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Abstract Trefftz methods are known to be very efficient to reduce the numerical pollution when associated
to plane wave basis. However, these local basis functions are not adapted to the computation of evanescent
modes or corner singularities. In this article, we consider a two dimensional time-harmonic Maxwell system
and we propose a formulation which allows to design an electromagnetic Trefftz formulation associated to local
Galerkin basis computed thanks to an auxiliary Nédélec finite element method. The results are illustrated with
numerous numerical examples. The considered test cases reveal that the short range and long range propagation
phenomena are both well taken into account.

Keywords Trefftz method · Electromagnetic Wave · Nédélec Finite Element · Numercial Methods · Transverse
Electric Polarization · Maxwell equation

Introduction

Numerical methods like the Finite Element Method (FEM), see [3, 26, 32], and the Finite Difference Method
(FDM), see [41] for example, are widely used to solve time-harmonic electromagnetic wave equations. One
limitation they all face is called the pollution effect. When considering the numerical solution of a propagation
phenomenon with wavenumbers k posed on domains with length L, the numerical accuracy deteriorates when
kL becomes large. This has been highlighted in the following articles [24, 25]. This phenomenon is related to
a numerical dispersion and is called numerical pollution. A detailed analysis with error estimates has been
proposed in [30]. This issue is of particular importance at high frequency or on large domains where the number
of degrees of freedom per wavelength should be chosen large to achieve a given accuracy.

Classically, numericians resort to one or more of the following remedies, which can be combined. The first
one consists in considering high-order FEM, see for example [2]. A second answer to the numerical pollution
issue is Discontinuous Galerkin (DG) finite elements that are less dispersive [1]. This latter approach can be of
particular interest in the context of inverse problems.

The German mathematician Erich Trefftz proposed a paradigm in which basis functions are taken to be
local solutions to the partial differential equations system of interest. The intuition behind this idea is that such
basis functions can better approximate physical phenomena, and be especially less dispersive than classical
polynomial basis functions. Trefftz methods gather simultaneously the possibility of being flexible like high-
order method and of being less dispersive at low-order as pointed out in [40].

Another important feature of Trefftz methods relies on the difficulty to solve wave problems on huge domains
due to memory limitation. This fact is less relevant in homogeneous media where accelerated Boundary Element
Method (BEM) [12, 38, 45] or integral equation collocation method [6] can be used. A natural idea is also to
resort to a domain decomposition method to successively deal with different subdomains. Trefftz formalism,
especially in the context of the Ultra-Weak Variational Formulation (UWVF) [7, 9, 10, 13, 43], seems to be one
of the most relevant solutions.

Moreover, Trefftz methods have also a variety of formulations which offer a high flexibility. In addition to
the UWVF method and to the approach based on the reciprocity principle considered in this paper, the least
square method [16] is another Trefftz method which is of great interest. On the other hand, the partition of
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unity method [4] shares also some similarities with Trefftz methods even if local basis functions are not exact
solutions of Maxwell equations. This is particularly true for problems involving corner singularities but this
subject is out of scope for our paper.

In the context of long range propagation, most Trefftz methods are associated to plane wave basis [15, 17,
18, 20, 31] or other analytical solution like Bessel functions. Hiptmair et al. have contributed significantly in this
paradigm on the theoretical level. In particular, a good starting point would be [19] which is a survey of Trefftz
type methods. The main drawback of these methods is that they are associated to ill-conditioned linear system
which leads in double precision to a lack of accuracy. So much so that in [11, 27], methods improving linear
system properties have been presented. Moreover, these types of basis approximate accurately only a few kind
of wave functions. For example, plane wave basis functions have difficulties to approximate evanescent modes,
corner singularities or transitions between light and shadows which are located behind obstacles. In some sense
these methods have the same limitation than geometrical optic methods and have difficulties to compute near
field accurately.

An important advance was proposed in [21, 22] where the local solutions were not analytical but constructed
thanks to a local solver, which was in this case a BEM. This has led to a method where all kinds of waves are
correctly computed. A similar idea was later developed in [5] where a symmetric Trefftz method was associated
to a local BEM to compute solutions of the Helmholtz equation in two dimensions. In the latter paper, it
was remarked that an accurate resolution of the local solver impressively increases the global accuracy. This is
rather surprising since this improvement does not cause any extra cost. Our approach is comparable to static
condensation methods [44] and to hybridizable discontinuous Galerkin methods [36] where interior degrees of
freedom are eliminated from the final system. However, a local BEM solver is not always appropriate. It cannot
easily handle heterogeneous or anisotropic domains. BEM is also less popular in the numerical simulation
community. In this paper, the local basis will be computed thanks to a local FEM solver. A wide class of
wave equations will then be studied. To highlight this last aspect, we have considered electromagnetic wave
propagation in heterogeneous media.

In the present paper, we propose to parameterize the local Trefftz basis functions by an impedance condition
(also called Fourier-Robin condition). This is a second improvement of [5] where the elements should be included
in a strip of width of half a wavelength to avoid numerical resonance frequencies. This enables to consider a
wide class of elements with no size restriction.

The objective of this paper is to develop a Trefftz electromagnetic method and to investigate its performance
in particular with respect to the pollution effect. It is structured as follows. Section 1 reviews Maxwell equations
and introduce the second-order Maxwell problem and its hypotheses. Next, our Trefftz scheme is elaborated in
Section 2. The associated continuous formulation is provided on a general mesh. Section 3 is devoted to the dis-
cretization of this latter formulation, which leads to approximations of both Trefftz spaces and local Trefftz basis
functions. An example of FEM local solver is presented and uses Nédélec FEM. The final section relates results
from our Trefftz method implementation. Numerical error analysis will illustrate improvements on the pollu-
tion effect. Examples of wave propagation on different domains will show the method’s robustness and accuracy.

