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The SARS-COV-2 pandemic has put pressure on Intensive Care Units, and made the             
identification of early predictors of disease severity a priority. We collected clinical,            
biological, chest CT scan data, and radiology reports from 1,003 coronavirus-infected           
patients from two French hospitals. Among 58 variables measured at admission, 11            
clinical and 3 radiological variables were associated with severity. Next, using 506,341            
chest CT images, we trained and evaluated deep learning models to segment the             
scans and reproduce radiologists' annotations. We also built CT image-based deep           
learning models that predicted severity better than models based on the radiologists'            
reports. Finally, we showed that adding CT scan information—either through          
radiologist lesion quantification or through deep learning—to clinical and biological          
data, improves prediction of severity. These findings show that CT scans contain            
novel and unique prognostic information, which we included in a 6-variable ScanCov            
severity score.  
 
 

Introduction 

Hospitalized COVID-19 patients are likely to develop severe outcomes requiring mechanical           
ventilation or high-flow oxygenation. Among hospitalized patients, 14 to 30% will require            
admission to an ICU, 12 to 33% will require mechanical ventilation, and 20% to 33% will                
die1–4. Detection at admission of patients at risk of severe outcomes is important to deliver               
proper care and to optimize use of limited intensive care unit (ICU) ressources5.  
 
Identification of hospitalized COVID-19 patients at risk for severe deterioration can be done             
using risk scores that combine several factors including age, sex, and comorbidities (CALL,             
COVID-GRAM)6–11. Some risk scores also include additional markers of severity such as the             
dyspnea symptom, clinical examination variables such as low oxygen saturation and           
elevated respiratory rate, as well as biological factors reflecting multi-organ failures such as             
elevated Lactate dehydrogenase (LDH) values8,10,12–14.  
 
Beyond clinical and biological variables, computerized tomography (CT) scans also contain           
prognostic information, as the degree of pulmonary inflammation is associated with clinical            
symptoms, and the amount of lung abnormality has been associated to severe evolution15–19.             
However, the extent to which CT scans at patient admission add prognostic information             
beyond what can be inferred from  clinical and biological data is unresolved.  
 
The objective of this study was to integrate clinical, biological and radiological data to predict               
the outcome of hospitalized patients. CT-scan information was included in multimodal scores            
either through deep learning models or using radiologist quantification of lesions.  
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Results 

 
A total of 1,003 patients from Kremlin-Bicêtre (KB, Paris, France) and Gustave Roussy             
(IGR, Villejuif, France) were enrolled in the study. Clinical, biological, and CT scan images              
and reports were collected at hospital admission. There were 931 patients for which clinical,              
biological and CT-scan data were available (Supp Fig 1). A total of 506,341 images were               
analyzed for the 980 patients with CT-scans (average of 517 slices per scan). Radiologists              
annotated 17,873 images from 329 CT-scans. Summary statistics for the clinical, biological,            
and CT scan data are provided in Table 1.  
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Table 1: Population description for the KB and IGR hospitals and association between             
variables measured at admission and severity. Among the 1,003 patients of the study, biological               
and clinical variables were available for 987 individuals. Categorical variables are expressed as             
percentages [available]. Continuous variables are shown as median (IQR) [available]. Association           
with severity are reported with p-values for each center and p-value were combined with Stouffer's               
method. A star (*) in the column entitled “Significant association” indicates that the variable is               
significantly associated with severity after Bonferroni adjustment to account for multiple testing across             
58 variables (treatments are excluded). For continuous variables, odds ratios are computed for an              
increase of one standard deviation of the continuous variable. 
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Figure 1: Axial chest CT scans and segmentation results COVID-19 radiology patterns, as provided by the                
model AI-segment, for 3 patients with COVID-19. Green/transparent: sane lung; blue: GGO; yellow : crazy               
paving; red: consolidation. (Top) 67-year-old woman with diffuse distribution, and multiple large regions of              
subpleural GGO with consolidation to the right and left lower lobe. Estimated disease extent by AI: 69%/47%                 
(right/left). Radiologist report: critical stage of COVID-19 (stage 5). (Middle) 56-year-old man, with diffuse              
distribution and multiple large regions of subpleural GGO with superimposed intralobular and interlobular septal              
thickening (crazy paving). Estimated disease extent by AI: 51%/68% (right/left). Radiologist report: severe stage              
of COVID-19 (stage 4). (Bottom) 70-year-old woman, with minimal impairment, and multiple small regions of               
subpleural GGO with consolidation to the right lower lobe. Estimated disease extent 13%/7% (left/right).              
Radiologist report: moderate stage of COVID-19 (stage 2). 
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Variables associated with severity 

We first evaluated how clinical and biological variables measured at admission were            
associated with future severe progression, which we defined as an oxygen flow rate of 15               
L/min or higher and/or the need for mechanical ventilation and/or patient death20. This             
definition of severe progression corresponds to a score of 5 or more according to the World                
Health Organization evaluation of severity on a 1 to 10 scale. We computed the severity               
odds ratios for each individual variable, and at each hospital center (Table 1 and Supp Fig                
2). When combining association results from the two centers, we found 11 variables             
significantly associated with severity (P <0.05/58 to account for testing 58 variables, Table 1              
and Supp Fig 2): age (Odds Ratio [OR] KB 1.66 (1.41-1.96), OR IGR 1.35 (0.92-1.98),               
PStouffer = 5.25e-10), sex (OR KB 1.95 (1.41-2.69), OR IGR 1.07 (0.51-2.23), PStouffer =              
5.75e-05), hypertension (OR KB 1.84 (1.35-2.51), OR IGR 1.11 (0.51-2.42), PStouffer =            
1.11e-04), chronic kidney disease (OR KB 2.51 (1.62-3.89), OR IGR 16.59 (1.93-142.84),            
PStouffer = 6.71e-06), respiratory rate (OR KB 1.34 (1.13-1.59), OR IGR 3.37 (1.28-8.86),             
PStouffer = 2.14e-04), oxygen saturation (OR KB 0.38 (0.31-0.47), OR IGR 0.35 (0.20-0.63),             
PStouffer = 2.91e-21), diastolic pressure (OR KB 0.70 (0.59-0.83), OR IGR 0.75 (0.51-1.11),             
PStouffer = 1.35e-05), CRP (OR KB 1.47 (1.25-1.72), OR IGR 1.48 (1.03-2.14), PStouffer =              
4.48e-07), LDH (OR KB 2.05 (1.65-2.54), OR IGR 2.36 (1.32-4.21), PStouffer = 6.05e-12),             
polynuclear neutrophil (OR KB 1.36 (1.13-1.60), OR IGR 1.15 (0.80-1.64), PStouffer =            
1.29e-04), and urea (OR KB 1.70 (1.43-2.01), OR IGR 2.19 (1.36-3.52), PStouffer = 9.17e-11). 
 
