
HAL Id: hal-02895528
https://hal.inria.fr/hal-02895528

Submitted on 9 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Refinement Strategy for Hybrid System Design with
Safety Constraints

Zheng Cheng, Dominique Méry

To cite this version:
Zheng Cheng, Dominique Méry. A Refinement Strategy for Hybrid System Design with Safety Con-
straints. [Research Report] Université de Lorraine; INRIA; CNRS. 2020. �hal-02895528�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362231922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02895528
https://hal.archives-ouvertes.fr

A Refinement Strategy for Hybrid System Design

with Safety Constraints ∗

Zheng Cheng and Dominique Méry
Université de Lorraine, LORIA UMR CNRS 7503

Campus scientifique - BP 239
54506 Vandœuvre-lès-Nancy, France.
email:firstname.secondname@loria.fr

July 9, 2020

Abstract

Whenever continuous dynamics and discrete control interact, hybrid
systems arise. As hybrid systems become ubiquitous and more and more
complex, analysis and synthesis techniques are in high demand to design
safe hybrid systems. This is however challenging due to the nature of
hybrid systems and their designs, and the question of how to formulate
and reason their safety problems. Previous work has demonstrated how
to extend discrete modelling language Event-B with continuous supports
to integrate traditional refinement in hybrid system design. In the same
spirit, we extend previous work by proposing a strategy that can coher-
ently refine an abstract hybrid system design with safety constraints down
to the concrete one with implementable discrete control that can behave
safely. Our proposal is validated on the design of a smart heating system,
and we share with our experience.

∗This work was supported by grant ANR-17-CE25-0005 (The DISCONT Project
http://discont.loria.fr) from the Agence Nationale de la Recherche (ANR).

1

Contents

1 Introduction 3

2 Modelling Hybrid Systems 4

3 Event-B Dialect for Hybrid systems Modelling 5
3.1 The Event-B Modelling Language 5
3.2 Event-B Dialect for Hybrid Systems Modelling 7

4 General Pattern for Correct-by-Construction Controler 8

5 Case Study 11
5.1 A Hybrid Smart Heating System with Safety Constraints 11
5.2 Applying Refinement Strategy . 11

5.2.1 M specification . 11
5.2.2 M safety . 12
5.2.3 M cycle . 12
5.2.4 M closed loop . 13
5.2.5 M Control Logic . 14
5.2.6 M control logic euler . 17
5.2.7 M control logic sensing error 18
5.2.8 M discretization . 19
5.2.9 M implementation . 19

6 Discussions 20

7 Conclusion 22

A Modular Verification of Hybrid Systems 25

2

1 Introduction

Whenever continuous dynamics and discrete control interact, hybrid systems
arise. This is especially the case in embedding or distributed systems where
logic decision-making are combined with physical continuous processes.

As hybrid systems are becoming increasingly complex, engineers usually
start with different mathematical models (e.g. differential equations, timed
automata) that are abstracted from systems. Then, the collection of analysis
and synthesis techniques based on these models forms the research area of hy-
brid systems theory (e.g. [1, 2, 3, 4, 5]). They play an important role in the
multi-disciplinary design of many technological systems that surround us.

In this work, we focus on the problem of how to design discrete control such
that with its integration, the hybrid system can behave safely (i.e. without spec-
ified undesired outcome). This is intrinsically difficult mainly due to potential
complex continuous behaviors of hybrid systems. However, even with simple
dynamics, design implementable discrete control for hybrid system requires a
significant amount of interleaving domain-specific knowledge [6, 7]. The prob-
lem becomes more challenging when we try to specify the safe behaviors of a
hybrid system, and reason whether it can be achieved with the designed discrete
control.

Our contribution is that we propose a strategy that can coherently refine an
abstract hybrid system design with safety constraints down to the concrete one
with implementable discrete control that can behave safely. In the process, we
break down a set of interleaving domain-specific knowledge for implementing
discrete control into refinement steps. Each step aims to introduce a specific
kind of implementation detail, and is coherently reasoned whether the discrete
control design at the current step can still ensure the safe behaviors of the
designed hybrid system. Such strategy makes both the design and reasoning
more modular.

Our proposed refinement strategy is inspired by the work of [8], which ex-
tends the discrete modelling language Event-B with continuous supports (e.g.
continuous types such as real numbers) to integrate traditional refinement in
hybrid system modelling. Under the same theoretic framework and tool set-
ting, our proposal, however, focuses on how to engineer implementable discrete
control, hence yield a different refinement strategy compared to the work of [8].
In the development of this strategy, we also strength continuous supports in
Event-B to ease verification complexity. As the work is achieved in the ANR
DISCONT project, we benefit from experience of our partners especially the
Toulouse group [9]. We have instantiated our refinement strategy to design a
small smart heating system that regulates the room temperature between upper
and lower bounds, which shows the feasibility of our proposal.

The paper is structured as follows. Section 2 discusses related research on
modelling hybrid systems. Section 3 illustrates the Event-B language and its
dialects. Section 4 introduces our structural refinement strategy to model and
analyze the safety of hybrid systems. In Section 5, we detail how to instantiate
our refinement strategy to design a smart heating system, and discuss the result

3

in Section 6. Section 7 draws conclusions and lines for future work.

2 Modelling Hybrid Systems

In this section, we review 3 categories of methods for hybrid system design.
Classical engineering methods. Classical engineering methods (e.g. control
theories[5].) are based on mathematics to propose metrics, equations, theories
or tools that facilitate the design of hybrid systems, or ensuring its correctness.

Matlab, based on model-based development, is one way to design complex hy-
brid systems. In model-based development, domain-knowledge are encapsulated
in models, and rely on automated code generation to produce other artifacts.
The benefits are saving time and avoiding the introduction of manually coded
errors.

Fitzgerald et al. propose a hybrid and collaborative approach to develop
hybrid systems [10]. Co-modeling and co-simulation are collaboratively used.

In our opinion, classical engineering methods are based on a collection of
collaborative tools, which do not necessarily have formal documents on their
semantics[11, 12]. This hinders the possibility to certify the translations among
these tools, and poses questions for the soundness of their hybrid systems design
pipe-lines.
Formal languages. Formal languages can also be used to aid the design of
hybrid systems. The general idea is to formulate the design of hybrid systems
as logical statements, and checked them deductively (e.g. theorem proving) or
algorithmically (e.g. model checking).