1 Model problem: the simplified Maxwell equations

The Maxwell system models the propagation of an electromagnetic wave. It reads, in absence of charges
and currents and for an isotropic linear medium1:

∇ · d = 0, ∇× e = −∂b
∂t
, d = ε0εre,

∇ · b = 0, ∇× h =
∂d

∂t
, b = µ0µrh,

(1)

where ε0 (resp. εr ) and µ0 (resp. µr) are the permittivity (resp. relative permittivity) and the permeability
(resp. relative permeability) of the vacuum (resp. of the medium).

This system involves the electric and magnetic field intensities e and h and the electric displacement and
the magnetic induction d and b. In this article we suppose that all these fields are time-harmonic. They can
therefore be represented by four complex valued functions:e(x, t) = R (exp(−iωt)E(x)) , h(x, t) = R (exp(−iωt)H(x)) ,

d(x, t) = R (exp(−iωt)D(x)) , b(x, t) = R (exp(−iωt)B(x)) ,
(2)

1 All along this paper, bold terms refer to either vectors or vectorial functions.
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where ω is the angular frequency that accounts for time-harmonic dependency. It leads to the following time-
harmonic Maxwell system: ∇ ·D = 0, ∇×E = −iωB, D = ε0εrE,

∇ ·B = 0, ∇×H = iωD, B = µ0µrH.
(3)

We suppose, moreover, that the propagation domain Ω × R, with Ω ⊂ R2, is invariant in the z-direction.
We consider only the transverse electric polarization:E(x) = Ex(x, y)ex + Ey(x, y)ey, D(x) = Dx(x, y)ex +Dy(x, y)ey,

B(x) = Bz(x, y)ez, H(x) = Hz(x, y)ez.
(4)

In this paper, we assume that the computational domain Ω ⊂ R2 is a connected domain with polygonal
boundary, see Fig. 1. This is representative of most applications, see Fig 11 for an example. Moreover, we
assume that Ω can be decomposed into P subdomains denoted Ωp i.e Ω =

⋃
p=1,...,P

Ωp and Ωp ∩ Ωq = ∅, if

p 6= q, such that εr and µr are constant on each subdomain.

Finally, we consider the following second-order Maxwell equation subjected to an impedance boundary
condition:

∇×
(

1

µr
∇×E

)
− k20εrE = 0 in Ω, (5a)

ik0 Y n× (E× n) − n×
(

1

µr
∇×E

)
= h on ∂Ω, (5b)

where

– c0 = 1√
ε0µ0

and k0 = ω
c0

are the wave speed of light and the wavenumber in vacuum respectively,
– the function Y ∈ L∞(∂Ω) is an admittance coefficient with strictly non-positive real part,
– the normal n ∈ R2 is the outward unit normal to ∂Ω,
– the boundary term h : ∂Ω −→ C2 is taken to be a purely tangential function in the functional space

L2
t (∂Ω) :=

{
u ∈

(
L2(∂Ω)

)2
, u · n = 0

}
, (6)

– the solution of this problem is in the following classical Sobolev space H(∇×, Ω)

H(∇×, Ω) =

{
ω : Ω → C2,

∫
Ω

|ω|2dx <∞,
∫
Ω

|∇ × ω|2dx <∞

}
. (7)

Remark 1 In this paper, we consider a two dimensional problem. However, this problem can be seen as a three
dimensional problem on Ω ×R whose solution is independent of the z-component. The two dimensional vector
field E is composed of the two first components of a three dimensional electromagnetic field problem which
is independent of z and with no z-component. Equivalently, C2-vectors (Ex, Ey) are identified to C3-vectors
(Ex, Ey, 0) and Hz ∈ C to C3-vectors (0, 0, Hz). In this context, the ∇× operators acting on vector fields or on
scalar fields are defined as

∇×E = ∂xEy − ∂yEx and ∇×Hz =
(
∂yHz,−∂xHz

)
.

In the same way, n× operators are given by

n×E = nxEy − nyEx and n×Hz =
(
nyHz,−nxHz

)
. (8)

These hypotheses being considered, (5) is well-posed in the Hadamard sense. For proof in the context of
homogeneous media, we refer to [8, 32] . Physical interpretation of the impedance boundary condition can also
be found in [39].

This model is simple enough for numerical implementation, and sufficiently rich to perform a comparison
with different numerical methods.
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t
n

Ω∂Ω

Fig. 1 Schematic view of the computational domain Ω.
The domain boundary is denoted by ∂Ω. The unit normal
and tangent vectors are represented in red and blue respec-
tively at one point of the boundary.

T K

Fext
Fint

Fig. 2 An example of Trefftz mesh. Interior (resp. exte-
rior) faces are denoted by Fint (resp. Fext), see dashed red
segments (resp. bold segments). Two neighboring macro-
elements are for example K and T .

2 Construction of a Trefftz scheme

2.1 Notations and definitions

The domain Ω is meshed by non-overlapping polygonal elements T . These open sets are called macro-
elements, see Fig. 2. The mesh does not need to include only triangles or quadrangles (see the colored pentagon
in Fig. 2) and allows to consider a large variety of geometrical configurations. The set of all macro-elements
T is denoted by T and respects the partition of Ω. In other words, one element T ∈ T cannot intersect two
different subdomains Ωp, p = 1, ..., P , at the same time. In particular, since there exists a unique p0 = 1, ..., P
such that T ⊂ Ωp0 , εr and µr are constant on each macro-element T .

