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HAMILTONIAN REGULARISATION OF THE UNIDIMENSIONAL
BAROTROPIC EULER EQUATIONS

BILLEL GUELMAME, DIDIER CLAMOND AND STÉPHANE JUNCA

Abstract. Recently, a Hamiltonian regularised shallow water (Saint-Venant) system has
been introduced by Clamond and Dutykh [13]. This system is Galilean invariant, linearly
non-dispersive and conserves formally an H1-like energy. In this paper, we generalise this
regularisation for the barotropic Euler system preserving the same properties. We prove
the local (in time) well-posedness of the regularised barotropic Euler system and a periodic
generalised two-component Hunter–Saxton system. We also show for both systems that
if singularities appear in finite time, they are necessary in the first derivatives.

AMS Classification: 35Q35; 35L65; 37K05; 35B65; 76B15.
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1. Introduction

The barotropic Euler system is a quasilinear system of partial differential equations that
can be used to describe many phenomena in fluid mechanics. Denoting the time and the
spacial coordinate by the independent variables t and x, respectively, and denoting the
density, the velocity and the pressure by the dependent variables ρ(t, x) > 0, u(t, x) and
P (ρ), respectively, the conservation of mass and momentum yield

ρt + [ ρ u ]x = 0, ut + uux + Px/ρ = 0, (1)
1
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where subscripts denote partial derivatives. If the pressure P is an increasing function
of ρ, the system (1) is hyperbolic and, even for smooth initial data, the solutions may
develop shocks in finite time. In order to avoid those shocks, several regularisations have
been proposed, for example by adding a “small” artificial viscosity and/or dispersive terms
[7, 16, 24, 31, 33, 34, 35, 47]. The artificial viscosity leads to a loss of the energy every-
where and the dispersive terms lead to high oscillations which cause problems in numerical
computations. Other regularisations of Leray-type (for Burgers equation, isentropic Euler
system and others) have been proposed and studied in [3, 4, 5, 6, 11, 41, 42]. Those reg-
ularisations do not conserve the energy and the limit solution fails (in general) to satisfy
the Lax entropy condition [4].

Modifying the dispersion of the Serre–Green–Naghdi system, Clamond and Dutykh [13]
proposed the dispersionless regularised Saint-Venant (shallow water) system

ht + [hu ]x = 0, (2a)

[hu ]t +
[
hu2 + 1

2
g h2 + εR

]
x

= 0, (2b)

R
def
= 2h3 u2

x − h3[ut + uux + g hx]x − 1
2
g h2 h2

x, (2c)

where h is the total water depth of the fluid, g is the gravitational acceleration and ε > 0
is a dimensionless parameter. This Hamiltonian regularisation conserves an H1-like energy
for smooth solutions and it has the same shock speed as the classical Saint-Venant system.
Weak singular shocks of (2) have been studied by Pu et al. [45]. Also, local (in time) well-
posedness and existence of blowing-up solutions using Ricatti-type equations have been
proved in [36]. The global well-posedness and a mathematical study of the case ε → 0
remains open problems. Recently, inspired by [13] and with the same properties as (2),
a similar regularisation has been proposed for the inviscid Burgers equation in [23] and
for general scalar conservation laws in [22], where solutions exist globally (in time) in H1,
those solutions converging to solutions of the classical equation when ε→ 0 at least for a
short time [22, 23]. The regularised Saint-Venant system (2) has been also generalised for
shallow water equations with uneven bottom [14].

The classical Saint-Venant system (letting ε → 0 in (2)) is, formally, a special case of
the barotropic Euler system (1) such that ρ ≡ h and P (ρ) ≡ gh2/2 (i.e., isentropic Euler
equation with γ = 2, see Appendix A). The aim of this paper is to generalise the system
(2) to regularise the barotropic Euler system (1) as in [13], that is preserving the same
properties. In Section 3 below, modifying the Lagrangian of (1), we obtain the regularised
barotropic Euler (rbE) system

ρt + [ ρ u ]x = 0, (3a)

[ ρ u ]t +
[
ρ u2 + ρV ′ − V + εR

]
x

= 0, (3b)

R
def
=
(
ρ2A ′)′ u 2

x − 2 ρA ′ [ut + uux + $x ]x + (ρV ′′/A ′)
′
A 2
x , (3c)

where primes denote derivatives with respect to ρ, V ′′(ρ) = P ′(ρ)/ρ and A is a smooth
increasing function of ρ. We show in this paper that the system (3) is non-dispersive,
non-diffusive, it has a Hamiltonian structure, it has the same shock speed as (1) and, for
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all A smooth increasing function of ρ, smooth solutions of (3) conserve an H1-like energy.
A study of steady solutions of rbE has been also done, which covers the traveling waves
due to the Galilean invariance of rbE.