Platzer designs KeYmaera tool for deductive verification of hybrid systems [2].
Differential dynamic logic (dL) is designed as the back-end to support the logi-
cal reasoning of KeYmaera, which is a real-valued first-order dynamic logic for
hybrid programs. The general idea is to abstract the safety of a hybrid system
as a hybrid program in dL. Then, pre-defined deduction rules are applied to
reason its validity. Some of them are designed to ease the complexity of the
reasoning. For example, differential invariant is an unique deduction rule in dL.
The idea is to design the invariant such that when system state changes, the
changing rate of invariant and vector field can be compared and reasoned. The
feature is particularly useful for hybrid systems that without unique-analytic
solutions.

Hybrid Hoare logic (HHL) has been proposed by Liu et al. for a duration
calculus based on hybrid communicating sequential processes [13]. In HHL, the
safety of a hybrid system is encoded as a Hoare-triple with history expressions.
HHL and dL are similar in the high-level concept of deductive reasoning. How-
ever, the verification process is very different, because of the way they models
the message communication.

These approaches are posteriori verification process, where both the models
and specifications need to be presented at the validation phase.
Stepwise Refinement. Stepwise refinement initially models the problem at an
abstract level, and depending on the domain of developed system, developer can

4

decide a refinement strategy about how to make specific part of this abstraction
more and more concrete.

Su et al. extends the idea of action systems [14], and proposes a development
of hybrid systems in the Event-B language with the Rodin Platform [8]. It
is essentially based on refining discrete systems into continuous systems. The
continuous features are gradually added to the hybrid system construction while
maintaining its consistency w.r.t. the concerned safety property. When they
represent continuous features such as continuous variables, they reuse the idea
of time-dependent functions, in order to represent continuous variables as time
series. It allows them to then use a time pointer now to access the system state
by indexing now in the corresponding time series. To model mathematical
concepts (e.g. real numbers, continuity) in Event-B, Su et al. uses the Theory
plugin [15], which makes such engineering efforts work harmoniously in Event-B
(which was designed for developing discrete systems).

Banach et al. design Hybrid Event-B modelling language to address the de-
sign of hybrid systems [3]. The language is also based on stepwise refinement and
extending the Event-B language. Their extensions have implicit management
(proof obligations) of time which aims to ease user efforts.

Dupont et al. propose and develop a general closed-loop pattern for hybrid
systems [9]. The pattern captures several general activities in the closed-loop
model. A specific hybrid system should be able to instantiate the designed
pattern for addressing its safety concerns.

While these approaches clearly demonstrate the feasibility of stepwise refine-
ment in hybrid system designs. We think a general refinement strategy that aims
to generate implementable discrete control for hybrid systems is still missing.

3 Event-B Dialect for Hybrid systems Modelling

First, we explain the main points of the Event-B discrete modelling language.
Then, we discuss how to extend it to model continuous features of hybrid sys-
tems.

3.1 The Event-B Modelling Language

Event-B is a modelling language, originated from the classical B method [16].
By integrating set-theoretical notations, first-order predicate calculus into the
language, it offers a general framework for incrementally developing systems by
means of refinement: a system is initially modelled at an abstract level, and de-
pending on the domain of developed system, developer can decide how to make
specific part of this abstraction more concrete by refining it into more concrete
level. As refinement level goes deeper and deeper, ideally, the final refinement
is concrete enough to be directly ported to executable languages [17, 18]. In
addition, Event-B also allows developer to specify functional behaviors, safety
constraints or other critical properties on the system, and then generates proof
obligations to be proved at each refinement. In this way, developers can make

5

sure the refinements is kept consistent to the abstract initial system that they
originally want to develop, which is known as correct by construction develop-
ment. In what follows, we give a brief introduction of the Event-B language,
and we refer [16] for more detailed explanation.

Context c1 Extends c2
Sets S
Constants C
Axioms Ac

Theorems Tc

End

Listing 1: Abstract syn-
tax of Event-B contexts

Machine m1 Refines m2

Sees c1
Variables V
Invariants I
Events E
End

Listing 2: Abstract syn-
tax of Event-B machines

Event e
Any P
Where G
Then A
End

Listing 3: Abstract syn-
tax of Event-B events

Specifically, when we model a system in Event-B, it usually consists of 2
parts: contexts and machines. Each context (abstract syntax shown in List-
ing 1) gives static properties of the system at a particular refinement level, in
terms of user-defined types (specified under Sets), static objects (specified un-
der Constants), presumed properties (specified under Axioms), and derived
properties (specified under Theorems). It can be extended by other contexts
for reuse (specified under Extends).

Each machine (abstract syntax shown in Listing 2) gives dynamic behaviors
(of the system at a particular refinement level, which allows to access contexts
that specified under Sees). A machine can be refined by another one to make its
specific part of dynamic behaviors more concrete (specified under Refines), e.g.
changing data structure (data refinement) or add complexity (guard strengthen-
ing, superposition refinement). Each machine describes the observation of a re-
active system modifying a finite list of state variables (specified under V ariables)
satisfying invariant properties (specified under Invariants). State variables are
only modifiable by means of events (specified under Events).

Each event (abstract syntax shown in Listing 3) is parametrized (specified
under Any), and defines under which guards (specified under Where) the state
variables are changed by actions (specified under Then). Each action can be
non-deterministic or deterministic. Non-deterministic actions take the general
form of a before-after predicate v : |BA(C, S, Pe, v, v

′), i.e. state variable is
updated such that the post-state v′ and its pre-state v have the relation stated
by the predicate BA. It is the user’s responsibility to ensure the feasibility of
each non-deterministic actions. Deterministic actions take the formal of general
assignment, which deterministically assigns values to state variables.

From a methodological point of view, classical refinements are generally used
to make abstract specification implementable. Therefore, in this setting, actions
need to be gradually refined to make them more suitable for implementation
(e.g. non-deterministic actions being refined into deterministic ones). However,
some state variables can be model variables, i.e. their corresponding updates
facilitate proofs, but do not contribute to the final implementation [19].