All along this paper, we call edges of an element T as faces and we define the following sets:
– the set Fint of interior macro-faces:

Fint := {∂T ∩ ∂K : T,K ∈ T with T 6= K and length(∂T ∩ ∂K) 6= 0}, (9)

where length(I) refers to the length of the segment I (that is zero for isolated points),
– the set Fext of exterior macro-faces:

Fext := {∂T ∩ ∂Ω : T ∈ T and length(∂T ∩ ∂Ω) 6= 0}, (10)

– the set FT of macro-faces associated to a macro-element T :

FT := {F ∈ Fint ∪ Fext : length(F ∩ ∂T ) 6= 0}. (11)

We construct an infinite dimensional Trefftz space XT , which will be instrumental in the construction of
the proposed method. It is defined for T ∈ T as the set of functions ωT satisfying

ωT ∈ H(∇×, T ), (12a)

∇×
(

1

µT
∇× ωT

)
− k20εTωT = 0, (12b)

ωT × nT ∈ L2
t (∂T ), (12c)

nT × (∇× ωT ) ∈ L2
t (∂T ), (12d)

where µT = µr|T , εT = εr|T and nT is the outward unit normal to ∂T .

Remark 2 If (12a) and (12b) are both satisfied, then either (12c) implies (12d) or (12d) implies (12c). In two
dimensions, this result is a consequence of the regularity theory of Helmholtz equation which can be found in
[29].

It also leads to the global variational space XT defined element by element,

XT :=
∏
T∈T

XT . (13)

Remark 3 Any element ω = (ωT )T∈T ∈ XT is a vector with components ωT in L2(T ). However, ω can also be
identified to a complex valued function of Ω whose restriction to T is equal to ωT . As a function of Ω, ω ∈ XT
is discontinuous across faces and does not satisfy Maxwell equation in the whole domain Ω but only in every
element T ∈ T .
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2.2 The Trefftz continuous formulation

The Trefftz variational formulation of (5) is deduced from the following duality formula∫
∂T

(
ET · nT ×

(
1

µT
∇× ωT

)
− nT ×

(
1

µT
∇×ET

)
· ωT

)
ds = 0, for ωT ∈ XT , (14)

where ET is the restriction to T of the analytical solution E to the Maxwell equations (5).
Indeed, since ET satisfies the Maxwell equation in every element we apply the following Green formula:∫
T

((
1

µT
∇×ET

)
· (∇× ωT )−∇×

(
1

µT
∇×ET

)
︸ ︷︷ ︸

k20εTET

· ωT

)
dx =

∫
∂T

(
nT ×

(
1

µT
∇×ET

)
· ωT

)
ds. (15a)

The test function ω also satisfies the Maxwell equation in every element. Therefore, by interchanging the roles
of E and ω, we get∑

T∈T

∫
T

((
1

µT
∇×ET

)
· (∇× ωT )− k20εTET · ωT

)
dx =

∑
T∈T

∫
∂T

(
ET · nT ×

(
1

µT
∇× ωT

))
ds. (15b)

It remains to subtract (15b) to (15a) to get (14).
The expression on the left hand side of (14) defines a sesquilinear form. The integral over ∂T will be

decomposed following the set of faces FT , see (11), of the element T

∂T =
⋃

F∈FT

F. (16)

It leads to: ∀ω ∈ XT

ã(E,ω) =
∑
T∈T

∑
F∈FT

ãT,F (E,ω) = 0, (17)

with

ãT,F (E,ω) :=

∫
F

(
ET · nT ×

(
1

µT
∇× ωT

)
− nT ×

(
1

µT
∇×ET

)
· ωT

)
ds, (18)

where the solution E is assumed to belong to the space XT and ω to H(∇×, T ), see (12a).
We should distinguish the case of an interior face belonging to the interior skeleton Fint to the case of an

exterior face belonging to Fext.

– If F ∈ Fint, this face is shared with another element K, see Figure 2. Taking into account the continuity of
the solution across the interface F

nT × (nT ×ET ) = nK × (nK ×EK) and nT ×
( 1

µT
∇×ET

)
+ nK ×

( 1

µK
∇×EK

)
= 0,

we have, for F ∈ Fint,
ãT,F (E,ω) = âT,F (E,ω) (19)

with âT,F : XT ×XT −→ C defined by

âT,F (E,ω) :=

∫
F

(
EK · nT ×

(
1

µT
∇× ωT

)
+ nK ×

(
1

µK
∇×EK

)
· ωT

)
ds. (20)

– If F ∈ Fext, this face is subject to the impedance condition (5b). The form ãT,F is rewritten in a way that
the symmetry of the final sesquilinear form is respected

ãT,F (E,ω) =

∫
F

(
ET · nT ×

(
1

µT
∇× ωT

)
+ nT ×

(
1

µT
∇×ET

)
· ωT

)
ds

−2
∫
F

(
nT ×

(
1

µT
∇×ET

)
︸ ︷︷ ︸
ik0Y nT×(ET×nT )−h

· ωT

)
ds.

We have, for F ∈ Fext,
ãT,F (E,ω) = âT,F (E,ω) − ˆ̀

T,F (ω) (21)
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with âT,F : XT ×XT −→ C and ˆ̀
T,F : XT −→ C defined by

âT,F (E,ω) :=

∫
F

(
ET · nT ×

(
1

µT
∇× ωT

)
+ ωT · nT ×

(
1

µT
∇×ET

))
ds

− 2ik0

∫
F

Y
(
ET × nT

)
·
(
ωT × nT

)
ds (22)

and
ˆ̀
T,F (ω) = −2

∫
F

h · ωT ds. (23)

Finally, with âT,F defined by (20) and (22), ˆ̀
T,F defined by (23) for boundary faces and by taking the

convention: ˆ̀T,F (ω) = 0,∀F ∈ Fint, the Trefftz formulation takes the form: find E ∈ XT such that for all
ω ∈ XT , ∑

T∈T

∑
F∈FT

âT,F (E,ω) =
∑
T∈T

∑
F∈FT

ˆ̀
T,F (ω). (24)

Remark 4 It is rather natural to add penalization terms to this formulation like in interior penalty DG method
(see for example [23]). It is surprising that these additional terms do not lead to any accuracy improvement
and deteriorate the linear system conditioning. We refer to [19] for an elaborate theoretical discussion of such
penalization in Trefftz formulations.