Introducing the linear Sturm–Liouville operator

Lρ
def
= ρ − 2 ε ∂x ρA ′ ∂x, (4)

and applying L−1
ρ on (3b) (the invertibility of Lρ is insured by Lemma 3 below), the system

(3) becomes

ρt + [ ρ u ]x = 0, (5a)

ut + uux + Px/ρ = − εL−1
ρ ∂x

{(
ρ2A ′)′ u 2

x + (ρV ′′/A ′)
′
A ′2 ρ 2

x

}
. (5b)

The reason of applying L−1
ρ is to remove the derivative with respect to t and the high-order

derivatives with respect to x appearing in (3c). The form (5) is then more convenient to
obtain the local well-posedness of rbE. Following [1, 2, 27, 36, 39], we prove that if the
initial data is an Hs perturbation of a constant state (with s > 2, and ρ > ρ∗ > 0), then
(5) is locally well-posed. The same proof is used to prove the local existence of periodic
solutions of the generalised two-component Hunter–Saxton system

ρt + [ ρ u ]x = 0, (6a)

ut + uux + Px/ρ = ∂−1
x

{(
1 +

ρA ′′

2 A ′

)
u 2
x +

(
(ρV ′′)′

2 ρ
− V ′′A ′′

2 A ′

)
ρ 2
x

}
, (6b)

that can be obtained by formally taking ε→∞ in (5).
This paper is divided on two parts. A first part (sections 2, 3) presents the physical

motivations of the regularised barotropic Euler system and its properties. A second part
(sections 4, 5) consist on mathematical proofs for existence results. Shortly speaking, the
first part is more physical and the second one is more mathematical. More specifically, the
content of the paper is organised as follows. In Section 2, we recall some classical properties
of the barotropic Euler system (1). Section 3 is devoted to derive the regularised system
(3), study its properties and steady motions. In Section 4, we prove the local well-posedness
and a blow-up criteria of (5). In Section 5, the generalised Hunter–Saxton system (6) is
introduced, and a well-posedness theorem is given. A special choice of the regularising
function A , with some interesting properties, is briefly discussed in Section 6.

2. Equations for barotropic perfect fluids

Let us recall the conservation of mass and momentum for perfect fluids in Eulerian
description of motion

ρt + [ ρ u ]x = 0, (7a)

ut + uux + Px/ρ = 0. (7b)

Note that (conservative) body forces, if present, are incorporated into the definition of
the pressure P . In the special case of barotropic motions [46] — i.e., when ρ = ρ(P ) or
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P = P (ρ) — it is convenient to introduce the so-called specific enthalpy [18, §3.3] $ such
that

$ =

∫
dP

ρ(P )
=

∫
dP (ρ)

dρ

dρ

ρ
⇒ ρ d$ = dP, ∂x$ =

∂xP

ρ
. (8)

$ being an antiderivative of 1/ρ(P ), it is defined modulo an additional arbitrary integration
constant, so the value of $ can be freely chosen on a given isobaric surface P = constant
(thus providing gauge condition for the specific enthalpy). The relation (8) can also be
written in the reciprocal form P ($) =

∫
ρ($) d$, thence P is a known function of $ and,

obviously, P = ρ$ if the density is constant. The speed of sound cs is defined by

cs
def
= [ dρ/dP ]−

1
2 =

[
ρ−1 dρ/d$

]− 1
2 . (9)

From this definition we have ρ d$ = c 2
s dρ, thence with the mass conservation (7a)

Dt$ = ρ−1 c 2
s Dt ρ = −c 2

s ux, (10)

where Dt
def
= ∂t + u∂x is the temporal derivative following the motion. The relation (10) is

of special interest when cs is constant. Many equations of state for compressible fluids can
be found in the literature [49]. Isentropic motions are of special interest so their equation
of state is given in Appendix A.