The Rodin platform is an Eclipse-based IDE for Event-B. It provides ef-

6

fective support for refinement and mathematical proof. The platform is open
source, and can be further extended by various plug-ins. Among existing ones,
the Theory plug-in contributes to Rodin by providing facilities to define math-
ematical extensions. Its functionality are quite similar to contexts. However,
unlike contexts that are only visible within the developed Event-B system, The-
ory plug-in allows users to introduce ones that can be reused across different
systems modelled in Event-B. Moreover, it provides mechanism to guide how
the prover should use the defined mathematical extensions.

3.2 Event-B Dialect for Hybrid Systems Modelling

Traditionally, Event-B models are specified by discrete variables (whose types
are in countable discrete domains, e.g. integers) and discrete events (who only
update discrete variables). However, a lot of features in hybrid systems are
continuous and hence uncountable, e.g. the history of their physical states. To
support system modelling of this kind, Su et al. extend Event-B [8] with: 1)
continuous variables, and 2) continuous events. Both of them are developed on
top of native Event-B language constructs described in Section 3.1.

Continuous variables. By means of continuous variables, their types are
in uncountable domains, e.g. real numbers. For example, the physical states of
a hybrid system can be usually defined by a time series xc ∈ R+ → D, which
continuously maps (→) from time domain of positive reals (R+) to abstract
domain of the hybrid system under consideration (D which is generally dense).
The key to be able to define continuous variables, is to be able to introduce
continuous types, such as R+. Butler and Abrial initiate the development of a
theory for real numbers using the Theory plug-in1. We extend this theory in
this work with Y additional operations and X axioms to strength continuous
supports in Event-B for hybrid systems modelling and verification.

Continuous events. By means of continuous events, they contain actions
that update continuous variables. For example, xc := xcC−([0, 1]Cf) can be an
action in a continuous event that update the continuous variable xc in such way
that: the new state of xc agrees with its old state, except on a closed interval
“[0, 1]” it agrees with some other continuous variable f .

In this work, all of our continuous events are expressed by actions that update
continuous variables exclusively using native Event-B operators on functions
and relations. However, we can imaging users might want to encapsulate their
methodologies/operators for updating continuous variables using theory plug-in
for reuse and readability.

1A theory for real numbers. https://sourceforge.net/projects/rodin-b-sharp/files/

Theory_StdLib/

7

4 General Pattern for Correct-by-Construction
Controler

In this section, we propose a refinement strategy to design discrete control such
that with its integration, the hybrid system can behave safely.

In our view, a hybrid system consists of a list of un-dividable sub-systems.
Each of these sub-systems is with its own safety constraints. The input of our
strategy is thus an un-dividable hybrid system with its own safety constraints.
The output is a concrete system with implementable discrete control that can
behave safely. Consequently, these sub-systems with concrete designs can be
orchestrated to ensure the overall safety of the given hybrid system. However,
how to divide a hybrid system into un-dividable sub-ones or orchestra sub-
systems are classical modularization problem (discussed in Section 6), which
are not our focus in this work.

The intuition of our refinement strategy is that we think the problem of
design discrete control for the safe behaviours of a given un-dividable hybrid
system is equivalent to the problem of constructing its controlled safe time
series. Moreover, we believe that interleaving domain-specific knowledge for
implementing discrete control can be broken down into refinement steps, to
make the construction of controlled safe time series more and more concrete.

Our refinement strategy can be visualized as in Figure 1. We start by a
machine M specification, which consists of a variable xa that represents the time
series of a generic hybrid system. Such variable is a model variable that only
means for proofs. Moreover, since M specification is generic, we do not know
which kind hybrid system is concerned, nor which domain it resides in. We
therefore type time series xa as a partial function that maps from time domain
R+ to an abstract domain D. Similarly, we encode a generic safety property
Pa(d), where d ∈ D, to generalize the main safety property that the system
to-be-constructed needs to respect.

The next machine M safety refines M specification by considering the safety
of the input hybrid system. It consists of a model variable x that refines xa in
M specification by concretizing its type (which now maps time domain to the
concrete domain of the input system), and a predicate P that concretely specifies
the safety property. All events in this machine yield a “big-step” semantics for
the input hybrid system, i.e. there exists some time series f that satisfies P at
all times, which can be assigned to x in one go. How to construct such f will
be the goal of the following refinements.

Next, the machine M cycle refines M safety to make the construction of f
more precise by specifying that it needs to be inductively constructed by a piece-
wise safe time series. To achieve this, we introduce cycles, where we assume that
there is a model variable now to help tracking cycles in our proofs. Each cycle
is an interval between now and now+δ, where δ is a constant to model periodic
cycle. At each periodic cycle n, the event in M cycle aims to specify that there
will exist of some function fn that satisfies P for this cycle. In this way, assuming
that we have a time series which up until now is safe (i.e. cycles up until n− 1

8

M safety

M cycle

M close loop

M control logic

Refinement Toolkit

M control logic euler

M control logic sensing error

M control logic discretization

M implementation

M specificationtheory
D

controller

specia
lizati

on

USES

translation

design

REFINES

REFINES

REFINES

REFINES

REFINES

REFINES

Figure 1: Overview of our proposed structural refinement strategy

is safe), by appending a safe trajectory fn for an additional cycle n, then it is
intuitive that cycles up until n is safe. The cycles recurs towards time infinity
to inductively construct the time series f that is promised in the M safety.

Then, we refine the inductive construction step in M closed loop, specifying
that each piece in the safe time series to be constructed experiences the full
cycle of a simplified closed-loop architecture: at each cycle, the discrete control
to be designed, as a blackbox, first predict a safe trajectory fp (w.r.t. safety
property P) over the next δ seconds. Then, the discrete control passes the
initiative to the continuous system, where predicted trajectory fp is assigned
to the dynamics of the current cycle fn to model system progression. Finally,
continuous system passes initiative back to discrete control for the next cycle
and close the loop. The intuition of this refinement is that, by the closed-loop
architecture, we delegate the construction of safe trajectory fn at each cycle to
the discrete control, which is intended to be implemented on a computer and
can be refined to be more implementable in the following steps.