3 Discretization of the Trefftz formulation

We have now established the variational formulation. The next step consists in approximating the space
XT . We are first pointing out the existence of an isomorphism between XT and L2

t (∂T ), a trace space defined
on the skeleton of the mesh. A Galerkin approximation then leads to a discretization of L2

t (∂T ). Many methods
exist to choose associated basis functions. For example plane waves or Bessel functions are analytical local
solutions on Trefftz elements and can be employed as basis functions. A comparative discussion of plane waves
and Bessel functions discretizations can be found in [16].

In this article, a different approach is proposed. Local basis functions are defined as solutions of a boundary
value problem (25). An impedance boundary condition is considered to design a well-posed problem. Perfect
conductor condition could have been as well considered but resonances phenomena could occur. Once those
Trefftz basis functions are defined, (24) can not be computed analytically, since the solution operator associated
to the isomorphism between L2

t (∂T ) and XT is not explicit. To overcome this difficulty, we propose to use a
second approximation based on a FEM. In [5, 21, 22] BEM is proposed to compute the local basis functions
for Helmholtz equations. However, FEM are, to our opinion, more flexible and can deal with a wider variety of
physical models.

3.1 Identification of spaces XT and XT with L2
t (∂T ) and L2

t (∂T )

We start with the identification of the local space XT with L2
t (∂T ) for each T ∈ T . It is based on the

following result: let gT ∈ L2
t (∂T ) and YT ∈ L∞(∂T ) with a strictly non-positive real part, then there exists a

unique ωT ∈ H(∇×, T ) (see [32]) such that

∇×
(

1

µT
∇× ωT

)
− k20εTωT = 0 in T, (25a)

ik0 YT nT × (ωT × nT ) − nT ×
(

1

µT
∇× ωT

)
= gT on ∂T, (25b)

where we recall that physical parameters are constant in the element T . The solution of (25) satisfies the
regularity statements (12c) and (12d). Consequently, ωT belongs to the space XT . Reciprocally all functions of
XT are obviously solutions of the problem (25). In particular, the local solution operator ST : L2

t (∂T ) −→ XT

defined by
STgT = ωT , (26)

where ωT is the solution of (25), induces an isomorphism between the spaces L2
t (∂T ) and XT . This leads to

the following characterization of the space XT :

XT =
{
STgT such that gT ∈ L2

t (∂T )
}
. (27)
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Remark 5 At most frequencies, it would have been also possible to consider Perfect Electric Condition (PEC)
or alternatively Perfect Magnetic Condition (PMC) to parametrize XT . In this case (25b) would have been
replaced by one of the following boundary conditions

nT × (ωT × nT ) = gT on ∂T, (25b′)

nT ×
(

1
µT
∇× ωT

)
= gT on ∂T. (25b′′)

However, the PEC and PMC are associated to spurious modes predicted by the Maxwell spectral theory in
bounded domains. These resonances phenomena do not occur with an impedance boundary condition.

The global Trefftz space XT , see (13), is therefore in bijection with the space

L2
t (∂T ) :=

∏
T∈T

L2
t (∂T ), (28)

through the global solution operator S : L2
t (∂T ) −→ XT . We associate to the solution E (resp. the test functions

ω) an element of the trace space f (resp. g) by Sf = E (resp. Sg = ω) which is defined by (26) on every
element by ET = ST fT (resp. ωT = STgT ), see Fig. 3.

The Trefftz formulation (24) can be written in the following form: find f ∈ L2
t (∂T ) such that for all

g ∈ L2
t (∂T ), ∑

T∈T

∑
F∈FT

âT,F (Sf ,Sg) =
∑
T∈T

∑
F∈FT

ˆ̀
T,F (Sg). (29)

The variational problem (29) involves the tangential trace of the rotational. Most of numerical methods
are not adapted to the evaluation of this quantity. An important feature of the presented numerical method
consists in computing the rotational thanks to (25b) that is satisfied by ω = Sg. Similarly, E = Sf satisfies the
following equation:

nT ×
(

1

µT
∇× ST fT

)
= ik0 YT nT × (ST fT × nT ) − fT . (30)

Finally, we have the variational problem: find f ∈ L2(∂T ) such that for all g ∈ L2(∂T ),∑
T∈T

∑
F∈FT

aT,F (f ,g) =
∑
T∈T

∑
F∈FT

`T,F (g), (31a)

where aT,F : L2
t (∂T )× L2

t (∂T )→ C and `T,F : L2
t (∂T )→ C, defined by

aT,F (f ,g) := âT,F (Sf ,Sg) = ik0

∫
F

(
YT − YK

)(
nK × SKfK

)
·
(
nT × STgT

)
ds

−
∫
F

(
gT · SKfK + fK · STgT

)
ds for F ∈ Fint, (31b)

aT,F (f ,g) := âT,F (Sf ,Sg) = ik0

∫
F

(
YT + YT − 2Y

)(
nT × ST fT

)
·
(
nT × STgT

)
ds

−
∫
F

(
gT · ST fT + fT · STgT

)
ds for F ∈ Fext, (31c)

`T,F (g) := ˆ̀
T,F (Sg) = 0 for F ∈ Fint, (31d)

`T,F (g) := ˆ̀
T,F (Sg) = −2

∫
F

h · STgT ds for F ∈ Fext. (31e)

Remark 6 Trefftz methods lead to variational formulations based on trace spaces. The construction of (31)
supports this particularity.

Remark 7 In case YT = YK = Y ∈ R, the formulation is drastically simplified for both cases F ∈ Fint and
F ∈ Fext.

Remark 8 Considering a complex bilinear form instead of a sesquilinear form will lead to an alternative in-
teresting simpler formulation. Indeed, the problem (31) will be simplified by erasing the complex conjugate
symbol. Both formulations should be numerically tested to determine advantages and disadvantages of the two
formulations. Both formulations are equivalent when YT is real. In the case YT = YK = Y ∈ C, this second
formulation can also be drastically simplified.
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S1f1
S2f2

S3f3 S4f4

S5f5

S6f6 S7f7

S8f8

S9f9
S10f10 S11f11

S12f12

Fig. 3 Decomposition of the solution
with the global solution operator S el-
ement by element.