2.1. Cauchy–Lagrange equation. For barotropic fluids, the momentum equation (7b)
becomes

ut + uux + $x = 0, (11)

and introducing a velocity potential φ such that u = φx, the equation (11) is integrated
into a Cauchy–Lagrange equation

φt + 1
2
φ 2
x + $ = K(t) ≡ 0, (12)

where K(t) is an integration constant that can be set to zero without loose of generality
(gauge condition for the velocity potential).

2.2. Conservation laws. For regular solutions, secondary conservation laws can be de-
rived from (7), e.g.,

[ρu]t +
[
ρu2 + ρV ′ − V

]
x

= 0, (13)

[u]t +
[

1
2
u2 + V ′

]
x

= 0, (14)[
1
2
ρu2 + V

]
t

+
[(

1
2
ρu2 + ρV ′

)
u
]
x

= 0, (15)[
1
6
ρu3 + V u

]
t

+
[

1
2

(
1
3
ρu2 + ρV ′ + V

)
u2 + W1

]
x

= 0, (16)[
1
24
ρu4 + 1

2
V u2 + W3

]
t

+
[

1
3

(
1
8
ρu2 + 1

2
ρV ′ + V

)
u3 + W2u

]
x

= 0, (17)

where

V
def
=

∫
$ dρ, W1

def
=

∫
V V ′′ dρ, W2

def
= ρ

∫
V V ′′

ρ
dρ, W3

def
=

∫
W2

ρ
dρ.
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Actually, since the barotropic Euler system is a 2×2 strictly hyperbolic system, an infinite
number of conservation laws can be derived [17, 32].

2.3. Jump conditions. The Euler equations admit weak solutions. For discontinuous ρ
and u, the Rankine–Hugoniot conditions for the mass and momentum conservation are

(u − ṡ) J ρ K + ρ Ju K = 0, (u − ṡ) Ju K + $′ J ρ K = 0, (18)

where $′ = d$/dρ, ṡ
def
= ds/dt is the speed of the shock located at x = s(t) and JfK def

=
f(x=s+)− f(x=s−) denotes the jump across the shock for any function f . The Rankine–
Hugoniot conditions (18) yield at once the shock speed

ṡ(t) = u ±
√
ρ$′ at x = s(t). (19)

A goal of the present work is to derive a regularisation of the Euler equation that preserves
exactly this shock speed.

2.4. Variational formulations. An interesting feature of the equations above is that
they can be derived from a variational principle. Indeed, the (so-called action) functional

S =
∫ t2
t1

∫ x2
x1

L dx dt with the Lagrangian density

L
def
= ρ φt + 1

2
ρ φ 2

x + V (ρ), (20)

where V is the density of potential energy defined by

V (ρ)
def
=

∫
$(ρ) dρ, (21)

provided that an equation of state $(ρ) (such as (148) given in Appendix A), is substituted
into the right-hand side of (21). Since $(ρ̄) = 0 with (148) (ρ̄ a constant state of reference),
V is such that V ′(ρ̄) = 0. Note that V can also be kept explicitly into the Lagrangian if
the equation of stated is added via a Lagrange multiplier λ, i.e., considering the Lagrangian
density

L ′ def
= L +

{
V (ρ)−

∫
$(ρ) dρ

}
λ. (22)

This is of no interest here, however, so we do not consider this generalisation, for simplicity.
The Euler–Lagrange equations for the Lagrangian density (20) yield

δφ : 0 = ρt + [ ρ φx ]x , (23)

δρ : 0 = φt + 1
2
φ 2
x + V ′(ρ), (24)

so the equations of motion (7a) and (12) are recovered.
An alternative variational formulation is obtained from the Hamilton principle yielding

the Lagrangian density

L0
def
= 1

2
ρ u2 − V (ρ) + { ρt + [ ρ u ]x }φ, (25)
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that is the kinetic minus potential energies plus a constraint enforcing the mass conserva-
tion. The Euler–Lagrange equations for (25) yield

δφ : 0 = ρt + [ ρ u ]x , (26)

δu : 0 = u − φx, (27)

δρ : 0 = 1
2
u2 − V ′(ρ) − φt − uφx, (28)

and, substituting $ for V ′, the barotropic equations (7a) and (11) are recovered.
The two variational principles above differ by boundary terms only, i.e.,

L + L0 = [ ρ φ ]t + [ ρ uφ ]x + 1
2
ρ (u − φx )2 , (29)

so the right-hand side yields only boundary terms since u = φx. As advocated by Clamond
and Dutykh [12], the variational Hamilton principle is more useful for practical applications;
this point is illustrated in the section 3 below.