In the refinement of M control logic, we aim to open the blackbox of discrete
control, and turn this blackbox into concrete control logic. The control logic

9

consists of cases, where each case is designed by 3 consecutive components: 1)
sensing. where system state is read. 2) decision, where system state is judged.
3) actuation, where commands (corresponding to the decision) that alternate
system state are made and predicted safe trajectory fp is constructed (w.r.t.
the safety property P).

Upon this point, while the discrete control is looming from the closed-loop
architecture and the design of control logic cases, it is not yet concrete enough
to be implemented. Thus, we develop the discrete control refinement toolkit,
which contains a list of domain-specific refinement steps (M control logic euler
- M discretization). These steps stem from our preliminary result that breaks
down interleaving domain-specific knowledge for implementing discrete control.
Each step modularly introduces a specific kind of implementation detail, and
is coherently reasoned by whether the hybrid system still behaves safely. Con-
sequently, the users can choose and apply freely these refinement steps from
the toolkit, plus in any order that they desired for engineering implementable
discrete control.

In our discrete control refinement toolkit, M control logic euler concretizes
the “decision” component in each of the designed control logic cases. The con-
cretization is due to the fact that system state might not only judged by the
current state, but also future ones where exact predictions might be involved.
Such exact prediction is straightforward and accurate when system dynamics
have analytical solutions and initial conditions are known. However, real-life
systems rarely meet these criteria, which makes exact state prediction more
of an approximation. The problem is that when we use any approximation
methods in place of exact mathematical procedures, truncation error occurs.
Therefore, if we want to adapt control logic cases by approximations, we need
to consider truncation errors carefully.

Truncation errors is highly associated by the chosen approximation method.
In this work, we consider one of the simplest approximation methods, i.e.
Forward-Euler method: fe(n+δ) = f(n)+ ḟ(n, f(n))∗δ which simply evaluates
the system dynamics (ḟ) at the current state (f(n)), and crudely follows the
evaluation to predict future state (fe(n+ δ)) with the given step size (δ). The
difference between predicted and exact future state is the introduced truncation
error. Feasibility to bound truncation error depends on various factors such as
complexity of system dynamics. However, our responsibility in the refinement
of M control logic euler is to show that assuming truncation errors are bound-
able, we can refine control logic cases that are based on judgements of exact
predictions to the ones in terms of approximations.

M control logic sensing error concretizes the “sensing” component in each of
the designed control logic cases. When system state is passed from continuous
system to discrete control via sensors, error might occur. This error might due
to converting from analog signal to digital values (i.e. round-off errors), or
defects of the sensors, or noise in the environment. Our responsibility in the
refinement of M control logic sensing error is to show that assuming sensor errors
are boundable, then to refine control logic cases by taking into consideration of
possible sensor errors.

10

Towards generating implementation, M discretization aims to have a discrete
view of time series x in this refinement, namely xd. xd agrees with x on the
system state at precisely the beginning of each cycle, but does not keep track
system state between cycles (hence discrete). The benefit is that the discrete na-
ture of xd makes its persistence on a computer feasible. This offers an extension
point for users for more complex designs (e.g. integrals).

Our discrete control refinement toolkit is intended to be extended, and we
discuss possible extension points in Section 6.

Once the users are comfortable with implementation details for the designed
discrete control, the final refinement M implementation simply aims to merge
designed discrete control cases together to be shipped for implementation.

5 Case Study

In this section, we evaluate our refinement strategy proposed in Section 4 by
applying it to design a hybrid smart heating system, which regulates the tem-
perature of a house.

5.1 A Hybrid Smart Heating System with Safety Con-
straints

The hybrid smart heating system that we consider can operate in two discrete
modes: “on” and “off”. In each mode, the evolution of the continuous vari-
able, i.e. temperature T , can be described by a differential equation (which we
simplified for illustration purpose): when the mode of heating system is “on”,
the value of temperature follows: Ṫ = 1; when the mode of “off”, the value of
temperature follows: Ṫ = −1.

Every δ (which is a constant, and greater than zero) seconds, the room
temperature T is sampled by a sensor, and sends to a thermostat controller
that controls mode switching. If the controller decides to switch mode, there is
tact (which is a constant and greater or equal to zero, but strictly smaller than
δ) seconds of inertia, e.g. when switching from “on” to “off”, the evolution of
temperature first follows the differential equation of “on” mode for tact seconds
before following the dynamics of the “off” mode.

The safety property that we are interested for this heating system is: the
room temperature T must always be greater or equal to Tmin, and less or equal
to Tmax (where Tmin strictly less than Tmax). In what follows, we discuss the
development of the heating system by using our proposed refinement strategy.

5.2 Applying Refinement Strategy

5.2.1 M specification

In the initial hybrid system modeling M specification (Listing 4), it mainly con-
sists of a variable d that represents the time series of a generic hybrid system,

11

which maps from time domain R+ to an abstract domain D (as in typed). In ad-
dition, a generic safety property Pa is formulated to generalize the main safety
property that any system to-be-constructed needs to respect (as in safetyd).
Last but not least, an event Update models a “big-step” semantics for any
generic hybrid system, i.e. there exists some function f that satisfies safety
property at all times, which is assigned to d in one shot.

Machine M specification
Variables d
Invariants
typed: d∈ R+→D
safetyd: ∀t·t∈ R+⇒Pa(d(t))

Events
...
Event Update =̂
Any f
Where
grd1: f∈ R+→D
∧ ∀t·t∈ R+⇒Pa(f(t))

Then
act1 d := f

End
End

Listing 4: M specification

Machine M safety Refines M specification
Variables Ta
Invariants
typeTa: Ta∈ R+→R
safetyTa: ∀t·t∈ R+⇒Ta(t)∈[Tmin,Tmax]

Events
...
Event Update =̂
Refines Update
Any f
Where
grd1: f∈ R+→R
∧ ∀t·t∈ R+⇒f(t)∈[Tmin,Tmax]