We then assessed the predictive value of features from admission radiology reports, and             
found three significant features: (i) extent of disease (OR KB 2.37 (1.97-2.86), OR IGR 1.62               
(1.11-2.37), PStouffer = 9.56e-21) and (ii) crazy paving (OR KB 2.50 (1.82-3.44), OR IGR 2.37               
(1.10-5.11), PStouffer = 3.10e-09), associated with greater severity, and (iii) peripheral           
topography, associated with lesser severity (OR KB 0.54 (0.39-0.74), OR IGR 0.55            
(0.23-1.31), PStouffer = 8.21e-05).  
 

Segmentation of CT-scans 

We next trained the deep neural network AI-segment (Supp Fig 3) to segment radiological              
patterns and provide automatic quantification21,22 of their volume, expressed as a percentage            
of the full lung volume. These patterns included the three distinguishable features that             
appear as disease severity progresses: ground glass opacity (GGO), crazy paving, and            
finally consolidation. AI-segment was trained on 184 patients from KB hospital (8 fully             
annotated scans, 176 partially annotated ones) and evaluated on 145 patients from IGR             
hospital (14 fully annotated scans and 131 partially annotated ones). To evaluate            
AI-segment, we first compared its performance to that of radiologists manual annotation.            
AI-segment discriminated lung regions from regions outside of the lung with an accuracy of              
99.9% when evaluated on the fully annotated scans. Within the lung, the model's ability to               
discriminate between lesions and healthy areas had F1 values of 0.85 and 0.98 on partially               
and fully annotated scans. In the fully annotated scans, the predicted volumes of each lesion               
type had relative errors (median [min-max]) of 3.77% [0.054%-14%] for GGO, 0.96%            
[0.058%-4.4%] for consolidation, and 5.92% [0.41%-13%] for sane lung (no crazy paving            
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was present in these scans). We next compared AI-segment to the information contained in              
the radiology reports. The F1 score measuring the ability of AI-segment to detect the              
presence of a lesion type per patient, was of 0.88 for GGO, 0.65 for crazy paving, and 0.75                  
for consolidation (Supp Table 1). Correlation between quantification of the proportion of            
lesions with AI-segment and the radiologist evaluation was of 0.56 (Supp Fig 5). AI-segment              
visual results were also consistent with radiologist observations (see Figure 1 for three             
representative cases). We lastly evaluated to what extent AI-segment provided biomarkers           
of future severity. We found that severity was significantly associated to GGO extent (OR KB               
0.64 (0.54,0.76), 0.77 (0.54,1.10), PStouffer = 1.94e-07), crazy paving extent (OR KB 1.47             
(1.20-1.79), OR IGR 1.31 (0.92,1.87), PStouffer = 6.70e-05), consolidation extent(OR KB 1.46            
(1.23,1.73), 1.27 (0.89,1.82), PStouffer = 7.61e-06) as well as total disease extent (OR KB 2.11               
(1.74,2.55), OR IGR 1.90 (1.30,2.79), PStouffer = 7.66e-16)(accounting for multiple testing).           
These correlations were observed in the larger KB dataset, but were not found in the IGR                
dataset (Supp Table 2). 

Prognostic models based on CT-scan only 

We next evaluated the prognostic value of variables extracted from CT scans through three              
different models. The first model called report combined variables from the radiological            
report using logistic regression. The second was based on the lesion volumes computed by              
AI-segment and variables were again combined with logistic regression. The third called            
AI-severity used a weakly supervised approach with no radiologist-provided annotations          
(Supp Fig 4)23. All three models were trained on 646 KB patients, validated on 150 KB                
patients and on the independent IGR dataset of 135 patients (Figure 2). On the validation set                
from KB hospital, AI-severity outperformed report (AUCAI-severity = 0.76 (0.66,0.85),          
AUCAI-segment = 0.67(0.56,0.77), AUCreport = 0.71 (0.62,0.80)). On the independent IGR           
validation set, both AI-segment and AI-severity outperformed the model report (AUCAI-severity           
= 0.75 (0.65,0.84), AUCAI-segment = 0.70 (0.59,0.80), AUCreport = 0.65 (0.54,0.75)). When            
considering alternatives outcomes consisting of either death, or death or admission to ICU,             
AI-severity and AI-segment were also superior to report in terms of AUC (Supp Table 3). 

To interpret the weakly supervised AI-severity model, and understand what it detects within             
the CT scans, we evaluated to what extent the features extracted by AI-severity (internal              
representation) could predict clinical and radiological variables. To this end, we trained a             
new logistic regression with AI-severity's extracted features as input, and some clinical and             
radiological variables as output. AUC on the KB validation set was 0.93 (C.I. = (0.88,0.97))               
for disease extent (threshold >2), 0.78 (C.I. = (0.70,0.85)) for crazy paving, 0.64 for              
condensation (C.I. = (0.53,0.74)) and 0.80 for GGO (C.I. = (0.65,0.94)) (Supp Table 4). It               
was also possible to relate internal representations of the neural networks to clinical             
variables. We obtained an AUC of 0.88 (C.I. = (0.82,0.94)) for predicting an age strictly               
larger than 60 year-old, an AUC of 0.93 (C.I. = (0.89,0.97)) for sex, and of 0.76 (C.I. =                  
(0.68,0.84)) for predicting an oxygen saturation larger than 90%. As a comparison, a logistic              
regression trained on the variables from the radiology report obtained only AUC scores of              
0.70 (C.I. = (0.61,0.78)) for age, 0.57 (C.I. = (0.48, 0.67)) for sex and of 0.68 (C.I. = (0.58,                   
0.77) ) for oxygen saturation. Simply put, this analysis shows that the internal representation             
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of the AI-severity neural network captures clinical features from the lung CTs, such as sex or                
age, on top of the known COVID-19 radiology features. 