3. Regularised barotropic flows

Here, we seek for a regularisation of the barotropic Euler equations. We give some
heuristic arguments for the derivation of such models.

3.1. Modified Lagrangian. Following the regularisation of Clamond and Dutykh [13] for
the Saint-Venant shallow water equations, we seek for a regularisation of the barotropic
Euler equation modifying the Lagrangian density as

L ε
def
= L0 + εA (ρ) [ut + uux ]x + εB(ρ) [ V ′′(ρ) ρx ]x , (30)

where ε > 0 is a real parameter at our disposal and A and B are functions of ρ to be
chosen later with suitable properties.

Note that we could also seek for modifications separating ut and uux in the additional
terms — i.e., replacing εA (ρ) [ut + uux]x by εA (ρ)uxt + εC (ρ) [uux]x — but that would
break the Galilean invariance. So, C = A is the only physically admissible possibilities.

Exploiting the relations

A (ρ) [ut + uux ]x = [ A (ρ)ux ]t + [ A (ρ)uux ]x + A ′(ρ) ρ u 2
x , (31)

B(ρ) [ V ′′(ρ) ρx ]x = [ B(ρ) V ′′(ρ) ρx ]x − B′(ρ) V ′′(ρ) ρ 2
x , (32)

we derive the equivalent simplified Lagrangian density

Lε
def
= 1

2
ρ u2 + εA ′ ρ u 2

x − V − εB′V ′′ ρ 2
x + { ρt + [ ρ u ]x }φ. (33)

The functionals given by Lε and L ε differing only by boundary terms (i.e., Lε −L ε =
[· · · ]t + [· · · ]x), they yield the same equations of motion.

From (33), the regularised kinetic and potential energy densities, respectively Kε and
Vε, are

Kε
def
= 1

2
ρ u2 + εA ′ ρ u 2

x , Vε
def
= V + εB′ V ′′ ρ 2

x . (34)

The total energy is then

Hε
def
= 1

2
ρ u2 + εA ′ ρ u 2

x + V + εB′ V ′′ ρ 2
x . (35)
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Note that these energies are positive for all ε > 0 if A ,B and V ′ are increasing functions
of ρ.

3.2. Linearised equations. Here, we consider small perturbations around the rest state
ρ = ρ̄, u = 0 and φ = 0, ρ̄ being a positive constant. Introducing ρ = ρ̄ + ρ̃, u ≈ ũ,

φ ≈ φ̃, and f0
def
= f(ρ̄) for any function f , the tilde quantities being assumed small, an

approximation of Lε up to the second-order is

L̃ε = 1
2
ρ̄ ũ2 + εA ′

0 ρ̄ ũ
2
x − V0 − 1

2
V ′′0 ρ̃2 − εB′0V

′′
0 ρ̃ 2

x + (ρ̃t + ρ̄ũx) φ̃. (36)

The Euler–Lagrange (linear) equations for this approximate Lagrangian are

δφ̃ : 0 = ρ̃t + ρ̄ ũx, (37)

δũ : 0 = ũ − 2 εA ′
0 ũxx − φ̃x, (38)

δρ̃ : 0 = V ′′0 ρ̃ − 2 εB′0V
′′

0 ρ̃xx + φ̃t. (39)

Looking for traveling waves of the form ρ̃ = R cos(kx − ωt), ũ = U cos(kx − ωt) and

φ̃ = Φ sin(kx− ωt), the equations (37)–(39) yield Φ = (1 + 2εk2A ′
0)U/k, U = ωR/kρ̄ and

the dispersion relation

ω2

k2
= ρ̄V ′′0

1 + 2 ε k2 B′0
1 + 2 ε k2 A ′

0

. (40)

If ε = 0 the wave is dispersionless, i.e., the phase velocity c
def
= ω/k is independent of the

wave number k. If ε > 0, the wave is dispersionless if B′0 = A ′
0 . This condition should be

satisfied for all ρ̄ and for all possible (barotropic) equation of state. Thus, we should take

B(ρ) = A (ρ). (41)

Hereafter, we consider only the special case (41) because we are only interested by non-
dispersive regularisations of the barotropic Euler equations.