Then
act1 Ta := f

End
End

Listing 5: M safety

5.2.2 M safety

The next machine M safety (Listing 5) refines M specification by specifically
considering the safety of our hybrid smart heating system. Notably, it specifies
that a model variable Ta that abstractly represents the time series of the room
(as in typeTa). It refines the variable d in M specification, by concretizing the
abstract domain D of M specification using the concrete domain of real numbers.
Moreover, the safety property is also refined w.r.t. our smart heating system,
i.e. the room temperature should always be between two constant references
Tmin and Tmax (as in safetyTa). Finally, the Update event is refined such that
there exists some function f that satisfies the refined safety property at all times,
which is assigned to Ta in one go.
5.2.3 M cycle

Next, the machine M cycle (Listing 6) refines M safety to make the construction
of f more precise by specifying that it needs to be inductively constructed by
a safe piece-wise time series. To achieve this, we introduce a variable now,
initialized at 0, to help tracking of cycles. now partitions Ta into two parts: the
past cycles up till now (inclusive), and the future cycles that from now beyond.
In addition, we explicitly record the former part as T in this machine, where the

12

following property bridges between T and Ta: ∀t · t ∈ [0, now]⇒ T (t) = Ta(t),
i.e. the time series Ta and T agree on temperature up till now.

T is safe if the room temperature is bounded within the safe range up until
now (as in the invariant safetyT). We need to inductively specify that when
now progresses, T remains safe. That is why we introduce an inductive event
Prophecy: at the beginning of each cycle, the Prophecy event assumes the
existence of a function fn that can safely progress until the beginning of the
next cycle (as in safefn). Under such assumption, we model the progression
of the heating system: 1) time progresses for a sampling period of δ seconds
(act1), and T will follows fn for the next δ seconds (act2).

The main proof in this refinement is to establish that the Prophecy event
preserves the safety invariant safetyT , which can be proved by induction on T
and now.

Consequently, in this refinement, now progresses towards time infinity, while
T is safely built simultaneously. We therefore can construct a safe time series
Ta as promised in M safety.
5.2.4 M closed loop

We then refine the event Prophecy of M cycle, modeling that the safe func-
tion fn is constructed by experiencing the full cycle of a simplified closed-loop
architecture. Specifically, as shown in Listing 7, we first introduce a system
mode variable s (as in types) to distinguish DECISION and RUN modes in
the closed-loop architecture. The DECSION mode corresponds to discrete
control, and is modelled by the Prediction event. Its semantics is that, it will
predict a safe function fn to progress within the next cycle (as in safefn), and
assign the prediction as a candidate for the heating system to progress. How
the prediction is done is a blackbox in this refinement, and will be refined in the
next refinement. Once prediction finished, the mode is changed to the RUN
mode. This mode corresponds to the system progression and is modelled by the
Progression event, whose behavior is to follow the predicted candidate for the
next cycle. Then, the heating system alternates back to the DECISION mode
to predict for the next cycle, thereby forming a closed-loop.

13

Machine M cycle Refines M safety
Variables T now
Invariants

...
safetyT :
∀t·t∈ [0,now]⇒T(t)∈[Tmin,Tmax]

Events
...
Event Prophecy =̂
Refines Update
Any fn
Where

...
safefn:
∀t·t∈ (now,now+δ]⇒
fn(t)∈[Tmin,Tmax]

Then
act1: now := now+δ
act2: T :=

T C−((now,+∞)C fn)
End

End

Listing 6: M cycle

Machine M closed loop Refines M cycle
Variables ... s fa
Invariants

...
types: s ∈ SysMode
safefa: s=RUN⇒ ∀t·t∈ (now,now+δ]⇒

fa(t)∈[Tmin,Tmax]
Events

...
Event Prediction =̂
Any fn
Where

...
safefn: ∀t·t∈ (now,now+δ]⇒
fn(t)∈[Tmin,Tmax]
grds: s = DECISION

Then
act1: fa := fn
acts: s := RUN

End
Event Progression =̂

Refine Prophecy
Where

...
grds: s = RUN

Then
act1: now := now+δ
act2: T := T C−((now,+∞)C fa)
acts: s := DECISION

End
End

Listing 7: M closed loop

5.2.5 M Control Logic

In the refinement of M control logic, we aim to open the blackbox of discrete
control, and turn this blackbox into concrete control logic. By reading carefully
the problem description of heating system, we deduce that:

• The two discrete modes inform us the only actuation command is to al-
ternate between these modes.

• The simple dynamic in each mode gives us functions monotonicity.

• The sampling time tells us the cycle duration, and the control logic needs
to decide at the beginning of each cycle in order to progress safely for the
next full cycle.

14

t

T

Tmin

Tmax

now now + δ
now + δ + tact

Ton

• The actuation time warns us there is a cost of switching modes, and our
controller design needs to take that into consideration.

Based on these information, we distinguish 8 cases in our control logic. Two
of them are demonstrated here for illustration purpose.

Case ONE: ON mode safe

The first case is pictured as in Fig 5.2.5. The intuition of its design is to cope
with inertia caused by switching mode: if we are in the ON mode that increases
the temperature, and we are at somewhere that not only can safely progress for
δ seconds, but also can additionally bear tact seconds of inertia, then we predict
that the heating system can stay at the ON mode during the next cycle, and
follow the dynamics of the corresponding mode.

To encode this case, we refine the Prediction event of M closed loop to
Prediction1 by concretizing 3 consecutive components of the control logic (List-
ing 8): 1) sensing, where system mode is read to be “ON” (sensingm) and room
temperature is read to follow the dynamics of the ON mode at now (sensingT);
2) decision, where we judge whether the temperature at now + δ + tact is pre-
dicted to be less or equal to Tmax (as in decisionc1); 3) actuation, where we
decide to stay at the ON mode actuationm, and follow the dynamics of Ton for
the next cycle actuationT .

To ensure the refinement correctness for Prediction1, the main task is to
prove the theorem safefn (i.e. the guard preservation of safefn for the Prediction

15

event in M closed Loop): ∀t · t ∈ (now, now + δ]⇒ Ton(t) ∈ [Tmin, Tmax]. We
prove this theorem by proving the following invariant (which trivially implies
the theorem safefn): ∀t · t ∈ (now, now + δ + tact]⇒ Ton(t) ∈ [Tmin, Tmax].
This invariant holds for the first case due to the monotonicity of ON mode,
and the facts that the boundary value of temperature on the time interval
“[now, now + δ + tact]”is safe.

