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Abstract

Motivation: Phylogenetic placement (PP) is a process of taxonomic identification for which several tools are now available.
However, it remains difficult to assess which tool is more adapted to particular genomic data or a particular reference
taxonomy. We developed PEWO, the first benchmarking tool dedicated to PP assessment. Its automated workflows can
evaluate PP at many levels, from parameter optimisation for a particular tool, to the selection of the most appropriate genetic
marker when PP-based species identifications are targeted. Our goal is that PEWO will become a community effort and a
standard supportred for future developments and applications of PP.
Availability: https://github.com/phylo42/PEWO
Contact: benjamin.linard@lirmm.fr; rivals@lirmm.fr
Supplementary : Supplementary data is available at page 4.

1 Introduction
When a reference phylogeny is available, taxonomic identification of
biological sequences can be achieved with phylogenetic placement (PP).
PP provides the most informative type of classification because each query
sequence is assigned to its putative origin in the tree. PP can be applied in
many contexts, including community ecology, species diversity, or medical
studies. Several PP tools were developed for these purposes (Matsen et al.,
2010; Berger et al., 2011; Mirarab et al., 2012; Zheng et al., 2018), with
four recent tools capable of processing larger sequence volumes (Barbera
et al., 2018; Linard et al., 2019; Czech and Stamatakis, 2019; Balaban
et al., 2020). In the preliminary phase of experimental design, assessing
which tools answer the needs of a given application remains a tedious task
often involving manual tests (Mangul et al., 2019). Strikingly, PP has a
broad range of applications, but lacks user guidelines and benchmarking.
Some procedures to evaluate PP accuracy were proposed (Matsen et al.,
2010), but never automated via a dedicated software. Benchmarking is
essential to determine which tool suits better a given metagenomic task or
a specific dataset (Sczyrba et al., 2017).

To fill this gap, we developed PEWO (Placement Evaluation
WOrkflows), the first tool dedicated to PP benchmarking. PEWO
automatizes evaluation procedures (which were not implemented for the
community), and introduces novel procedures. Beyond benchmarking,
PEWO can help decision-making in any metagenomic or metabarcoding
project for PP-based taxonomic identification. With applications ranging
from parameter optimization on particular genomic data, to the selection of
the most appropriate genetic marker, PEWO provides the user community
with standardized workflows for easy and reproducible assessment of PP
analyses.

2 Overview
PEWO implements evaluation workflows in Python and Snakemake
(Köster and Rahmann, 2012), whose framework ensures flexibility,
platform independence, and reproducibility. Each workflow automatically
performs multiple steps from query generation up to summary plots/tables,
and can be tailored via Snakemake configuration files. PEWO and
its dependencies are easily installed via a conda virtual environment.
Currently, PEWO incorporates five state-of-the-art PP tools, which cover
a majority of PP uses: EPA(RAxML), PPlacer, EPA-ng, RAPPAS and
APPLES. Four are alignment-based tools, while RAPPAS is alignment-
free. As input, each workflow takes a phylogenetic tree and the reference
multiple sequence alignment from which it was built (Figure 1). Optionally,
the user can provide a set of query sequences. Below we describe the
workflows and some of their applications.

2.1 PEWO procedures

• Pruning-based accuracy evaluation (PAC): in this standard procedure
for assessing placement accuracy (Matsen et al., 2010; Berger et al.,
2011), a subset of sequences is randomly pruned from the reference
phylogeny and alignment. Each pruned sequence then serves to
generate queries for placement, and the accuracy of each tool
is measured in number of nodes separating predicted from true
placement. PEWO offers two versions of this topological metric: Node
Distance (ND) and expected Node Distance (eND). The eND accounts
for placement uncertainty (e.g. likelihood weight ratios). All selected
tools are compared for a user-selected combination of parameters.