S1ϕ1,j = 0
S1ϕ1,i = 0

S2ϕ2,j = 0
S2ϕ2,i = 0

STϕT,j 6= 0
STϕT,i = 0

SKϕK,i 6= 0
SKϕK,j = 0

S5ϕ5,j = 0
S5ϕ5,i = 0

S6ϕ6,j = 0
S6ϕ6,i = 0

S7ϕ7,j = 0
S7ϕ7,i = 0

S8ϕ8,j = 0
S8ϕ8,i = 0

S9ϕ9,j = 0
S9ϕ9,i = 0

S10ϕ10,j = 0
S10ϕ10,i = 0 S11ϕ11,j = 0

S11ϕ11,i = 0

S12ϕ12,j = 0
S12ϕ12,i = 0

ϕT,j = ϕ̂T,`

ϕK,i = ϕ̂K,`′

Fig. 4 Interaction between two local basis functions ϕT,i and ϕK,j , between two
neighboring elements, where j = loc2glob(T, `) and i = loc2glob(K, `′).

3.2 Galerkin approximation of the Trefftz formulation

The discretization of (31) goes through the choice of a finite dimensional space to approximate L2
t (∂T ).

This space is constructed from a partition FF,µ in segments of each macro-face F ∈ Fint ∪ Fext. They will be
called micro-faces.

From these partitions, we then define for each T ∈ T , the set FT,µ :=
⋃

F∈FT
FF,µ of micro-faces associated

to T and an approximation space of L2
t (∂T ):

V qT,µ := {v : ∂T → C2 : ∀Fµ ∈ FT,µ,v|Fµ ∈ [Pq(Fµ)]2 such that v|Fµ · nT = 0}, (32)

where Pq(Fµ) := {p : Fµ → C : p ◦ ΦFµ ∈ Pq([0, 1])} with ΦFµ being the affine mapping from [0, 1] to Fµ and
Pq([0, 1]) is the space of polynomials of degree q ∈ N. An alternative definition can be found in [32], that is :
Pq(Fµ) is the space of polynomials of maximum degree q ∈ N in arc length on Fµ.

Finally a conforming approximation space of L2
t (∂T ) is defined by

V qµ :=
∏
T∈T

V qT,µ. (33)

We propose a first discrete Trefftz formulation of (31) as follows: find fqµ ∈ V qµ such that for all gqµ ∈ V qµ ,

a(fqµ,g
q
µ) = `(gqµ), (34)

where
a(fqµ,g

q
µ) :=

∑
T∈T

∑
F∈FT

aT,F (f
q
µ,g

q
µ) and `(g

q
µ) :=

∑
T∈T

∑
F∈FT

`T,F (g
q
µ). (35)

A linear system is then associated to this variational formulation by introducing a basis of V qµ . As for any
discontinuous finite element, we refer to local and global basis functions.

– Local basis functions are defined on ∂T and are denoted by ϕ̂T,` ∈ V
q
T,µ with 1 ≤ ` ≤ (q + 1) NT,µ, where

NT,µ is the number of micro-faces of T and (q + 1) is the dimension of the local polynomial approximation
space.

– Global basis vectors can be seen as global "functions". They are defined on ∂T by ϕi ∈ V qµ with 1 ≤ i ≤
card(V qµ ). The dimension of the space V qµ is given by

card(V qµ ) =
∑
T∈T

(q + 1) NT,µ. (36)
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Local (resp. global) basis functions are defined on the boundary ∂T (resp. ∂T ) and lead to local functions
ωT = STϕT (resp. global functions ω = Sϕ) defined on the whole element T (resp. the whole set T ).

To construct matrices associated to (34), we must define a link between ϕ̂T,` and ϕi. That is why we
introduce a local numbering and a global numbering linked by the following bijective operator loc2glob:

i = loc2glob(T, `), (37)

where i is the global number associated to the local number ` = 1, ..., (q+1)NT,µ of the macro-element T ∈ T .
The global basis functions (ϕi)i=1,...,card(V qµ ) are constructed as follows: if i = loc2glob(T, `) then ϕi :=

(ϕK,i)K∈T are defined by {
ϕK,i = 0, if K 6= T,
ϕK,i = ϕ̂T,`, if K = T.

(38)

The basis defined above leads to a characterization of the space V qµ . Indeed, we can describe fqµ = (fqT,µ)T∈T ∈
V qµ using ϕi:

fqµ =

card(V qµ )∑
j=1

fjϕj , with fj ∈ C. (39)

Let us consider the restriction fqT,µ of fqµ on T ∈ T ,

fqT,µ =

card(V qµ )∑
j=1

fjϕT,j , (40)

where ϕT,j is the restriction of ϕj on T . According to (38), only components from the element T are non-zero,
see Fig. 4. This sum can thus be formulated for local basis functions of T only:

fqT,µ =

(q+1)NT,µ∑
`=1

floc2glob(T,`)ϕ̂T,`. (41)

Finally, the formulation (34) can be rewritten as follows: find (fj)j=1,...,card(Vµ) such that ∀i ∈ 1, ..., card(Vµ),

card(Vµ)∑
j=1

fja(ϕj ,ϕi) = `(ϕi). (42)

If j = loc2glob(T, `) and i = loc2glob(K, `′) then a(ϕj ,ϕi) = 0 if, and only if,

(
T 6= K and length(∂T ∩ ∂K) 6= 0

)
or

(
T = K s.t length(∂Ω ∩ ∂T ) = 0

)
, (43)

where length is defined in (9).