3.3. Equations of motion. With (41), the Euler–Lagrange equations for the Lagrangian
density (33) yield

δφ : 0 = ρt + [ ρ u ]x , (42)

δu : 0 = ρ u − 2 ε [ A ′ ρ ux ]x − ρ φx, (43)

δρ : 0 = 1
2
u2 + ε (A ′ + A ′′ρ)u 2

x − V ′ + ε (A ′′V ′′ + A ′V ′′′) ρ 2
x

+ 2 εA ′ V ′′ ρxx − φt − uφx, (44)

thence

φx = u − 2 ε ρ−1 [ A ′ ρ ux ]x , (45)

φt = −1
2
u2 + ε (A ′ + A ′′ρ)u 2

x − V ′ + ε (A ′′V ′′ + A ′V ′′′) ρ 2
x

+ 2 εA ′ V ′′ ρxx + 2 ε u ρ−1 [ A ′ ρ ux ]x . (46)
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Eliminating φ between these last two relations one obtains

0 = ∂t
{
u − 2 ε ρ−1 [ A ′ ρ ux ]x

}
+ ∂x

{
1
2
u2 + V ′ − 2 εA ′ V ′′ ρxx

− ε (A ′ + A ′′ρ)u 2
x − ε (A ′′V ′′ + A ′V ′′′) ρ 2

x − 2 ε u ρ−1 [ A ′ ρ ux ]x
}
. (47)

The equations (42) and (47) form the regularised Euler equations for barotropic motions
studied in the present paper.

3.4. Secondary equations. From the regularised barotropic Euler (rbE) equations (42)
and (47), several secondary equations can be derived; in particular:

ut + uux + $x + ε ρ−1 Rx = 0, (48)

[ ρ u ]t +
[
ρ u2 + ρV ′ − V + εR

]
x

= 0, (49)

mt +
[
um + ρV ′ − V − ε

(
ρ2A ′)′ u 2

x − 2 ε ρA ′$xx + ε (ρV ′′/A ′)
′
A 2
x

]
x

= 0, (50)[
1
2
ρ u2 + ε ρA ′ u 2

x + V + εA ′ V ′′ ρ 2
x

]
t

+[(
1
2
ρ u2 + ρV ′ + ε ρA ′ u 2

x + εA ′ V ′′ ρ 2
x + εR

)
u + 2 ε ρA ′ V ′′ ρx ux

]
x

= 0, (51)

where

R
def
=
(
ρ2A ′)′ u 2

x − 2 ρA ′ [ut + uux + $x ]x + (ρV ′′/A ′)
′
A 2
x , (52)

m
def
= ρ u − 2 ε [ ρA ′ ux ]x . (53)

Introducing the linear Sturm–Liouville operator Lρ
def
= ρ− 2ε∂xρA ′∂x, the equation (48)

multiplied by ρ becomes

Lρ{ut + uux + $x } + ε
[ (
ρ2A ′)′ u 2

x + (ρV ′′/A ′)
′
A 2
x

]
x

= 0, (54)

or, inverting the operator,

ut + uux + $x = − εGρ∂x
{(

ρ2A ′)′ u 2
x + (ρV ′′/A ′)

′
A 2
x

}
, (55)

where Gρ = L−1
ρ . The operator Gρ∂x acting on high frequencies like a first-order anti-

derivative, it has a smoothing effect. However, this equation is in a non-conservative
form. A conservative variant is obtained multiplying (55) by ρ and exploiting the mass
conservation, hence

[ ρ u ]t +
[
ρ u2 + ρV ′ − V + ε Jρ

{(
ρ2A ′)′ u 2

x + (ρV ′′/A ′)
′
A 2
x

}]
x

= 0, (56)

with the operator

Jρ
def
= ∂−1

x ρGρ ∂x = ∂−1
x ρ

[
1 − 2 ε ρ−1 ∂x ρA ′ ∂x

]−1
ρ−1 ∂x

=
[

1 − 2 ε ρA ′ ∂x ρ
−1 ∂x

]−1
= 1 + 2 ε ρA ′ ∂x Gρ ∂x. (57)
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Comparing (56) with (49), one obtains at once an alternative expression for the regularising
term

R = Jρ

{(
ρ2A ′)′ u 2

x + (ρV ′′/A ′)
′
A 2
x

}
. (58)