• Likelihood-based accuracy evaluation (LAC) is a new, faster
evaluation procedure introduced in PEWO to assess relative accuracy
of PP. It iterates the following process for a set of queries: place the
query, extend the phylogeny to include that query, optimize the branch
lengths of this extended tree, and return its log-likelihood (LL). The
user can then compare the LL values obtained with different tools, or
different settings of a same tool (e.g. by inspecting the distribution of
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Software
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Locus
12S 843 4.52 4.87 8.02 6.84
16S 645 6.33 6.36 7.58 6.82
cox1 1390 10.69 10.62 12.17 10.76
cytb 1147 11.23 11.25 11.93 8.66
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Fig. 1. A. Overview of PEWO inputs and outputs. B. An example of plots dynamically-generated by the PAC (Pruning-based Accuracy Evaluation) procedure on a 16S rRNA bacterial
reference. Measured Mean expected Node Distances (eND) are reported (lower value = better accuracy). Panels report selected conditions for PPlacer and RAPPAS, e.g. different parameter
values tested in different rows and columns. For PPlacer, varying parameters are ms (max-strikes, X axis) and sb (strike-box, Y axis). Parameter mp (max-pitches, grey box) is fixed. For
RAPPAS, varying parameters are k (phylo-kmer size) and o (omega threshold). Parameters red (alignment reduction) and ar (software used for ancestral reconstruction) are fixed. C.
Four PAC procedures were run for different Coleopteran mitogenome loci (rows) and compiled. Average expected Node Distance (eND) is measured for three tools (columns) using default
parameters. For each locus, the lowest average eND is highlighted in bold. For RAPPAS, the last column shows that accuracy can be improved when increasing k-mer size (default is k=8).
Examples B. and C. are more extensively discussed in Supplementary Materials.

the differences between LL values obtained with two different tools).
See the Supplementary Materials for a more detailed description.

• Resource evaluation (RES): outputs the runtime and memory usage
of selected tools, with details for each placement step (e.g., profile
alignment, database construction, placement...). One can compare the
impact on time and memory for tool-specific parameter combinations,
while searching for an appropriate accuracy/resource trade-off, or
evaluate the tools’ scalability with respect to input size.

2.2 Applications

PEWO procedures cover numerous use cases arising with PP, as illustrated
by six exemplar applications provided on GitHub (two are reported in
Figure 1B-C). As new PP tools can be incorporated in PEWO, PEWO
procedures enable comparing existing and future tools on resource usage,
scalability, or accuracy in a reproducible way. With PEWO, users can
optimize their PP pipeline design. For instance, for a given reference (tree
and alignment), determine which tool and parameter combination will
maximize placement accuracy, and at which computational cost. PEWO
facilitates such tests, as in Figure 1-B, which shows two plots automatically
generated by the PAC procedure running PPlacer and RAPPAS for 9 and
6 parameter combinations, respectively.

As a second example, we show how PEWO can be used to compare
different genetic markers available for the same taxa, as the choice of the
marker may impact the accuracy of placement. For example, we evaluated
the placements for four loci (16S, 12S, cox1, cyt) on their associated
phylogeny for 900 Coleopteran mitochondrial genomes (Linard et al.,
2018). Figure 1-C displays the results (reproducible via GitHub example 4)
highlighting that: i) 12S yields the most accurate placements, despite being
the second shortest locus, ii) the tool achieving the best accuracy depends
on the marker, and iii) with RAPPAS, a longer k-mer size is required to
obtain accuracy similar or better than alignment-based methods.

2.3 Availability and implementation

PEWO, with full documentation and example workflows, is freely
available from its repository URL: https://github.com/phylo42/PEWO.
Its modular, well-documented, and evolvable source code enables the
community to easily extend it by adding new tools, procedures, or metrics.
Notably, users can develop their own evaluation procedures starting from
PEWO Snakemake rules as templates for their own workflows. Any PP
tool can be integrated as long as it outputs results in jplace format (a

json specification, standard in PP, see (Matsen et al., 2012)), can be
parameterized via the command line, and is available on a conda or pip
repository (see the documentation for guidelines).

3 Conclusion
Reproducibility of computational analyses in life sciences is a crucial
issue, even more when large scale data comes into play, as in the case
of metagenomics. With PEWO, we provide a resource that facilitates the
evaluation and comparison of PP tools under a unified framework. It allies
flexibility, extensibility, with ease of use, while it inherits a standardized
installation procedure from the conda framework. The set of workflows in
PEWO aims to grow as a community effort, and extensions are welcome.
In PEWO, we introduce a likelihood-based accuracy evaluation procedure,
which is complementary to existing procedures (Matsen et al., 2010).
PEWO will help the community in its efforts to develop future PP tools
and will facilitate experimental decisions when PP is chosen as a means
to species identification. With the help of future contributors, we hope
that PEWO will evolve as a standard for PP benchmarking, and answer
forthcoming unforeseen yet auspicious applications.
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Likelihood-based accuracy evaluation (LAC) 
This procedure is another way of testing and comparing phylogenetic placement tools. Each             
tested reference dataset consists of a reference alignment (refA), a reference tree (refT), and a               
dataset of query sequences (QS). In the PEWO LAC procedure, the following steps are              
repeated for every input parameter combination of every tested tool, where Qi denotes the i-th               
sequence in QS: 

