near-optimal matchings. As an example, we consider the synthetic619

family J from Section 4.2. When scaling was not enabled, 2outMC found matchings of620

average cardinality 0.80− 0.81% of the maximum. If however one uses the two heuristics621

proposed in this section, then there is a significant improvement in performance, and 2outMC622

finds matchings of cardinality 0.89 of the maximum.623

C Further comments on TruncRW624

We incorporated a known heuristic called look-ahead [13, 14] for speeding up the augmenting625

path search in practice. All our experiments with TruncRW in Section 4 were with the626

look-ahead approach. In this heuristic, before sampling an arbitrary row-vertex from a627

column-vertex c, we check if there is a free row vertex in the adjacency list of c. If so, such a628

row is returned, and the random walk terminates. The implementation of this heuristic has629

a total overhead of O(m) for the whole course of the algorithm [13, 14]. We note that the630

look-ahead technique trades the quality of TruncRW with run time. In our experiments, the631

look-ahead heuristic reduced the run time significantly; it interferes with the randomization632

though.633

We can easily apply TruncRW to bipartite graphs with different number of vertices634

in each side. This is based on the fact that we can scale a rectangular n1 × n2 matrix (say635

n1 ≥ n2) so that all columns have sum of 1, and all rows have equal sum of n2/n1, if there636

is matching covering all columns, and all entries can be put in such a matching. Then, all637

components of TruncRW work without any change.638

If there is no total support, then Sinkhorn–Knopp works in such a way that the entries639

that cannot put into a perfect matching tend to zero. This is helpful in TruncRW’s context,640

as the corresponding edges will not likely be selected in a random walk. If there is no perfect641

matching, then little is known about scaling. It is our experience that the Sinkhorn–Knopp642

iterations tend to zero out entries that cannot be put into a maximum cardinality matching.643

Therefore, in this case again, scaling, random selection, and truncation should help. We644

present some experiments to support this observation and leave the question of showing this645

theoretically as an open problem.646

We experimented with bipartite graphs without total support which correspond to square647

(10000×10000) and rectangular matrices (12000×10000) with a uniform nonzero distribution.648

These matrices are generated with sprand command of Maltab and have about d× 10000649

nonzeros for d = 2, 3, 4, 5. The matrix representation of the bipartite graphs were scaled with650

10 iterations of SK. For each d, we created five random matrices and ran TruncRW on the651

corresponding five instances. We report the worst quality of the five instances in Table 8. As652

seen in this table, TruncRW works just fine for this case. We did not report in the table653

but with increased SK iterations, the results improve, which is in accordance with earlier654

work [16].655

C.1 Engineering TruncRW656

The experiments here are on real-life instances from Subsection 4.3 and with SK-5.657

Recall that TruncRW tries to find an augmenting path starting from a column vertex a658

certain number of times before giving up and moving to the next column vertex. When we659

allowed TruncRW just a single attempt, it was unable to find a perfect matching in any660
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10000× 10000 12000× 10000
d sprank TruncRW sprank TruncRW
2 7787 0.9888 8724 0.9919
3 9266 0.9697 9667 0.9958
4 9761 0.9828 9899 0.9995
5 9918 0.9922 9973 1.0000

Table 8 The quality of TruncRW on bipartite graphs without perfect matchings.

of the cases, and its average matching quality was 0.9984. When we allowed five attempts,661

TruncRW found a perfect matching for 13 graphs, and its average matching quality was662

0.9999. With 10 attempts, it managed to find a perfect matching in 5 additional graphs.663

This verifies that allowing more attempts indeed improves the performance of the algorithm.664

The drawback, however, was the increased run time, which we did not think worth. That is665

why our implementation of TruncRW starts a random walk from a vertex only once.666

We also test the effects of the look-ahead mechanism. Let us define the walk efficiency of667

TruncRW as the ratio of the cardinality of the matching found to the total length of the668

random walks. The higher this ratio, the more useful the random walks are. We evaluate669

the walk efficiency on a set of seven instances (real-life instances having at most 10000000670

edges). We test both with and without scaling and report the results of the 14 tests. In 13671

cases, the look-ahead mechanism improved the walk efficiency. The geometric mean (of 14672

cases) of the ratios of walk efficiencies with look-ahead to that of without was 1.37. In the673

case where the look-ahead did not help (ratio was 0.71 in an instance named Hamrle3), the674

maximum deviation of a row or column sum from one after SK-5 was 0.28, which is high.675

We conclude that the look-ahead mechanism is very helpful.676

Finally we test the effects that the length of the augmenting walk has on TruncRW. We677

doubled the allowed length of a random walk to 4(4 + 2n/(n− j)). On average, the matching678

quality rose from 0.9984 to 0.9998. This modification was not able to find a perfect matching679

in any of the 39 instances. This led to an increase in the run time, which we deemed too680

large. We therefore keep 2(4 + 2n/(n− j)) as the truncation length.681

D Reducing bipartite graph matching to matching on 2-out graphs682

Here, we prove our claim in Section 3.1 that bipartite matching can be reduced to matching683

on a 2-out bipartite graph. Let G = (VG, EG), with be a graph with minimum degree at least684

two. If G’s minimum degree is one, we can apply the first deterministic rule of Karp–Sipser685

to match degree-1 vertices with their neighbors and consider as G the resulting graph.686