While the definition (52) of R involves second-order spacial derivatives, the alternative
form (58) shows actually that R behaves at high frequencies somehow like zeroth-order
derivatives. Moreover, since the relations (52) and (58) are identical, we obtain yet another
form of the momentum equation

2 ρA ′ [ut + uux + $x ]x + (Jρ − I)
{(

ρ2A ′)′ u 2
x + (ρV ′′/A ′)

′
A 2
x

}
= 0, (59)

where I is the identity operator. Note that applying the operator ∂−1
x (2ρA ′)−1, the equa-

tion (59) can be rewritten

ut + uux + $x + ∂−1
x (2 ρA ′)−1

(
I− J−1

ρ

)
{R} = 0, (60)

and with

I − J−1
ρ = I − ∂−1

x ρ
[

1 − 2 ε ρ−1 ∂x ρA ′ ∂x
]
ρ−1 ∂x = 2 ε ρA ′ ∂x ρ

−1 ∂x, (61)

one gets the equation (48), as it should be.

3.5. Rankine–Hugoniot conditions. Here, we assume that ρx and ux are both contin-
uous if ε > 0 and that discontinuities (if any) occur only in ρxx and uxx. Differentiating
twice with respect of x the mass conservation (42), the jump condition of the resulting
equation is

(u − ṡ) J ρxx K + ρ Juxx K = 0, (62)

while the jump condition for (47) is (provided that ε and A ′ are not zero)

(u − ṡ) Juxx K + V ′′ J ρxx K = 0. (63)

Thus, the speed of the regularised shock is identical to the original one, whatever the
function A ′ 6= 0 is. Therefore, a suitable choice for the function A cannot be determined
by this consideration.

3.6. Hamiltonian formulation. Introducing the momentum m
def
= ρu− 2ε [ρA ′ux]x and

the Hamiltonian functional density

Hε(ρ,m)
def
= 1

2
mGρ{m} + V + εA ′ V ′′ ρ 2

x , (64)

we have

Em{Hε} = Gρ{m} = u, (65)

Eρ{Hε} = V ′ − ε (A ′V ′′)
′
ρ 2
x − 2 εA ′V ′′ ρxx − 1

2
u2 − ε (ρA ′)

′
u 2
x , (66)

where Em and Eρ are the Euler–Lagrange operators with respect of m and ρ. The rbE
equations have then the Hamiltonian structure

∂t

(
ρ

m

)
= − J ·

(
Eρ{Hε}
Em{Hε}

)
, J def

=

[
0 ∂x ρ
ρ ∂x m∂x + ∂xm

]
, (67)
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yielding the equations (42) and (50). It should be noted that J being skew-symmetric and
satisfying the Jacobi identity [43], it is a proper Hamiltonian (Lie–Poisson) operator.

3.7. Steady motions. We seek here for solutions independent of the time t, i.e., we look
for travelling waves of permanent form observed in the frame of reference moving with
the wave (note that the rbE equations are Galilean invariant). For such flows, the mass
conversation yields

u = I / ρ, (68)

where I is an integration constant (the mean impulse). From the relations (49) and (51),
the mean (constant) momentum and energy fluxes are respectively

S = ρ u2 + ρV ′ − V + εR, (69)

F =
(

1
2
ρ u2 + ρV ′ + ε ρA ′ u 2

x + εA ′ V ′′ ρ 2
x + εR

)
u + 2 ε ρA ′ V ′′ ρx ux, (70)

thence — eliminating R and using (68) — the ordinary differential equation

2 εA ′

ρ2

(
d ρ

dx

)2

=
I2 − 2S ρ + 2 (F/I) ρ2 − 2 ρV

I2 − ρ3 V ′′
. (71)

Considering equilibrium states in the far field — i.e., ρ→ ρ± and u→ u± as x→ ±∞,
ρ± and u± being constants — we have R → 0 and the fluxes in the far field are

I±
def
= ρ± u±, S±

def
= ρ± u

2
± + ρ± V ′± − V±, F±

def
= 1

2
ρ± u

3
± + ρ± V ′± u±. (72)

For regular solutions, the fluxes of mass, momentum and energy are constants, so I+ =
I− = I, S+ = S− = S and F+ = F− = F . For weak solutions, however, we assume that
only the mass and momentum are conserved (i.e., I+ = I− = I and S+ = S− = S), some
energy being lost at the singularity (shock) so F+ 6= F−.