Multimodal prognostic models and ScanCov score 

Lastly, we evaluated whether CT scans have a prognostic value beyond what can be              
inferred from clinical and biological characteristics alone. To this end, we sought to compare              
the performance of trimodal CT scan/clinical/biological models to a bimodal clinical/biological           
model (C & B). Using a greedy search approach to include optimal variables, we therefore               
incorporated clinical and biological variables into report and named the resulting trimodal            
model the ScanCov score. Coefficients and transformations required to compute the           
6-variable ScanCov score are available in Supp Table 6. Through the same method, we also               
made a trimodal version of AI-segment, and AI-severity (Supp Fig 6, Supp Table 5). We               
evaluated the models' performances on three outcomes: the initial WHO-defined high           
severity outcome of "oxygen flow rate of 15 L/min or higher, or need for mechanical               
ventilation, or death", as well as two other outcomes "death or ICU admission", and "death".               
For each outcome and validation set, both ScanCov and AI-severity performed better than             
the bimodal biological/clinical C & B model (Figures 2 & 3, Supp Table 3). The gain of                 
performance when compared to the C & B model was larger for the KB hospital (median                
AUC increase of 4.0% for AI-severity and of 3.6% for ScanCov) than for the IGR hospital                
(median AUC increase of 1.5% for AI-severity and of 0.4% for ScanCov). For the model               
AI-segment, the median increase of AUC was of 0.5% for the KB hospital and of 1.9% for                 
the IGR hospital. 
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Figure 2: Receiver operating characteristic (ROC) curves for the models that predict            
severity. Models were evaluated on two distinct validation sets consisting of 150 patients from              
KB (left panels) and 135 patients from IGR (right panels). The model RR denotes the model                
based on the variables of the radiologist report, the model C & B denotes the model based                 
on clinical and biological data only, and the prefix Tri stands for Trimodal when clinical and                
biological data were included in addition to CT-scan data. AI-segment and AI-severity denote             
two models based on deep learning variables extracted from CT-scans.  

The ScanCov and AI-severity models also outperformed other previously published severity           
or mortality scores (Figure 3, Supp Fig 7, Supp Table 3). The median difference (averaged               
over outcomes) between the AUC of AI-severity and of other scores ranged between 5%              
(COVID-GRAM) and 15% (CALL) at KB and between 10% (COVID-GRAM) and 26%15 at             
IGR. The median difference (averaged over outcomes) between the AUC of AI-segment and             
of other scores ranged between 2% (COVID-GRAM) and 12% (CALL) at KB and between              
5% (COVID-GRAM) and 24%15 at IGR. Similarly, the median difference (averaged over            
outcomes) between the AUC of ScanCov and of other scores ranged between 4%             
(COVID-GRAM) and 14% (CALL) at KB and between 5% (COVID-GRAM) and 24%15 at             
IGR. Among alternative scores, the COVID-GRAM score provided the largest value of            
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median AUC (Figure 3, Supp Table 3). When averaging AUC (median) over outcomes at              
KB, the range of AUC increase when comparing COVID-GRAM to other scores was             
between 0.5% (MIT analytics) and 10% (CALL); range of AUC increase at IGR was between               
7% (MIT analytics) and 10%15. The COVID-GRAM score was also the only alternative             
scoring system we considered that includes CT scan information. 

Figure 3: AUC values of the different models for the three distinct outcomes. The C & B                 
(bimodal model with clinical and biological information), Tri AI-severity, Tri AI-segment (trimodal            
models with deep learning to extract information from CT scans) and ScanCov 6-variable trimodal              
model were trained on 646 patients from KB. These models were trained using the severity outcome                
defined as an oxygen flow rate of 15 L/min or higher, the need for mechanical ventilation, or death.                  
When evaluating these 4 models on the alternative outcomes, models were not trained again. Results               
are reported on the validation set from KB (150 patients) and the external validation set from IGR (135                  
patients). Error bars represent the 95% confidence intervals.  

Of all the features within the radiologists' report, disease extent was the most strongly              
associated to prognosis (Table 1). We therefore further investigated this feature to confirm             
that it brings additional prognostic information that is not otherwise captured in any clinical or               
biological variable. In the KB dataset, the three variables that were the most correlated with               
disease extent were LDH (r = 0.52, C.I. = (0.45,0.58)), CRP (r = 0.45, C.I. = (0.39,0.51)), and                  
oxygen saturation (r = -0.43, C.I. = (-0.49,-0.37)) (Supp Table 7). We then regressed the               
severity outcome with disease extent and the three correlated variables and found that             
significant predictors included oxygen saturation (P = 1.57e-07) and disease extent (P =             
0.01), whereas statistical evidence for association was weak for LDH (P = 0.06) and absent               
for CRP (P = 0.26). The statistical evidence for association between disease extent and              
severity was also found (P = 9.85e-08) when accounting for the five additional variables of               
the ScanCov score, which were also significantly related with the outcome (Age P =              
1.49e-06, Oxygen saturation P = 2.83e-08, Sex P = 0.035, Platelet P = 0.001, Urea =                
9.77e-05). This confirms that the radiological feature of disease extent brings unique            
prognostic information.  

To further evaluate the ScanCov score, individuals in the top tercile were assigned in a high                
risk group. We found that the survival function of the individuals at high risk was significantly                
different from the survival function of the other individuals (Figure 4, P = 2.90e-07 at KB, P =                  

10 

https://paperpile.com/c/SrlPIM/ojI5J


 

5.38e-08 at IGR for a log-rank test). When considering a binary classification consisting of a               
high-risk group and a medium or low risk group, we obtained positive predictive values (or               
precision) of 54% (KB) and 68% (IGR), negative predictive values of 85% (KB) and 80%               
(IGR), specificities of 78% (KB) and 91% (IGR), and sensitivities of 65% (KB) and 48%               
(IGR). 