Therefore the matrix associated to the sesquilinear form a is sparse.
The linear system (42) can then be used to find fqµ ∈ V qµ . To solve this system we must compute Sϕi (see

(31b) and (31c)). However, S is usually not known, such that ω = Sϕi ∈ XT , i = 1, ..., (q + 1)NT,µ, cannot
be known explicitly. We have to determine an approximation Sν of the linear operator S. The latter can be
described by using several methods as a FDM, an integral equations method, or a FEM. In this paper, Nédélec
finite elements [32] are taken as an example and are described in the next section.

Remark 9 For this reason our Trefftz method should be called quasi-Trefftz. Indeed, effective basis functions
are not exact solutions of our Maxwell problem.
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a nano-element

a macro-element

a micro-face

T

Fig. 5 Discretization of a macro-element T .

3.3 Example of finite element approximation of S

The construction of the Trefftz linear system requires to compute an approximation of Sϕj =
(
SKϕK,j

)
K∈T .

The function SKϕK,j is equal to zero except on the macro-element K = T such that j = loc2glob(T, `). In
this element, an approximation of STϕj is obtained by discretizing the local problem (25) for gT = ϕ̂T,`. This
problem reads: find ω̂T,` = STϕT,j ∈ H(∇×, T ), such that

∇×
(

1

µT
∇× ω̂T,`

)
− k20εT ω̂T,` = 0 in T, (44a)

ik0 YT nT × (ω̂T,` × nT ) − nT ×
(

1

µT
∇× ω̂T,`

)
= ϕ̂T,` on ∂T. (44b)

It will be approximated with a high-order Nédélec FEM, see for example [34, 35]. The associated variational
formulation of (44) takes the form: find ω̂T,` = STϕT,j ∈ H(∇×, T ) such that ∀ψ ∈ H(∇×, T )

− k20
∫
T

εT
(
ω̂T,` ·ψ

)
dx+

∫
T

1

µT
(∇× ω̂T,`) ·

(
∇×ψ

)
dx+ ik0

∫
∂T

YT
(
nT × ω̂T,`

)
·
(
nT ×ψ

)
ds

=

∫
∂T

(
ϕ̂T,` ·ψ

)
ds. (45)

Now, let Tν(T ) be a triangular mesh of the macro-element T ∈ T , see Fig 5.
The Nédélec finite element space V pT,ν of order p ∈ N, see [32], is defined by :

V pT,ν := {v ∈ H(∇×, T ) : ∀Tν ∈ Tν(T ),v|Tν ∈ N
p(Tν)}, (46)

where

N p(Tν) = Pp(Tν)2 + Sp+1(Tν) (47)

with Sp(Tν) = {p ∈
(
P̃p(Tν)

)2
:

(
x
y

)
· p = 0} and P̃p(Tν) the space of homogeneous polynomial functions of

degree p.
Finally, a finite element approximation SpT,νϕT,j of STϕT,j is computed by solving the following discrete

problem: find ω̂ν,pT,` = SpT,νϕ̂T,` ∈ V
p
T,ν , such that ∀ψ ∈ V pT,ν

− k20
∫
T

εT
(
ω̂ν,pT,` ·ψ

)
dx+

∫
T

1

µT

(
∇× ω̂ν,pT,`

)
·
(
∇×ψ

)
dx+ ik0

∫
∂T

YT
(
nT × ω̂ν,pT,`

)
·
(
nT ×ψ

)
ds

=

∫
∂T

(
ϕ̂T,` ·ψ

)
ds. (48)

The Nédélec FEM is implemented by using basis functions deduced from the ones proposed in [14] for a
high-order Raviart-Thomas approximation, by applying a simple π/2 rotation.



A Trefftz method for Maxwell equations 11

4 Numerical investigation of the proposed Trefftz method

This section presents some numerical results from the implementation of the Trefftz method. The first part
focuses on a numerical analysis of the convergence and the pollution error. The second part is qualitative and
deals with classical examples.

Our method is natively adapted to small or large macro-elements since the parametrization of the space XT

by an impedance condition avoids spurious modes, see Remark 5. In this paper, we subdivide the computation
domain into macro-elements whose sizes are at most a few wavelengths. This size is a good compromise in terms
of computational effort. Indeed, it induces an interesting sparsity of the Trefftz linear system, and it avoids
increases of both the system conditioning and the memory required for the local solver.

Our implementation is based on a particular choice of local basis functions. Indeed, they have distinct local
numberings, ranging from 1 to (q+1)NT,µ (see 3.2), and have Lagrange interpolation polynomial values. They
are defined as follows:

– the subscript ` is defined by ` = (iµ − 1)(q + 1) + lµ, where iµ is the micro-face number of Fµ ∈ FT,µ such
that 1 ≤ iµ ≤ NT,µ, and `µ is the local number of the basis function such that 1 ≤ `µ ≤ q + 1,

– for all Fµ ∈ FT,µ,

ϕ̂T,`|Fµ ◦ ΦFµ =

 (0, 0)T if Fµ 6= Fiµ

Lq`µt∂T if Fµ = Fiµ
,

where the unit tangent vector function is defined by t∂T = nT × (0, 0, 1)T and Lq`µ is the ` th
µ Lagrange

interpolation polynomial constructed from the (q + 1) Gauss points in [0, 1].

In our implementation, the mesh Tν(T ) associated to each macro-element T verifies the following property:

∀Tν ∈ Tν(T ), either length(∂Tν ∩ ∂T ) = 0 or ∃Fµ ∈ FT,µ such that ∂Tν ∩ ∂T = Fµ (see Fig. 5). (49)

In other words, we don’t refine the mesh Tν(T ) in order to improve the quality of the approximation
SpT,ν . Consequently, only p-convergence of Nédélec FEM has yet been implemented. Nevertheless, in presence
of singularities, a more efficient approach would be an hp-version of the local solver. A DG method using
geometrically graded meshes is especially adapted.

Finally, the local admittance YT used in the definition of S (see (25b)) is chosen to be equal to
√
εT /µT .