1. Align each query Qi against refA independently, obtaining alignments Ai . 
2. Perform the necessary steps to place the query sequences QS to the refT. These steps               

may vary depending on the tested tool. To place Qi into refT using alignment-based              
tools, Ai is used. The result of this step is a collection of placements of QS. 

3. For every Qi, take the placement branch P(Qi) with the highest value of likelihood              
reported by the tool. Create an extended tree Ti by modifying refT as follows. Create a                
new node in Ti by splitting branch P(Qi) in two branches. Attach to this new node a                 
new terminal branch leading to a leaf labelled by Qi. 

4. Reoptimize branch lengths and calculate the LogLikelihood (LLi) of Ti: 
> raxml-ng --evaluate --msa Ai --tree Ti --model MODEL --redo 
Use the MODEL parameter given by the user in a config file. 

In the end, the vector containing all the LLi values can be used to compare the performance of                  
different PP tools and/or their input parameter combinations.  

For example, if LLi(EPAng) and LLi(RAPPAS) denote the values obtained while using            
EPAng and RAPPAS, respectively, a user can inspect the distribution (via           
histograms/boxplots etc.) of LLi(EPAng) - LLi(RAPPAS). 
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Comments on the ND and eND metrics 
The ND (Node Distance) and eND (expected Node Distance) metrics were originally            
described in detail in the original papers of PPlacer (Matsen et al., 2010) and EPA (Matsen et                 
al., 2010; Berger et al., 2011). Below is a rapid description of their difference. 
 
Difference between ND and eND metrics (PAC procedure): 
Both metrics are topological measures which report, for each placed query, the number of              
tree nodes that separate an observed placement (e.g. the branch associated to the best              
likelihood, which is the best placement) and an expected placement (defined as the branch              
from which taxa were pruned by the pruning procedure). For instance, consider this simple              
tree of 2 internal nodes (black dots) and 5 branches labelled b1 to b5 . The ND between                  
observed and expected placement is 2 (whatever the position of the placements along             
branches b1 and b5) : 
 

 
 
For each placement, likelihoods are computed for more than one branch of the tree. In               
general, phylogenetic placement tools report not only the branch of best likelihood, but the n               
branches associated to the top n best likelihoods. Thus, a “placement” can be seen as a                
distribution of likelihoods observed in one more than 1 branch. A statistic called the              
Likelihood Weight Ratios (LWR) is associated with each branch to take into account the              
relative difference observed between these likelihoods and can be seen as a measure of              
uncertainty of the placement. 
For instance, considering n=3 (e.g. likelihoods and corresponding LWR are output for the top              
3 best likelihoods) we observe the likelihoods and LWR, with Lb1 being the likelihood of a                
placement on branch b1 and LWRb1 the corresponding LWR ratio (red circles illustrate the              
LWR difference) : 
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In this particular example, it seems that b1 is by far the best placement, and the ND and the                   
eND are relatively equivalent (2 nodes separate observed and expected placements). The            
corresponding eND of this placement is : 

ND ND ) / (LW R ) e = ( b1 × LW Rb1 + NDb2 × LW Rb2 + NDb3 × LW Rb3 b1 + LW Rb2 + LW Rb3  
= 1.997ND 2 .987 .01 .003) / (0.987 .01 .003) e = ( × 0 + 2 × 0 + 1 × 0 + 0 + 0  

 
Now consider this alternative situation: 
 

 
 
The likelihoods associated with b1 and b3 are relatively similar, which is reflected in their               
LWR values. Said otherwise, while b1 was chosen is the best placement, it appears b3               
remains a decent branch for placement. However, choosing branch b1 or b3 would result in               
different ND values (2 and 1 respectively). The usefulness of the eND measure lies in its                
ability to take into account this uncertainty by weighting the NDs by their associated LWR.               
For this second example: 