 

Figure 4: KM curves for the high risk individuals and the ones with low or medium risk 
according to the ScanCov score. The threshold to assign individuals into a high risk group 
was the ⅔-quantile of the ScanCov scores computed for patients of the KB training set. 
Kaplan-Meier curves were obtained for individuals of the KB validation set (left panel) and 
IGR validation set (right panel). P-values for the log-rank test were equal to 2.90e-07 (KB) 
and 5.38e-08 (IGR). The two terciles used to determine threshold values for low, medium 
and high risk groups were equal to 0.144, and 0.369. 
 

Discussion 
Taken together, these results show that unique future disease severity markers are present             
within routine CT scans performed at admission, and that these scans provide useful and              
interpretable elements for prognosis.  

Looking back on the prognostic clinical and biological variables, we found 11 of these              
significantly associated with severe evolution, which is consistent with previous studies14,30,37.           
First, looking at clinical characteristics, we confirmed that male and older persons are more              
at risk24. Although BMI is a known risk clinical factor for severe COVID24, it was not                
associated with severity here. Discussion with clinicians however indicated that the data            
capture may have been biased, with emergency room doctors inputting height and weight             
more frequently for obese patients. Second, looking at clinical examination variables, we            
found that respiratory rate, diastolic pressure, and oxygen saturation are clinical variables            
associated with severity. These associations may reflect physician decisions taken for ICU            
triage. Inclusion criteria for critical care triage include (i) requirement for invasive ventilatory             
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support characterized by an oxygen saturation lower than 90%, or by respiratory failure, or              
(ii) requirement for vasopressors characterized by hypotension and low blood pressure33.           
Third, looking at comorbidities, we confirmed the results of several meta-analyses28,30–32 that            
showed that chronic kidney disease and hypertension are linked to severity. We however did              
not find significant associations for other comorbidities previous associated with severity,           
such as diabetes, and cardiovascular diseases28,29. While we expected cancer patients to            
have more severe outcomes because they are generally older, with multiple co-morbidities            
and often in a treatment-induced immunosuppressive state25–27, we did not find this            
association. Several factors can explain this. Each cohort was not optimally balanced to             
conclusively study the association between cancer and severity: IGR admitted mostly cancer            
patients (80% of the patients) while KB admitted very few cancer patients (7%). Fourth,              
looking at COVID symptoms, we did not find any significantly associated with severity.             
Dyspnea is a prominent symptom that has been repeatedly associated with severity and our              
results are compatible with a positive association with severity but we may lack a              
large-enough sample size to be significant6,34,35. Last, looking at biological measures, we            
found that inflammatory biomarkers, LDH and CRP are related to severity13,36,37. We also             
found association with neutrophil and urea, the later being explained by the fact that high               
urea is indicative of kidney disfunction. Thrombocytopenia (low platelet count) was not            
significantly associated to severity, possibly because of lack of statistical power and stringent             
correction for multiple testing, but association betwen thrombocytopenia and severity was in            
the expected direction and platelet counts are included in the 6-variable ScanCov score and              
in the trimodal models AI-segment and AI-severity .  

Beyond these clinical and biological variables, chest CT-scans provided additional markers           
of disease severity. Significant features include the total extent of lesions, the presence of              
crazy paving pattern lesions, and the proportion of consolidation lesions when measured            
with automatic segmentation. Although the extent of disease severity and consolidation are            
known to be associated with severity15,18,38–43, our study discovered its association with crazy             
paving, a precursor of consolidation lesions. Initial damages to the alveoli, as well as protein               
and fibrous exudation, explain the early onset of GGO. As the disease progresses, more and               
more inflammatory cells infiltrate the alveoli and interstitial space, followed by diffuse            
alveolar lesions and the formation of a hyaline membrane, which results in a crazy paving               
appearance, which is then followed by consolidation on the CT examination44,45. Correlation            
results between the proportion of each lesion type and severity reflects this sequencing, as              
GGO proportions are negatively related with severity, while crazy paving and consolidation            
proportions are positively correlated to severity (Supp Table 2).  

Compared to a radiologist's reporting and quantification of lesions, there are several            
advantages to capturing CT-scan information through deep learning models. Good          
reproducibility is a key element for imaging biomarkers such as disease extent, and visual              
inspection of images introduces variability that can hinder its clinical application46.           
Additionally, the consolidation feature, which has been repeatedly associated with COVID           
severity34,38,41–43, was not found to be associated with severity with a simple            
presence/absence radiologist coding, whereas correlation was evident once pulmonary         
consolidation was quantified with automatic segmentation. Another advantage is that          
radiologists are faced with the challenge that large numbers of cases must be read,              
annotated and prioritized in a COVID-19 pandemic. AI analysis of radiological images has             
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the potential to reduce this burden and speed up their reading time. Finally, unimodal              
prognosis scores obtained with deep learning models trained on CT-scans are more            
predictive of severity than manually extracted radiological features. We indeed showed that            
internal representation of the AI-severity neural network captures clinical information from           
CT scans, and this can can be particularly useful when some clinical or lab measurements               
are missing.  

Our reported prognostic values for CT-scan-based models (AUC range of 0.70 - 0.80) are              
lower than the 0.85 AUC reported in the previously published Zhang et al study16. We               
hypothesize that this is due to use of different outcome definitions, as well as different               
patient characteristics in the study cohorts (age, severity at admission, etc). Hospital            
admission criteria vary between countries and hospitals; for instance, proportion of deaths in             
our French KB and IGR cohorts was of 16-17%, while it was of 39% in the Zhang et al                   
study16. When applying other previously published scores to the KB and IGR datasets, we              
found smaller AUC scores than reported values in the original papers. This difference can              
again be explained by differing patient characteristics, and different measures of severity            
between studies7,10,15,6,9  

Our evaluation of the different trimodal models that included CT scan information in addition              
to clinical and biological information revealed the added prognostic value of CT scans.             
Interestingly, while CT scan disease extent was correlated to biological and clinical severity             
biomarkers such as CRP levels, tissue damage (LDH) and oxygenation —highlighting some            
information redundancy between data modalities34,47–4—disease extent was still significantly         
associated with severity even after accounting for these other severity markers, confirming            
the unique added value of CT-scans. Beyond AI modeling, our study shows that the              
6-variable ScanCov score integrating a radiological quantification of lesions with key clinical            
and biological variables provides accurate severity predictions, and can rapidly become a            
reference patient scoring approach. 