We produce a new graph G′ from G in the following way. For any edge e = (a, b) ∈ E687

we add edges e′ = (a, ae), e′′ = (ae, be), and e′′′ = (be, b) to G′. We hence introduce two688

new vertices ae, be s.t dG′(ae) = dG′ = 2 for each edge e ∈ EG. The degree of nodes in VG689

remains unchanged in G′.690

I Lemma 2. Let H be a random 2-out subgraph G′. Then H = G′.691

Proof. The added vertices ae, be have degree two and will select both neighbors, hence no692

edge will remain unpicked. J693

In what follows, we refer to the second reduction rule of Karp–Sipser which merges the694

neighbors of a degree-2 vertex, which is then discarded, as a degree-2 reduction.695

I Lemma 3. It is possible to obtain G by doing only degree-2 reductions on G′.696
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Proof. Let ae be a vertex of G′, introduced due to the edge e = (a, b). Since dG′(ae) = 2 we697

can apply a degree-2 reduction which will merge a with be to create a single node abe. As a698

consequence of this merge, the edge (abe, b) will be created and edges (a, ae), (ae, be), (be, b)699

will be erased. We simply relabel abe to a again. The proof then follows similarly by applying700

degree-2 reduction for all ae corresponding to e ∈ E until we obtain G. J701

Now we show that maximum matchings in G′ are related to those on G and vice versa.702

I Lemma 4. Any maximum cardinality matching M ′ on G′ corresponds to a maximum703

cardinality matching M on G.704

Proof. Let M ′ be a maximum cardinality matching on G′. A matching M for G can be705

generated in the following way: If both (a, ae) and (be, b) appear in M ′, e is added to M .706

Hence it suffices to show that any maximum cardinality matching M ′ in G′ necessarily707

contains |M | pair of matched edges (a, ae) and (b, be).708

First, we have that |M ′| = |EG|+ |M |. To see this, note that per Lemma 2 we perform709

|EG| degree-2 reductions, and result in G. Each of this reductions corresponds with a matched710

edge in M ′. Then, we only need to find the maximum cardinality on G which is |M |.711

Let Sa contain all indices e such that (a, ae) is in M ′ and (be, b) is not in M ′. Set Sb is
defined similarly. Set S∅ contains all indices e such that (ae, be) appears in M ′. Finally, Sab
contains all indices e such that (a, ae) and (b, be) are matched together in M ′. Then, since
M ′ is a maximum cardinality matching we have

|Sa|+ |Sb|+ |S∅|+ 2 · |Sab| = |EG|+ |M | .

This is true because of the fact that for each edge e exactly one matched edge appears in M ′712

in case e ∈ Sa ∪ Sb ∪ S∅ and two edges are added if e ∈ Sab.713

However, |Sa|+ |Sb|+ |S∅|+ |Sab| = |EG|, since each edge e must appear in one of those714

sets and there exist exactly |EG| of them.715

Hence, |Sab| = |M | necessarily. As they define a matching in G and their cardinality is716

|M |, the matching is maximum.717

J718

Using the above lemma, we can prove Theorem 5 below.719

I Theorem 5. Assume there is an algorithm ALG working in O(f(n,m)) time for finding a720

maximum cardinality matching in a 2-out graph. Then we can find a maximum cardinality721

matching in O(f(m,m)) time for any given graph.722

Proof. Let G be any bipartite graph without degree-1 vertices and m = |EG|. In O(m) time723

we generate G′. By Lemma 2, the 2-out subgraph of G′ corresponds to G′ itself. In addition724

|EG′ |, |VG′ | ∈ O(m). Using ALG, we can find a maximum cardinality M ′ for G′ in O(f(m,m))725

time. By Lemma 4 then, we can convert M ′ to a maximum cardinality matching M for G in726

O(m) time. J727

As a byproduct of Lemma 4, we observe that the transformation of G to G′ also eliminates728

the need to perform SK as a preprocessing step. We briefly experimented with this method729

on the real-world graphs of Section 4.3. For each graph G of the test-set, we generated730

its extension G′ and executed the 2outMC algorithm on 2-out graphs sampled from G′,731

with uniform selections. The behavior of 2outMC was similar with that of the previous732

experiments. It was not able to obtain a perfect matching in G′ (and consequently G), but733

it always returned near-optimal matchings of quality over 0.99. These matchings, when734

converted into matchings of G (following the idea in Lemma 4) yielded also near-optimal735

matchings with quality over 0.99.736
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