= 1.64ND 2 .4 .24 .36) / (0.4 .24 .36)  e = ( × 0 + 2 × 0 + 1 × 0 + 0 + 0   
 
Recommendations for using the ND and eND metrics (PAC procedure): 
 
A first intuition would be that the eND is a better accuracy measure than the ND as it                  
considers the placement uncertainty represented by relatively similar likelihoods associated to           
different branches (see previous paragraph). However a few remarks must be made.            
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Considering the state of current placement tools (June 2020), we would make the following              
recommendations: 

● APPLES can output only one branch per placement (the one associated with the best              
score) and LWR values are consequently always equal to 1 for the single placement              
branch. Until APPLES allows output more branches per placement, using the ND            
metric would be more fair in experiments targeting tool comparisons. 

● When comparisons involve other software (EPA-ng, PPlacer, RAPPAS and not          
APPLES), using the eND is applicable, because all these tools can output several             
branches per placement (and corresponding LWR are different). 

● When comparing tools, it is recommended that they output the same amount of             
branches per placement. In practise, EPA-ng, PPlacer and RAPPAS command-lines          
already share the same default output configuration (maximum 7 branches per           
placement and only those associated to a LWR > 0.01). 
 

Currently, writing more recommendations on the usage of these metrics is difficult as these              
measures have been developed specifically for the first manuscript of phylogenetic placement            
and, so far, were exploited in a limited number of manuscripts and on limited number of                
datasets (moreover, the same datasets are used in these manuscripts). 
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Comments on results of Figure 1-B and 1-C 
Figure 1B: Example of plots produced by the PAC procedure 
 
This figure can be reproduced by following the example 2 of the PEWO wiki: 
https://github.com/phylo42/PEWO/wiki/IV.-Tutorials-and-results-interpretation#example2 
The details about the configuration of the pipeline is already detailed in this online tutorial               
and the present section will focus on the interpretation of the results.  
 
Warning: note that this plot was generated from a toy example of the PAC procedure limited                
to 10 prunings (for fast tutorials). This configuration is not necessarily representative of the              
actual accuracy of the tools. A better approach would be to configure the PAC procedure to                
test at least a 100 different prunings, which would ensure to compute both easy (a single leaf                 
is pruned)  and hard (a large subtree is pruned) simulations.  
 
In this example, a phylogenetic tree of bacterial 16S rRNA is used as a reference tree. The                 
goal of running the PAC procedure of PEWO on this dataset is: 

1. To determine which placement software produces, on average, the most accurate           
phylogenetic placements. 

2. For a particular tool, which parameters are optimal. 
PPlacer (an alignment-based approach) is compared to RAPPAS (an alignment-free          
approach) and for sets of 9 (PPlacer) and 6 (RAPPAS) parameter combinations. See PEWO              
wiki for a more detailed explanation about the selected parameters. Accuracy is evaluated via              
the expected Node Distance metric (eND). As a reminder, the lower the eND is, the more                
accurate are the placements in the selected conditions.  
Using the plots output by PEWO (Figure 3B), we can observe that: 

● For both methods, measured eNDs are in [2,3], showing that, on average, queries are              
placed on a branch which is 2 nodes away from their expected placements.             
Considering that the corresponding reference tree shows very short branches between           
sister leaves, this is considered as a good accuracy. As a comparison, observe figure 3               
of (Linard et al., 2019) where the measured average NDs are generally above 2,              
whatever the reference tree considered (eNDs were not implemented at that time). 

● For PPlacer, changing the parameters ms and sb (max-strikes and strike-box           
respectively, see Matsen et al, 2010) has a limited impact on placement accuracy, with              
a maximum eND difference of 0.17 between the tested combinations.  

● At the opposite, RAPPAS accuracy is heavily influenced by its parameter k (the k-mer              
size) and less by the second tested parameter o (omega, which determines the amount              
of k-mers filtered during database construction). 

● When comparing these methods, it appears that RAPPAS requires a k-mer size > 6 to               
be at least as accurate (k=7) or more accurate (k=8) than PPlacer on this particular               
dataset. 
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● While not represented in the figure itself but measurable with the RES procedure, one              
would observe that the most accurate configurations for both tools correspond to            
longer computations. In this regard, it appears that playing with the parameters of             
PPlacer can greatly accelerate the placements, while limiting the loss of accuracy. On             
the other hand, RAPPAS is orders of magnitude faster than PPlacer in its placement              
phase but will involve heavier computations when longer k-mer are used at database             
construction.  