Event Prediction1 =̂
Refines Prediction
Where
sensingm: m = ON
sensingT : T(now)=Ton(now)
decisionc

1:
Ton(now + δ + tact) ≤ Tmax

grds: s = DECISION
Theorem
safefn:∀ t·t∈(now,now+δ]⇒
Ton(t) ∈ [Tmin,Tmax]

Then
actuationT : fa := Ton

actuationm: m := ON
acts: s := RUN

End

Listing 8: M control logic: ON mode safe case

Case TWO: ON mode unsafe

The second case is pictured as in Fig 5.2.5. The scenario captured by this case is
that: when the heating system is in the discrete mode ON , and the temperature,
follows the dynamics of the ON mode, at now + δ + tact is greater than Tmax.
Then, we decide to switch to the OFF mode.

The dynamics for the next cycle would be a piece-wise function that follows
ON mode for tact seconds, and OFF mode for the rest of cycle. To ensure that
following this dynamics is safe for the next cycle, we again prove something
stronger:

∀t · t ∈ (now, now + δ + tact]⇒ Tonoff (t) ∈ [Tmin, Tmax]

Proving this property allow us to find a missing requirement in the heating
system:

Tmin < Tmax − 2 ∗ δ

16

t

T

Tmin

Tmax

now now + δ
now + δ + tact

Ton

This property simply requires that Tmin and Tmax should not be too close. Oth-
erwise, after tact seconds of inertia, it is possible to violate the safety property
when continuing the dynamics of the switched mode for the rest of cycle.

In conclusion, we design 8 cases for the control logic of our heating system.
The design philosophy is similar to the design of cases 1 and 2. We refer to our
on-line repository for the full implementation [20].

5.2.6 M control logic euler

Next, we use M control logic euler from our discrete control refinement toolkit
to further refine control cases down to implementation. In this refinement, we
introduce the following assumptions (in the context) on truncation errors in
each mode:

• (proplte
on) |Ton(now + δ + tact) - Teon(now + δ + tact)| ≤ εlteon

• (proplte
off) |Toff (now + δ + tact) - Teoff (now + δ + tact)| ≤ εlteoff

• (prop ˙Ton
) Min1 ≤ ˙Ton(now, Ton(now)) ≤ Max1

• (prop ˙Toff
) Min2 ≤ ˙Toff (now, Toff (now)) ≤ Max2

The first two assumptions simply state that truncation errors in each mode can
be bounded by constants. The last two convey that the derivative evaluations
in each mode at each cycle can be bounded to constants (since in this example,
the derivative in each mode is a constant).

17

Event Prediction1 =̂
Refines Prediction1

Where
...
decisione

1:
Ton(now) +Max1 · δ + tact + εlteon ≤ Tmax

Theorem
decisionc

1: Ton(now + δ + tact) ≤ Tmax

...
End

Listing 9: M control logic euler

Then, we concretize the “decision” component in each of the designed control
logic cases. Listing 9 demonstrates how this is achieved for the first case of the
smart heating system. As we can see, the key change in this refinement is the
development of new control logic decisione1. Moreover, to prove the correctness
of this refinement, we mainly need to prove the theorem decisionc1, i.e. the guard
preservation of decisionc1 for the Prediction1 event w.r.t. M Control Logic. The
proof is preceded as follows:

Ton(now + δ + tact) ≤ Teon(now + δ + tact) + εlteon (proplte
on)

= Ton(now) + ˙Ton(now, Ton(now)) · δ + tact + εlteon (Euler)

≤ Ton(now) +Max1 · δ + tact + εlteon (prop ˙Ton
)

≤ Tmax (decisione1)

5.2.7 M control logic sensing error

In this refinement, we introduce the following assumptions (in the context) on
sensor error at each cycle: |T (now)−reading| ≤ εs, which simply says the error
between system state and sensor reading at each cycle can be bounded by a
constant εs.

Then, we concretize the “sensing” component in each of the designed control
logic cases. Listing 10 demonstrates how this is achieved for the first case of the
smart heating system. As we can see, we first introduces an argument reading
to the Prediction1 event to abstractly represent sensor reading. In other word,
the system state at each cycle T (now) is masked (hence inaccessible by the
control logic). Then, a guard propsensor conveys our assumption about sensor
reading error is bounded. Next, we replace the old control logic decisione1 by a
new control logic as in decisions1. To prove the correctness of this refinement,
we mainly need to prove the guard preservation, i.e. the theorem decisione1,
which is easily discharged by using propsensor.

18

Event Prediction1 =̂
Refines Prediction1

Any reading Where
...
propsensor: |T(now)−reading| ≤ εs
decisions

1:
reading + εs +Max1 · δ + tact + εlteon ≤ Tmax

Theorem
decisione

1:
Ton(now) +Max1 · δ + tact + εlteon ≤ Tmax

...
End

Listing 10: M control logic sensing error

Event Prediction1 =̂
Refines Prediction1 Where

...
decisiond

1:
Td(n) + εs +Max1 · δ + tact

+εlteon ≤ Tmax

Theorem
decisions

1:
reading + εs +Max1 · δ + tact

+εlteon ≤ Tmax

...
End

Listing 11: M discretization

5.2.8 M discretization

M discretization refines M control logic sensing error by introducing a discrete
view of time series T , namely Td. The discrete view Td and its corresponding
view T is glued by the following properties: ∀c ·0 ≤ c ≤ n→ |T (c∗δ)−Td(c)| ≤
εs, where now = n∗δ. This property specifies that provided that now is the nth
cycle, then the error between system state and sensor reading at each previous
cycles are bounded by a constant εs.

Now, we can use this discrete view in our control logic. For example, the
control logic of our first case is shown in Listing 11. It looks like a simple
replacement of previous abstract argument reading by the abstract view at
current cycle Td(n). However, the insight of this refinement is to make persistent
of discrete values feasible (e.g. cycles tracking counter n, or discrete view Td)
for flexible control logic implementation (since for example, storing a continuous
view of the system T is impractical).
5.2.9 M implementation

The last refinement M implementation will merge all developed control cases
together into a single event. Event-B language make this process rigorous and
simple. A snippet of the result for this merging is shown in Listing 12.