Methods 

Description of the retrospective study 

Data including CT-scans, were collected at two French hospitals (Kremlin Bicêtre Hospital,            
APHP, Paris denotes as KB and Gustave Roussy Hospital, Villejuif denoted as IGR). CT              
scans, clinical, and biological data were collected in the first 2 days after hospital admission.               
This study has received approval of ethic committees from the two hospitals and authors              
submitted a declaration to the National Commission of Data Processing and Liberties (N°             
INDS MR5413020420, CNIL) in order to get registered in the medical studies database and              
respect the General Regulation on Data Protection (RGPD) requirements. An information           
letter was sent to all patients included in the study. We stopped to update information about                
patient status on the 5th of May. Among the 1,003 patients of the study, two patients asked                 
to be excluded from the study.  

Inclusion criteria were (1) date of admission at hospital (from the 12th of February to the 20th                 
of March at Kremin Bicêtre and from the 2nd of March to the 24th of April at Institut Gustave                   

13 

https://paperpile.com/c/SrlPIM/ZmicJ
https://paperpile.com/c/SrlPIM/ZmicJ
https://paperpile.com/c/SrlPIM/lyEg+ojI5J+eUFG
https://paperpile.com/c/SrlPIM/GmzJ+ENvU
https://paperpile.com/c/SrlPIM/ehBh+XPA7+tf7E+QVmq


 

Roussy) and (2) a positive diagnosis of COVID-19. Patients were considered positive either             
because of a positive RT-PCR (real-time fluorescence polymerase chain reaction) based on            
nasal or lower respiratory tract specimens or a CT scan with a typical appearance of               
COVID-19 as defined by the ACR criteria for negative RT-PCR patients50. Children and             
pregnant women were excluded from the study. 

 
The clinical and laboratory data were obtained from detailed medical records, cleaned and             
formatted retrospectively by 10 radiologists with 3 to 20 years of experience (5 radiologists at               
GR and 5 at KB). Data include demographic variables: age and sex, variables from the               
clinical examination include: body weight and height, body mass index, heart rate, body             
temperature, oxygen saturation, blood pressure, respiratory rate, and a list of symptoms            
including cough, sputum, chest pain, muscle pain, abdominal pain or diarrhoea, and            
dyspnea. Health and medical history data include presence or absence of comorbidities            
(systemic hypertension, diabetes mellitus, asthma, heart disease, emphysema,        
immunodeficiency) and smoker status. Laboratory data include conjugated alanine, bilirubin,          
total bilirubin, creatine kinase, CRP, ferritin, haemoglobin, LDH, leucocytes, lymphocyte,          
monocyte, platelet, polynuclear neutrophil, and urea.  
 

CT scan acquisition 

CT scan data were available for 980 patients representing a total of 506,341 images (517 
slices per patient on average). Summary statistics for the clinical, biological, and CT scan 
data are provided in Table 1. Three different models of CT scanners were used : two 
General Electric CT scanners  (Discovery CT750 HD and Optima 660  GE Medical Systems, 
Milwaukee, USA) and a Siemens CT scanner (Somatom Drive; Siemens Medical Solutions, 
Forchheim). All patients were scanned in a supine position during breath-holding at full 
inspiration. The acquisition and reconstruction parameters were of 120kV tube voltage with 
automatic tube current modulation (100-350 mAs), 1 mm slice thickness without interslice 
gap, using filtered-back-projection (FBP) reconstruction (SOMATOM Drive) or blended 
FBP/iterative reconstruction (Discovery  or Optima). Axial images with slice thickness of 1 
mm were used for coronal and sagittal reconstructions.  

Radiology reports 

COVID-19 associated CT imaging features were obtained from radiologist reports that follow            
the guidelines of several scientific societies of radiology (French SFR, STR, ACR, RSNA)             
regarding the reporting of chest CT findings related to COVID-19 50. The template of the               
radiologist report  
(https://ebulletin.radiologie.fr/actualites-covid-19/compte-rendu-tdm-thoracique-iv-0) was  
available the 17th of March and the reports were completed retrospectively for the patients              
who were admitted to the hospital before that date. CT imaging characteristics were             
evaluated to provide the five following variables : (i) ground glass opacity (GGO) (rounded /               
non rounded / absent) that is defined as an increase in lung density not sufficient to obscure                 
vessels or preservation of bronchial and vascular margins, (ii) consolidation (rounded / non             
rounded / absent) that occurs when parenchymal opacification is dense enough to obscure             
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the vessels’ margins and airway walls and other parenchymal structures, (iii) the            
crazy-paving pattern (present/absent) that is defined as ground-glass opacification with          
associated interlobular septal thickening51, (iv) peripheral topography (present/absent) that         
corresponds to the spatial distribution of lesions in the one-third external part of the lung, and                
(v) inferior predominance (present/absent) that is defined as a predominance of lesions            
located in the lower segments of the lung. A rounded pattern (for GGO and consolidation) is                
defined as a lesion presenting a well delineated shape. In addition to the five CT imaging                
features, radiologists assessed the extent of lung lesions according to the evaluation criteria             
established by the French Society of Radiology (SFR)52. Disease extent can be: absent /              
minimal (<10%) / moderate (10-25%) / extensive (25-50%) / severe (>50%) / critical >75%.              
The coding absent / minimal / moderate extensive / severe / critical was based on a                
quantitative variable with values of 0 / 1 / 2 / 3 / 4 / 5. Variables were automatically extracted                    
from the report using optical character recognition. 