4.1 Numerical error analysis

4.1.1 Relationship between V qT,µ and V pT,ν

We study the link between approximation orders q and p by considering the following problem:

∇× (∇×E)− k20E = 0 in Ω, (50a)

ik0 n× (E× n) − n× (∇×E) = hinc on ∂Ω, (50b)

where hinc = ik0 n × (Einc × n) − n ×
(
∇×Einc

)
, with Einc an incident plane wave whose direction of

propagation is (1, 1)T , and the computational domain Ω is represented in Fig. 6.
The analytical solution of this problem is obviously E = Einc due to its well-posedness character.

Fig. 6 The macro-element Ω, an example of triangular mesh Tν(Ω) and the representation of the analytical solution.
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For the simulation, only one macro-element is used i.e T = {Ω}. As the example displayed in Fig. 6, Tν(Ω)
is a triangular mesh. In order to study their relationship, approximation orders q and p are respectively varying
from 0 to 2 and from 0 to 4.

Let us introduce the relative error in H-curl norm:

e :=

√
‖Eq,pµ,ν −E‖20,Ω + ‖∇ × (Eq,pµ,ν −E) ‖20,Ω√

‖E‖20,Ω + ‖∇ ×E‖20,Ω
, (51)

where Eq,pµ,ν denotes the numerical solution of our Trefftz scheme.
Curves obtained from our simulation, see Fig. 7, show the relative error in function of the quantity kh/(2π(q+

1)) which is equivalent to the inverse of the number of points per wavelength. In our case, h is the longest length
of micro-faces.

Fig. 7 Convergence curves in H-curl error of the Trefftz scheme for some local Nédélec approximations.

These plots show that the Trefftz order q and the FEM order p must be carefully chosen. Indeed, if p < q, a
projection of the "trace" basis functions ϕi onto lower-order polynomials occurs leading to a loss in precision
and convergence. Consequently, the condition p ≥ q must be satisfied for the proposed Trefftz scheme. As a
matter of fact, the higher the local Nédélec FEM order, the closer the basis functions are to the exact Maxwell
solutions. When p is sufficiently large, the lack of conformity in our local approximation becomes then negligible.

Mathematically, the convergence rate of the error induced by the variational crime perpetrated in the
discretization of the sesquilinear form should be at least of the same order as the one of the underlying Trefftz
method. The bound of this condition, i.e p = q, denotes a convergence rate similar to Nédélec FEM of order p.
In case p > q, a super-convergence phenomenon is pointed out. By super-convergence, we mean that the Trefftz
method converges at a higher rate than a comparable Nédélec FEM with the same number of degrees of freedom
on the boundary. Let us recall that introducing extra degrees of freedom for the Nédélec finite element solver
has no extra cost since they are eliminated from the final system. In all plots, highest order curves are close to
each other. It reveals a saturation phenomenon. The superposition of curves in Fig. 7 demonstrates that the
local solver is almost exact in comparison with the Trefftz solver. It brings the optimal choice p = q + 1. This
is exactly what one should expect from a Trefftz method and motivates their use instead of standard ones.

4.1.2 Evaluation of the pollution error

One of the main motivations of Trefftz type methods is reducing the impact of the pollution effect, by which
more classical FEM tend to be limited when the computational domain becomes large in terms of wavelength.
We analyze the behaviour of the proposed Trefftz scheme regarding this effect by considering the following
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problem:

∇×∇×E− k20E = 0 in Ω = [0, L]× [0, 1],

n× (E× n) = 0 if y = 0 or y = 1,

n× (E× n) = −1 if x = 0,

ik0n× (E× n) − n×∇×E = 0 if x = L,

(52)

where k0 = 2π and L =Mλ0 with λ0 = 2π/k0 and M = 10, ..., 200.
This problem is slightly different than the one initially considered in this paper (see (5)). Indeed, in this

latter, we have decided to consider only an impedance boundary condition to simplify the presentation. Dirichlet
boundary conditions as these ones used in (52) can straightforwardly be included in the scheme.

The problem (52) models a duct of height 1 and length L where an incoming plane wave is generated at
x = 0, propagating freely to the right, and finally arriving at a transparent boundary condition on the right
side.

In this numerical example, the computational domain for the Trefftz method is decomposed in the set of
macro-elements T = {Tm := [m− 1,m]× [0, 1] : m = 1, ...,M}. The mesh used by the global Nédélec FEM is
made of the union of Trefftz macro-elements meshes. In each of them, three triangular meshes Tν(Tm) based on
spatial discretization steps h = 1/N for N = 6, 9, 12 are considered and an "optimal" Nédélec approximation
order p is chosen i.e p = q + 1.

The aim of these simulations is a comparison of the relative L∞-error

e∞ = 100
‖E−Eh‖∞
||E||∞

(53)

induced by the Trefftz and the classical Nédélec FEM. It is known that this error is directly related to numerical
dispersion and it is a relevant way to analyze the pollution effect. Here, the analytical solution of (52) is
E(x) = e−i2πxey. Empirically we observe that the relative maximum error as a function of duct length L can
be well approximated by a linear interpolation of the form

einterpolated = aL+ b (54)

with b > 0 and a > 0.
The figure 8 (resp. 9) shows the results obtained with q = 1 (resp. q = 2) and a classical Nédélec FEM of

order p = 1 (resp. p = 2). We can draw the following conclusions. The pollution error is always more important
for the FEM. Comparing the curves, we see that both interpolation parameters a and b tend to be roughly one
order of magnitude larger for the FEM than for the Trefftz method at comparable meshes and orders.

Fig. 8 Relative maximum order induced by the Trefftz DG method for (q, p) = (1, 2) and the classical Nédélec FEM of order
p = 1 in function of L.
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Fig. 9 Relative maximum order induced by the Trefftz DG method for (q, p) = (2, 3) and the classical Nédélec FEM of order
p = 2 in function of L.