As we can see in the merged event Prediction, each of its guard (whose name
with the prefix case) is a conjunction of predicates that summarize a particular
control case (including sensing, decision and actuation). In order to ensure this
refinement is correct, we need to prove that the guards in Prediction implies
guards of Prediction1 to Prediction8 w.r.t. M discretization, which is trivially
true by rewriting in our case.

The full development of this case study developed in Event-B can be found
in [20].

19

Event Prediction =̂
Refines Prediction1 ... Prediction8

Any a b
Where

case1: m=ON ∧ T(now)=Ton(now) ∧ decisiond
1 ∧ a=Ton ∧ b=ON

...
case8: m=OFF ∧ T(now)=Toff (now) ∧ decisiond

8 ∧ a=Toff ∧ b=OFF
Then
actuationT : fa := a
actuationm: m := b
...

End

Listing 12: M implementation

6 Discussions

While our case study shows the feasibility of our approach, we also learn several
lessons that we discuss in this section.
Modelling. In this work, we show one way to refine an abstract hybrid system
design with safety constraints down to the concrete one with implementable
discrete control that can behave safely. However, we do not claim it is the best
and only way, and do hope it can be useful for improving or extensions. Here
are some possibilities that we can think of:

We assume that time is absolute, a real number t, consistently visible ev-
erywhere, and advancing uniformly (classical Newtonian ideal). Only plant can
advance time, but cannot change time to go backwards. Our assumption on
time has effects on code generation, since an infinite real number has to be
represent differently (e.g. float) on a computer. In this case, we think the re-
finement strategy is similar to what we present in this work, i.e. we need to
consider how to justify the possible error introduced when converting real to
float. In addition, we find that some mathematical concepts are difficult to
encode consistently under this assumption, e.g. limits. Therefore, we plan to
investigate the feasibility and usability of other time models (e.g. hyperreals)
in our approach.

To simplify our modelling, we assume that sensing and computation take
no time. Such assumption do not necessarily hold in reality. For example,
control logic in a smart-grid might take some time for a heavy computation to
make a actuation decision. However, it is easy to liberate this assumption by
considering involved delays in the discrete control design.

We currently do not explicitly model how the system pass its state to the
controller, which is usually done by the sensors. To model this behaviour, we
can extend our M Close Loop with the participation of sensors. We anticipate
this could make the following refinement more modular, e.g. the refinement
responsibilities in M Control Logic Sensing Error can be localized.

We currently assume that controller receives the true state of the system

20

without external helps (e.g. state estimators). If this is not possible, we think
that it can be benefit from developing another refinement step in our kit, where
the essential point is that true state can be refined by estimated state plus an
invariant that captures the relationship between them.

We currently assume that the system behaves normal without disturbance.
We think our refinement approach can be directly used to model the system
under disturbance, since such case is only a special case of a un-dividable sub-
system in normal behavior but different in the system’s dynamics. Then, the
problem becomes how to coordinate sub-systems of a hybrid system to ensure its
overall safety. We think that this is a classical problem of modular verification:
we have to show that by design a high level automata, it can orchestra sub-
systems to achieve some tasks while ensuring the global safety of the hybrid
system. We sketch the development of such high level automata in Appendix A.
The key is to be able to derive specifications for sub-systems, and allow them to
be used when verifying the high level automata. In our experience, refinement
starts with an abstract specification for the designed (sub-)system (in our case
M specification), which make this derivation simpler and thus ideal for such kind
of modular verification.

Differential equations. We are currently and indirectly using differential
equations in our modelling (e.g. using its analytical solution, approximating by
evaluating differential equations). We do not encounter any issues in our mod-
elling or verification so far because of this. However, we do agree that natively
expressing them in the Event-B can enhance readability and maintainability.
There is already work using the Theory plug-in to develop differential equations
support for Event-B models [9].
Soundness of verification. Our reasoning of hybrid system safety is essen-
tially based on axiomatization of hybrid system behaviors, and mathematical
theories (e.g. real numbers). We assume that our axiomatization are consis-
tent. To check axioms consistency, we could use the realization mechanism by
Why3 [21]: to ensure the theories in the Why3 framework are consistent, the
developers clearly separates a small core of axioms, then build lemmas on top
of the core. They also use realization mechanism to instantiate uninterpreted
functions, then ensuring axioms are provable by instantiation.
Completeness of verification. Verifying the validity of algebraic safety asser-
tions is a fundamental problem in hybrid systems. To ensure the completeness
of assertions validity verification, one of the key research is to be able to find
appropriate algebraic invariants that quantify the progression of hybrid system
states and is useful to prove assertions of interest at the same time. In our cur-
rent work, we have not considered how to guide user to find these appropriate
algebraic invariants. However, we believe that this task to existing frameworks
or approaches would be more beneficial, e.g. Pegasus [22], HHL [13].
User experience. The Rodin platform has been designed for Event-B program
development. Various plug-ins have been implemented on top of Rodin to make
development or proving easier. We have used the theory plug-in to develop our
domain theories. We also have used SMT solver plug-in for more automated
reasoning. The two plug-ins do not interact natively. Thus, we currently seek

21

for possibilities that allow SMT solver to draw on domain knowledge for more
automated reasoning.

7 Conclusion

The main contribution of this paper is a strategy that can coherently refine an
abstract hybrid system design with safety constraints down to the concrete one
with implementable discrete control that can behave safely. In the process, we
break down a set of interleaving domain-specific knowledge for implementing
discrete control into refinement steps. Each step aims to modularly introduce a
specific kind of implementation detail, and is coherently reasoned whether the
discrete control design at the current step can still ensure the safe behaviors of
the designed hybrid system. Our proposed strategy is validated on a case study
of smart heating system that regulates the room temperature between upper
and lower bounds, which shows its feasibility.

Our future work will focus on developing more case studies that using pro-
posed refinement strategy. We have specifically interest in systems with complex
system dynamics that can be linearized. It would be interesting to investigate
how the domain knowledge of linearization (e.g. dynamics validity around equi-
librium points) can be encoded, and affects our overall strategy. We think that
existing works in developing differential equations support for Event-B models
can help us to achieve that goal [9]. We are also interested in technology transfer
to other programming languages/frameworks for cross-validation. Moreover, to
improve user-experience in proofs, we are co-operating with SMT-solvers to gen-
erate meaning counter-instances that are useful for domain experts of of hybrid
systems.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138(1):3 – 34, 1995.