Annotation scenario of CT scans by radiologists  

Two radiologists (4 and 9 years of experience) examined and annotated 307 anonymized             
chest scans independently and without access to the patient's clinic or COVID-19 PCR             
results. All CT images were viewed with lung window parameters (width, 1500 HU; level,              
-550 HU) using the SPYD software developed by Owkin. Regions of interest were annotated              
by the radiologists in four distinct classes : healthy pulmonary parenchyma, ground glass             
opacity, consolidation, crazy-paving. The presence of organomegaly was also notified when           
present, as a binary class. When multiple CT images were available for a single patient, the                
image to analyze was selected using the SPYD software. One AI and imaging PhD student               
also provided full 3D annotation of the four classes on 22 anonymized chest scans using the                
3D Slicer software.  

Statistical analysis 

When detecting association with the severity outcome, odds ratio and P-values (two-sided            
tests) were computed separately for each hospital using logistic regression (glm function of             
the R statistical software). P-values from the two different hospitals were pooled using the              
Stouffer meta-analysis formula accounting for the two different sample sizes. For association            
between severity and each variable, we considered Bonferroni correction accounting for 58            
variables and 62 variables when also considering imaging markers obtained with           
AI-segment. To compute confidence intervals for AUC values, we considered DeLong           
method 53. Survival functions were obtained using Kaplan-Meier estimators. 
 
The AI-segment pipeline for lesion segmentation from CT scans was based on 3             
segmentation networks: 3D Resnet5054 , 2.5D U-Net, and 2D U-Net 55. U-Net consists of              
convolution, max pooling, ReLU activations, concatenation and up-sampling layers with          
sections: contraction, bottleneck, and expansion. ResNet contains convolutions, max         
pooling, batch normalization, and ReLU layers that are grouped in multiple bottleneck            
blocks. All models were trained on CT scans provided by Kremlin-Bicêtre (KB) and             
evaluated on annotated CT scans from Institut Gustave Roussy (IGR). The dataset was             
divided into two categories: Fully Annotated Scans (FAS) composed of 22 scans (8 from KB               

15 

https://paperpile.com/c/SrlPIM/l4vl
https://paperpile.com/c/SrlPIM/JGAN7
https://paperpile.com/c/SrlPIM/XoTl
https://paperpile.com/c/SrlPIM/bPzig
https://paperpile.com/c/SrlPIM/bSP81


 

and 14 from IGR) and Partially Annotated Scans (PAS) composed of 307 scans (176 from               
KB and 131 from IGR). PAS contains a total of 7,374 annotated slices and 24,476,521               
annotated pixels, i.e. 24 slices per PAS and 3,319 pixels annotated per slice on average.  
 
2D U-Net was trained for left/right lung segmentation and 3D ResNet and 2.5D U-Net were               
used for lesion segmentation. 3D ResNet50 was trained on 8 KB FAS (i.e. 3,704 slices).               
Inputs for the 3D ResNet consist of a height and a width of 128, and a depth of 32. We                    
initialized the 3D ResNet with pretrained weights56. We then trained the network with             
Stochastic Gradient Descent for parameter optimization and an initial learning rate of 0.1             
with a decay factor of 0.1 every 20 epochs. The network was trained for a total of 100                  
epochs. For the 2.5D U-Net, we first pretrained the network on a left-right lung segmentation               
task using the LCTCS dataset57. The network was then trained on the KB dataset using               
Adam optimization algorithm with a learning rate, weight decay, gradient clipping and            
learning rate decay parameters of 1e-3, 1e-8, 1e-1, and 0.1 (applied at epochs 90 and 150)                
for 300 epochs. While the validation set remains the same as when evaluating the 3D               
resnet50 model, 176 KB PAS scans were added to the 8 KB FAS, in the training set. PAS                  
were only added to the 2.5D U-Net training set due to the incompleteness of the annotated                
volume in the scans which would not satisfy the volumetric requirements of the 3D ResNet50               
input. Finally, for the left/right lung segmentation, the 2D U-Net was trained on the 8 KB                
FAS. Similarly to 2.5D U-Net, Adam optimization algorithm was used with a learning rate,              
weight decay, gradient clipping, learning rate decay, and number of epochs of 1e-3, 1e-8,              
1e-1, 0.1 (applied at epoch 70), and 104. Both 2.5D U-Net and 2D U-Net used affine                
transformation and contrast change for data augmentation while 3D ResNet50 used affine            
transformation, contrast change, thin plate splines, and flipping. 3D ResNet and 2.5D U-Net             
are trained through the minimization of a cross entropy loss and 2D U-Net minimized a               
binary cross entropy loss. All training was performed on NVIDIA Tesla V100 GPUs using              
Pytorch as a coding framework. During the validation phase, ensemble inference58 was            
performed on all available scans by averaging lesion masks, which were predicted from the              
3D ResNet and 2.5D U-Net models, using arithmetic mean. 
 
We evaluated AI-segment on three distinct aspects. First, we evaluated its ability to perform              
accurate segmentation. To this aim, we computed F1 scores for the PAS (partially annotated              
scans) and FAS (fully annotated scans), of the IGR test set, when discriminating lesions              
versus sane areas inside the lung. Micro-averaging was used to limit the effect of class               
imbalance for the three different lesion types. We also reported the accuracy to discriminate              
background versus lung regions using FAS where background regions outside of the lung             
were annotated. Second, we evaluated its ability to estimate the proportion of each lesion              
type per scan. To this aim, we computed the median, minimum and maximum of the               
absolute value of the difference between the ground truth percentage of each lesion type              
obtained from radiologists’ annotations and the estimated ones, on the 14 available FAS of              
the IGR dataset. Third, we evaluated to what extent AI-segment reproduces the analysis             
reported by radiologists. To this aim, we first compared the binary decision ‘presence or              
absence of a lesion type’ of AI-segment to the radiologist report considered as ground truth.               
A lesion type was detected by AI-segment when its estimated volumetry, averaged over both              
lungs, was above a certain threshold. The difference was then evaluated in terms of              
detection accuracy and F1 score, for two threshold values, using all scans of the IGR               
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dataset (Supp Table 1). Then, we compared disease extent as evaluated by radiologists to              
the one predicted by AI-segment (Supp Fig 5). 
 