4.2 Illustrative examples

We consider three examples to point out our Trefftz method’s accuracy and flexibility. Two of them consist of
the computation of scattered field by bounded obstacles, see Fig 11 and Fig 12. The other one is a heterogeneous
duct problem. In all simulations, the domain is decomposed in a set T of macro-elements T . Triangular meshes
Tν(T ) are constructed by using spatial discretization steps hν . From now on, we set the Trefftz order q = 2 and
the Nédélec FEM order p = 3.

4.2.1 Duct propagation with variable dielectric parameters

In this example, we consider a duct problem with variable dielectric parameters defined by:

∇×
(

1
µr
∇×E

)
− εrk20E = 0 in Ω = [0, 6]× [0, 1],

n× (E× n) = 0 if y = 0 or y = 1,

n× (E× n) = −1 if x = 0,

ik0 Y n× (E× n) − n×
(
∇× 1

µr
E
)
= 0 if x = 6,

(55)

where k0 = 3π, Y =
√
εr/µr,

εr(x, y) =


1 if 0 < x < 2

1
2 if 2 < x < 4

2 if 4 < x < 6

and µr(x, y) =


1 if 0 < x < 2

2 if 2 < x < 4

2 if 4 < x < 6

. (56)

For this simulation, the Trefftz approximation is characterized by the following table:

Ω [0, 6]× [0, 1]

T {Tm := [m,m+ 2]× [0, 1] : m = 0, 1, 2}

hν 1/12

(q, p) (2, 3)

We recall the definition of the relative wave travelling speed and the relative impedance associated to a
dielectric media:

cr =
1

√
µrεr

and Zr =
√
µr
εr
.
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Now, we use the first macro-element (in blue in Fig. 10) where cr = Zr = 1 as a reference. In the second
macro-element (in red in Fig. 10), we have cr = 1 and Zr = 2 and physically, we must observe, in comparison
to the first region, a doubling of the wave amplitude without modification of the wavenumber. In the third
macro-element (in yellow in Fig. 10), we have cr = 1/2 and Zr = 1 and this situation leads to a doubling of the
wavenumber without modification of the wave amplitude. Blue, red and yellow macro-elements in figure 10 are
the meshes of the Nédélec local solver.

The figure 10 shows the imaginary part of the numerical solution computed by our Trefftz scheme. We
observe that the desired physical behaviour imposed with amplitude and frequency changes by (55), is correctly
reproduced.

Fig. 10 A plane wave generated on the left edge (macro-element 0) propagating towards the right (towards macro-element 2). On
macro-element 0: reference plane wave. On macro-element 1: twice the amplitude. On macro-element 2: twice the wavenumber.

4.2.2 Scattering by a perfectly conducting disk and a L-shaped obstacle

In this part, we present two test-cases which model the scattering of an incident plane wave by perfectly
conducting obstacles in an unbounded domain. Meshes Tν(T ) are constructed from two spatial discretization
steps hobsν , close to the obstacle, and hextν , close to the exterior boundary of the computational domain. We set
the dielectric parameters to εr = µr = 1 and the wavenumber to k0 = 10π.

The first obstacle is smooth and convex and corresponds to a disk D(0, R). The perfectly conducting
character of this latter is taken into account by imposing the homogeneous Dirichlet boundary condition,
n×E = 0 on the circle C(0, R).

For this simulation, the Trefftz approximation is characterized by the following table:
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Ω ([−1, 1]× [−1, 1]) \D(0, R), with R = 0.4

T 4 macro-elements T (bottom right of Fig. 11)

hobsν 1/30

hextν 1/15

(q, p) (2, 3)

The scattered and total electric fields computed by the Trefftz method are represented in Fig. 11. We observe
that the method accurately computes the electromagnetic wave propagation in such situation. In particular,
the "shadow" region in the total field on the right side of the disk is well restored. Moreover, the non-convex
macro-elements such as those used in this example are well supported.

Fig. 11 On top left: scattered field (x-component). On top right: scattered field (y-component). On bottom left: total field (y-
component). On bottom right: colour macro-elements with embedded FEM triangular mesh, refined close to the circle.

The second experiment uses the L-shaped obstacle ΩL described in Fig. 12, which has a length and height
of 1, and a thickness of 0.2. It leads to a non-convex and non-smooth problem whose approximation is defined
by the following table:

Ω ([−1, 1]× [−1, 1]) \ΩL

T 12 macro-elements T (top of Fig. 12)

hobsν 1/30

hextν 1/15

(q, p) (2, 3)
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The numerical solution represented in the figures on bottom of Fig. 12 shows that the proposed Trefftz
method seems to work well in presence of singularities and to accurately compute the interference phenomenon
which takes place in the trapping region induced by non-convexity of the obstacle according to classic electro-
magnetic theory. Moreover, this example gives a good idea of the method flexibility in terms of computational
domain partitioning by using macro-elements.

Fig. 12 On the top: T and Tν(T ) associated to the L-shaped computational domain. On the bottom: x and y- components of the
real part of the numerical solution.

5 Conclusion

In this paper, we have presented a Trefftz method associated to a Nédélec FEM approximation for a
two dimensional Maxwell problem. As highlighted in our numerical analysis, a super-convergence phenomenon
appears. This crucial aspect points out the "performance" of such a method. In a similar way, the propagation of
electromagnetic waves through domains with obstacles emphasizes its robustness. This encourages us to consider
a three dimensional implementation. However, these two dimensional cases are not really representative of three
dimensional simulations which are more complex to implement.

Trefftz methods provide a particularly adapted framework for enriched Galerkin method in the context of
multi-scale modeling as presented by Dauge et al. at the Enumath 2019 conference. This question is of particular
importance for Maxwell equations. We are rather convinced that the proposed formulation is perfectly adapted
to this type of problems.

The iterative solution of Trefftz problems is not dealt with in this paper. This seems to be a good alternative
to efficient preconditioner like in [42]. Testing GMRES solver [37] seems a good question for a future research
program but is mostly relevant for three dimensional problems.
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