[2] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer,
2018.

[3] Richard Banach, Michael Butler, Shengchao Qin, Nitika Verma, and Huib-
iao Zhu. Core Hybrid Event-B I: Single Hybrid Event-B machines. Science
of Computer Programming, 105:92 – 123, 2015.

[4] Naijun Zhan, Shuling Wang, and Hengjun Zhao. Formal Verification of
Simulink/Stateflow Diagrams - A Deductive Approach. Springer, 2017.

[5] Iaon D. Landau and Gianluca Zito. Digital Control Systems Design Iden-
tification and Implementation. Springer, 2010.

22

[6] Yamine Aı̈t Ameur and Dominique Méry. Making explicit domain knowl-
edge in formal system development. Science of Computer Programming,
121:100–127, 2016.

[7] Dines Bjørner. Domain analysis and description principles, techniques,
and modelling languages. ACM Transactions on Software Engineering and
Methodology, 28(2):8:1–8:67, 2019.

[8] Wen Su, Jean-Raymond Abrial, and Huibiao Zhu. Formalizing hybrid sys-
tems with Event-B and the Rodin platform. Science of Computer Program-
ming, 94:164–202, 2014.

[9] Guillaume Dupont, Yamine Aı̈t Ameur, Marc Pantel, and Neeraj Kumar
Singh. Handling refinement of continuous behaviors: A proof based ap-
proach with Event-B. In 13th International Symposium on Theoretical
Aspects of Software Engineering, pages 9–16, Guilin, China, 2019. IEEE.

[10] John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef, editors. Col-
laborative Design for Embedded Systems Co-modelling and Co-simulation.
Springer, 2014.

[11] Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, Carl Gamble, Richard
Payne, and Kenneth Pierce. Features of integrated model-based co-
modelling and co-simulation technology. In 17th International Conference
on Software Engineering and Formal Methods, pages 377–390, Trento, Italy,
2017. Springer.

[12] Mario Gleirscher, Simon Foster, and Jim Woodcock. New opportunities for
integrated formal methods. ACM Computing Surveys, 52(6):1–36, 2019.

[13] Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan, Hengjun Zhao, Chaochen
Zhou, and Liang Zou. A calculus for hybrid CSP. In 8th Asian Symposium
on Programming Languages and Systems, pages 1–15, Shanghai, China,
2010. Springer.

[14] Ralph-Johan Back, Luigia Petre, and Ivan Porres. Continuous action sys-
tems as a model for hybrid systems. Nordic Journal of Computing, 8(1):2–
21, 2001.

[15] Michael Butler and Issam Maamria. Mathematical extension in event-b
through the rodin theory component. 2010.

[16] Jean-Raymond Abrial. Modeling in Event-B: system and software engi-
neering. Cambridge University Press, 2010.

[17] Neeraj Kumar Singh. Eb2all: an automatic code generation tool. In Using
Event-B for Critical Device Software Systems, pages 105–141. Springer,
2013.

23

[18] Zheng Cheng, Dominique Méry, and Rosemary Monahan. On two friends
for getting correct programs - automatically translating Event-B specifica-
tions to recursive algorithms in rodin. In 7th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation,
pages 821–838, Corfu, Greece, 2016. Springer.

[19] K Rustan M Leino. Dafny: An automatic program verifier for functional
correctness. In 17th International Conference on Logic for Programming
Artificial Intelligence and Reasoning, pages 348–370, Yogyakarta, Indone-
sia, 2010. Springer.

[20] Zheng Cheng and Dominique Méry. The full development of smart heating
system case study in Event-B. https://gitlab.inria.fr/mery/discont/
-/tree/dev, 2020.

[21] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 - where programs
meet provers. In 22nd European symposium on programming, pages 125–
128, Rome, Italy, 2013. Springer.

[22] Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan, Katherine Cordwell,
and André Platzer. Pegasus: A framework for sound continuous invariant
generation. In 23rd International Symposium on Formal Methods, pages
138–157. Springer, 2019.

24

Normal Sub-system
Temperature is between
Tmin and Tmax

Disturbed Sub-system
The system is in an uncon-
trolled state and it should
recover from the state.

Recovery Sub-system
The system is trying to re-
cover the safety property
from a state which is now
under control.

disturbance detected

stabilised
press button

Figure 2: High level automata of the smart heating system

A Modular Verification of Hybrid Systems

In this section, we show that how to use a high level automata, that coordinates
different behaviors of the hybrid system under concern, to achieve some tasks
while ensuring the global safety.

We illustrate by using a variation of the smart heating system given in
Section 5. The variation stems from the fact that now the system might expose
to one kind of external disturbance, i.e. momentary white noise. Then, we want
to stabilize the system using customized dynamics (e.g. faster recovery).

To model the behaviors of the new heating system, we distinguish 3 of its
sub-systems (Fig 2):

• A normal sub-system that maintains the room temperature between given
two references Tmin and Tmax.

• A disturbed sub-system that detects the abnormal room temperature
which outside of given temperature references.

• A recovery sub-system that recovers the room temperature from abnormal
back to normal reference temperature.

Intuitively, the heating system is initialized at the normal sub-system, when ab-
normal cases are detected, the system transits to the disturbed sub-system for
alerting. The disturbed sub-system remains unchanged until user press the re-
covery button. The it transits to the recovery sub-system until the temperature
back to normal.

Each sub-systems has its own safety constraints:

25

• The normal sub-system should always maintains the room temperature
between given two references Tmin and Tmax.

• The disturbed sub-system should ensure the alert message is issued.

• The recovery sub-system should recovers the room temperature from ab-
normal back to normal reference temperature within k seconds.

Each of these sub-systems with its corresponding safety constraints can be
developed modularly using the refinement strategy we proposed in Section 4.
Then, we can verify that by orchestrating the sub-systems as shown in Figure 2,
the overall system, when it is not disturbed, can maintain the room temperature
between two references to be safe, which require the safety constraints of each
sub-system to prove.

26