Machine learning models for severity classification based of CT scans (AI-severity) 
 
The AI-severity model was defined as an ensemble of two sub-models, as illustrated in Supp               
Fig 4. Each sub-model predicted disease severity from CT scans without using any expert              
annotations at the slice level. Preprocessing of the data consisted of resizing the CT scans               
to a fixed pixel spacing of (0.7mm, 0.7mm, 10mm) and applying a specific windowing on the                
HU intensities. Each sub-model is composed of two blocks: a deep neural network called              
feature extractor and a penalized logistic regression. The two sub-models feature extractors            
are an EfficientNet-B059 pre-trained on the ImageNet public database and a ResNet5060            
pre-trained with MoCo v261 on one million CT scan slices from both Deep Lesion62 and               
LIDC63. Each of these networks provide an embedding of the slices of the input CT scans                
into a lower-dimensional feature space (1280 for EfficientNet-B0 and 2048 for ResNet50).            
For the ResNet50-based sub-model, we reduced the dimension of the feature space using a              
principal component analysis with 40 components before applying logistic regression. A           
different windowing was applied on the CT scans before the feature extractor : (-1000 HU,               
600 HU) for EfficientNet-B0 and (-1000 HU, 0 HU), (0 HU, 1000 HU) and (-1000 HU, 4000                 
HU) for ResNet50. Predictions of AI-severity were obtained by averaging predictions of the             
submodels using equal weights. Optimisation of the architecture of the network           
(preprocessing, feature extraction or model architecture and training, feature engineering,          
model aggregation) was performed using a 5 fold cross validation on the training set of 646                
patients from KB. 
 
CT scans may contain devices such as catheters (EKG monitoring, oxygenation tubing...)            
that are easily detectable in a CT and can bias prediction of severity (i.e. detecting the                
presence of a technical device associated with severity instead of detecting the radiological             
features associated with severity). In order to ensure that medical devices do not affect              
feature extraction, all voxels outside of the lungs were masked using a pre-trained U-Net              
lung segmentation algorithm 64. 

Multivariate models to predict severity 

 
The different models that combine multiple features to predict severity were fitted using             
logistic regression (AI-segment, trimodal AI-segment, report, trimodal report/ScanCov,        
trimodal AI-severity). Models were trained using cross validation with 5 folds on the training              
dataset of 646 patients from KB, and folds were stratified by age and severity outcome.               
Variables that were available for less than 300 patients of the training set (conjugated              
bilirubin and alanine) were not used. For the remaining variables, missing values were             
imputed by the average over patients of the training set. L2 regularization was applied when               
fitting logistic regression. The regularization coefficient was determined by maximizing the           
average AUC over the 5 cross-validation folds, using a range of different values ranging from               
0.01 to 100. XGBoost algorithm was also evaluated but did not show superior performance              
on this dataset. We use pandas and scikit-learn to manipulate data, train and evaluate              
machine learning algorithms65.  
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To select variables in the multivariate models, we considered a forward feature selection             
technique (Supp Fig 6). The first variable included in the model is the variable which               
provides the largest AUC values. Then, we computed AUC values for all models with two               
variables including the first one that has already been included. We continued this procedure              
until all variables were included. Performances of the models increased quickly when the             
first variables were included and then AUC values reached a plateau (Supp Fig 6). We used                
the elbow method to select the parsimonious set of variables that is found when a plateau of                 
AUC is reached. 
 

Other scores to predict severity and mortality 

We performed a comparison with several multivariate scores of COVID severity or death.             
The COVID-GRAM score was the only multimodal score we considered that also includes             
information from CT scan6. When computing COVID-GRAM score, we assume that patients            
were not unconscious at admission and did not have hemoptysis as a symptom because              
these two information were missing from our dataset. The other scores we considered are              
based on clinical variables and possibly biological variables. They include the CALL            
(severity) score with clinical and biological information9 as well as two other scores (the Yan               
et al. model for mortality prediction and the Colombi et al. model for severity prediction) that                
include clinical and biological information7,15. In order to compute the Yan et al. score, we               
considered the same features as the ones used by the authors and reproduced their training               
of an XGBoost model with a single tree and a maximum depth of 27. We also considered the                  
MIT Covid Analytics as a risk score for mortality         
(https://www.covidanalytics.io/mortality_calculator) and the CURB65 score developed to       
predict mortality for community-acquired pneumonia66. 

Data Availability 
The dataset of patients hospitalized at Kremlin-Bicêtre (KB) and Institut Gustave Roussy            
(IGR) are stored on a server at Institut Gustave Roussy (IGR). The data are available from                
the first author upon request subject to ethical review. 

Code Availability 
Code to execute all the models presented in this article, including ScanCov score,             
AI-segment and AI-severity is available online on a public github repository. 
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Supplementary Figures and Tables 
 

 
Supp Fig. 1: Description of the retrospective cohort. Number of patients and repartition per 
hospital for different all patients, patients  
 



Supp Fig. 2: Forest plot for the different variables measured at baseline. For continuous 
variables, odds ratios are computed for an increase of one standard deviation of the continuous 
variable. KB odds ratios are in blue, IGR are in red. 
 
 
 



 
Supp Fig. 3: AI-segment architecture - Proposed pipeline to generate lesion volumetry estimates 
from patient CT scans employing ensemble of segmentation networks. Normalized patient scans are 
provided to our trained 2.5D U-Net and 3D ResNet50. The masks predicted from both models are 
then merged by arithmetic mean. In parallel, we segment left-right lungs from the patient scans using 
a dedicated U-Net. Finally, the left-right lung mask is used to mask-out lesions in left and right lungs 
from the ensemble output. This pipeline utilizes the complementary features learned by a weak model 
(2.5D U-Net) and a strong one (3D ResNet50). 
 



 
 
Supp Fig. 4: AI-severity model to predict severity from 3D chest CT scans. Two different 
pipelines were used: one using Resnet50 (trained with MocoV2 on 1 million public CT scan slices) as 
encoder (model 1) and one using EfficientNet B0 as encoder (model 2).   