 
Figure 1C: Comparing different genetic markers 
 
This figure can be reproduced by following the example 4 of the PEWO wiki: 
https://github.com/phylo42/PEWO/wiki/IV.-Tutorials-and-results-interpretation#example4 
The details about the configuration of the pipeline is already detailed in this online tutorial               
and the present section will focus on the interpretation of the results.  
 
Warning: note that this plot was generated from a toy example of the PAC procedure limited                
to 10 prunings (for fast tutorials). This configuration is not necessarily representative of the              
actual accuracy of the tools. A better approach would be to configure the PAC procedure to                
test at least a 100 different prunings, which would ensure to compute both easy (a single leaf                 
is pruned)  and hard (a large subtree is pruned) simulations.  
 
This example describes a possible application of PEWO procedure that goes further than the              
benchmarking of the placement tools themselves. In applications such as metabarcoding or            
metagenomics, one often has to evaluate which genetic marker is the most adapted to species               
identification in a sample representing a complex environmental community. In particular,           
one could test if different mitochondrial markers (different regions of the mitogenome) will             
produce more accurate species identification when considering a particular reference tree.           
Several PEWO runs, one for the phylogenetic tree built from each marker, can be run to                
answer this question and help early decisions related to experimental design.  
In this particular example, four phylogenetic trees were built for four different regions of the               
same 1000 Coleopteran mitochondria (e.g. each tree is composed by 1000 sequences of the              
same species, data from Linard et al., 2018). These regions are cox1 (full CDS), cytb (full                
CDS), 12S rRNA (full ORF) and 16S rRNA (V2-V3 + V3-V4 regions). By using PEWO, we                
aim to answer the following question: using these particular reference trees, which marker is              
likely to produce the most accurate placements, e.g. species identifications ? 
Note that the answer that will be produced with PEWO is specific to the present reference                
trees. If one builds a new dataset with more species or a different taxonomic composition               
(e.g. a phylogenetic tree with different topology and branch lengths), one should run this              
procedure again (different markers and tools may behave differently at different taxonomic            
scales).  
A run of the PAC procedure is launched for each of the four different reference trees and                 
configured to test three placement tools. It is also configured to test EPA-ng and PPlacer with                
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default parameters and RAPPAS with k=8 and k=10 (many more parameters conditions could             
be tested). The results are reported in Figure 3-C (as a reminder, lowest average eND = best                 
accuracy). They lead to the following results and discussions:  

● When considering all tools and markers, the 12S reference tree leads to the most              
accurate placements when using PPlacer (eND=4.52). EPA-ng shows a very similar           
accuracy for this marker and RAPPAS shows a lower accuracy for both tested k-mer              
lengths. Still, considering that all trees are built from 1000 species and that whatever              
the tools and locus observed eND are inferior to 12, all methods can be considered as                
relatively accurate (comparatively, similar eND values measured on a tree of only 100             
species would have been a worse accuracy).  

● For cox1 and cytb, EPA-ng and RAPPAS produce the most accurate placements,             
respectively. This shows that the most appropriate tool may depend on the marker. If              
these alternative markers are selected for the experiments, then the results suggest to             
use  a different tool than for the 12S reference tree (see previous point). 

● For this particular set of Coleopteran species, average placement accuracy decreases,           
from 12S, 16S, cox1 to cytb. This shows that the longest marker is not the most                
resolutive when using this particular reference. In fact, this particular mitochondrial           
reference dataset contains a large proportion of sequences belonging to the same            
family (Curculionidae). rRNA markers are known for their faster rate of evolution            
which consequently, and despite their shortest length, make them more resolutive for            
species identification at this (relatively) low taxonomic depth.  

● If a metabarcoding approach is envisioned, these results suggest to build an            
experimental design based on the 12S marker, particularly if communities rich in            
Curculionidae family members are targeted in the project, and if the present            
(incomplete) reference database will be the basis for future species identification           
based on phylogenetic placements. Note that this recommendation does not          
necessarily hold for a different reference dataset (for instance, another reference of            
more even Coleopteran family sampling may conclude to the recommendation of           
different marker/tool/parameters). 

Altogether these comparisons emphasized the usefulness of a benchmarking framework like           
PEWO.  
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