 

 
Supp Fig. 5: Boxplot to compare automatic quantification of disease extent by AI-segment to 
disease extent as estimated by a radiologist. The coding of disease extent in the radiologist report 
is as follows: 0 (0% of lesions), 1 (<10% of lesions), 2 (between 10 and 25% of lesions), 3 (between 
25 and 50% of lesions), 4 (between 50 and 75% of lesions), 5 (more than 75% of lesions). The lower 
and upper hinges correspond to the first and third quartiles. The upper whisker extends from the hinge 
to the largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range). 
The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data 
beyond the end of the whiskers are called "outlying" points and are plotted individually. 
 

 
Supp Fig. 6: AUC curve as a function of the number of clinical and biological information 
added to the multimodal model. Variables included in the models consist of CT scan variables only 
and then a greedy algorithm adds clinical or biological variables iteratively. At each step of the 
algorithm, the variable that results in the largest increase of AUC score is added. 



 

Supp Fig. 7: Receiver operating characteristic (ROC) curves of the models that predict 
severity.  Models were evaluated on two distinct validation sets consisting of 150 patients from 
KB (left panels) and 137 patients from IGR (right panels). ROC curves were obtained using 
the severity outcome defined as an oxygen flow rate of 15 L/min or higher, the need for 
mechanical ventilation, or death. 
 
  



 
 
 
 
 

 GGO Crazy paving Consolidation 

Accuracy (1% thresh.) 0.7951 0.7684 0.6167 

F1 Score  (1% thresh.) 0.8848 0.6452 0.7473 

Accuracy (2% thresh.) 0.7876 0.7692 0.6667 

F1 Score  (2% thresh.) 0.8800 0.6182 0.7848 

 
Supp Table 1: Detection accuracy and F1 scores of AI-segment when considering the             
radiologist report as ground truth. The binary decision used to compute the score is “presence or                
not of a lesion type”. Accuracy and F1 score are averaged over the IGR validation set. We compared,                   
for each patient of the IGR validation set, detection obtained using AI-segment to the information               
provided in the standardized radiologist report. When using AI-segment, a lesion type is considered              
as present when its relative volume w.r.t. the full volume of both lung, is above a certain threshold                  
indicated into parenthesis in the 1st column of the table. 
 
 

Variable Center Odds ratio 
(95%lower - 95% 
upper) 

P-value P-value Stouffer 

GGO AI KB 0.64 (0.54,0.76) 4.28e-07  
1.94e-07 

GGO AI IGR 0.77 (0.54,1.10) 0.15 

Crazy Paving AI KB 1.47 (1.20,1.79) 0.00015  
6.70e-05 

Crazy Paving AI IGR 1.31 (0.92,1.87) 0.13 

Consolidation AI KB 1.46 (1.23,1.73) 1.59e-05  
7.61e-06 

Consolidation AI IGR 1.27 (0.89,1.82) 0.19 

Disease extent AI KB 2.11 (1.74,2.55) 2.97e-14  
7.66e-16 

Disease extent AI IGR 1.90 (1.30,2.79) 0.00091 

 
Supp Table 2: Association between severity and amount of lesions inferred by AI-segment. For 
disease extent, we consider the proportion of the lung volume. For the other three variables (GGO, 
consolidation, crazy paving), we normalize them by disease extent so that each variable measures 
the proportion of the corresponding lesion.   
 



 
Supp Table 3: AUC values for the different models on the different sets. Each model was trained 
on 646 patients from KB. Results are reported on the validation set from KB (150 patients) and the 
external validation set from IGR (135 patients), as well as on the training set using 5 fold cross 
validation stratified by outcome and age (CV KB). 

  



 

Variable AUC on KB validation set AUC on IGR validation set 

Age > 60 0.884 (0.828 - 0.940) 0.786 (0.710 - 0.862) 

Sex 0.933 (0.892 - 0.975) 0.893 (0.838 - 0.947) 

Oxygen saturation > 90 0.761 (0.681 - 0.840) 0.782 (0.676 - 0.888) 

Disease extent > 2 0.926 (0.887 - 0.965) 
 

0.881 (0.819 -0.943) 
 

Crazy paving 0.775 (0.700 - 0.851) 0.725 (0.637 - 0.812) 
 

Condensation 0.6365 (0.534 - 0.737) 
 

0.675 (0.583 -0.767) 
 

GGO 0.800 (0.655 - 0.944) 
 

0.583 (0.475 - 0.690) 

 
Supp Table 4: AI-severity model performances on other classification tasks than severity 
prediction. AUC scores are reported on both KB and IGR validation sets when re-training the 
AI-severity model to predict a few clinical and radiological variables we have selected. We considered 
the feature vector of AI-severity obtained when  
 
 
 
Models Variables included 

ScanCovIA 
Oxygen 
saturation 

Disease 
extent Age Sex Platelet Urea     

Tri AI-severity AI-severity 
Oxygen 
saturation Urea Sex Platelet Age LDH 

Diastolic 
pressure Hypertension Neutrophil 

Tri AI-segment 
Oxygen 
saturation 

Consolidation 
AI Age Sex Platelet GGO AI Urea LDH 

Crazy paving 
AI Dyspnea 

Clinical and bio 
(C & B) 

Oxygen 
saturation Age Sex LDH Platelet 

Chronic 
kidney 
disease Dyspnea Hypertension Neutrophil Urea 

 
Supp Table 5: Names of the variables included in the 4 different models. 
 
 
  



 
 
Variable Coding/unit Transformation Coefficient 

Oxygen 
saturation % -log(1 + 100 - X) -0.745 

Disease extent 0 to 5 scale None 0.611 

Age  None 0.025 

Sex 
1 for male 
0 for woman None 0.545 

Platelet G/L log(0.001 + X) -0.838 

Urea  mmol/L log(0.001 + X) 0.608 
 
Supp Table 6: Coefficients, transformation, and units to compute the ScanCov score. Disease 
extent values can be: 0 (no extent of disease) / 1 (<10%) / 2 (10-24%) / 3 (25-49%) / 4 
(50-74%) / 5 >75%. 



 
Supp Table 7: Correlation of clinical and biological variables with a radiologist quantification 
of disease extent. Correlation was computed using 817 patients from the KB hospital. Variables are 
sorted in decreasing order when considering the squared correlation value for ranking.  
 

 

 