It should be noted that A does not appear in the relations (72). The role of A is to
control the singularity at the shock. So, a priori, a local analysis of a shock is necessary
to obtain further informations on A .

3.8. Local analysis of steady solution. Let assume that we have a (weak) steady solu-
tion with far field conditions (72) and with, possibly, only one singularity at x = 0 where
the density is assumed on the form

ρ = ρ̄ + %± |x|α + o(|x|α) , (73)

where α > 0 is a constant to be found. The plus and minus subscripts in % denote x > 0

and x < 0, respectively. With f0
def
= f(ρ̄) for any function f , the constant mass flux (68)

yields

u =
I

ρ̄

(
1 − %±

ρ̄
|x|α

)
+ o(|x|α) , (74)

thence

R = 2α (α− 1) %± ρ̄
−2 A ′

0

(
I2 − ρ̄ 3 V ′′0

)
|x|α−2 + o

(
|x|α−2

)
, (75)
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and the ODE (71) yields

2εA ′
0α

2% 2
±

ρ̄ 2
|x|2α−2 + o

(
|x|2α−2

)
=

I2 − 2Sρ̄ + 2(F±/I)ρ̄ 2 − 2ρ̄V0 + O(|x|α)

I2 − ρ̄ 3V ′′0 − (3ρ̄2V ′′0 + ρ̄3V ′′′0 ) %± |x|α + o(|x|α)
. (76)

From (75) there are three (necessary) possibilities to obtain admissible solutions: α = 1 or
α > 1 or I2 = ρ̄ 3V ′′0 .

If I2 6= ρ̄ 3V ′′0 , the expansions (73) and (74) substituted into (69) and (70) show that
S and F cannot be constant. Therefore, there are no solutions behaving like (73) if
I2 6= ρ̄ 3V ′′0 .

If I2 = ρ̄ 3V ′′0 , the equation (76) implies that α = 2/3 if V0 6= I2/2ρ̄− S + (F±/I)ρ̄ and
α = 1 if V0 = I2/2ρ̄ − S + (F±/I)ρ̄. The latter case does not yield constant S and F , so
it must be rejected. Finally, the only possibility is α = 2/3 and (76) gives

8 εA ′
0 %

2
±

9 ρ̄ 3
= −I

2 − 2S ρ̄ + 2 (F±/I) ρ̄ 2 − 2 ρ̄V0

3 I2 + ρ̄ 4 V ′′′0

. (77)

In summary, the local analysis does not gives hints for a suitable choice of A . However,
as in [44], we found the interesting feature that stationary weak solutions have universal
singularities as |x|2/3, whatever the potential V is and for all possible regularising functions
A . Note that the analysis above does not rule out the possibility of different type of
singularities such as |x|α(log|x|)β.

4. Local well-posedness of the regularised barotropic Euler system

The aim of this section is to prove the local well-posedness of the regularised barotropic
Euler system introduced in Section 3.

Let P = P (ρ) denotes the pressure, and let ρ = ρ̃ + ρ̄, where ρ̄ is a positive constant.
Let also

$(ρ)
def
=

∫ ρ

ρ̄

P ′(α)

α
dα, V

def
=

∫ ρ

ρ̄

$(α) dα, (78)

where the prime denotes the derivative with respect to ρ.

Recalling the operator Lρ
def
= ρ− 2ε∂xρA ′∂x and the system (42), (55)

ρt + [ ρ u ]x = 0, (79)

ut + uux + $x = − εL−1
ρ ∂x

{(
ρ2A ′)′ u 2

x + (ρV ′′/A ′)
′
A ′2 ρ 2

x

}
, (80)

where smooth solutions of (79), (80) satisfy the energy equation (51) with R is defined in
(58). The goal of this section is to prove the following theorem

Theorem 1. Let m̃ > s > 2, m̃ be an integer, P,A ∈ Cm̃+4(]0,+∞[) such that P ′(ρ) > 0,
A ′(ρ) > 0 for ρ > 0. Let also W0 = (ρ̃0, u0)> ∈ Hs satisfying infx∈R ρ0(x) > ρ∗, then
there exist T > 0 and a unique solution W ∈ C([0, T ], Hs)∩C1([0, T ], Hs−1) of (79), (80)
satisfying the non-emptiness condition infx∈R ρ(t, x) > 0, and the conservation of the
energy

d

dt

∫
R

(
1
2
ρ u2 + ε ρA ′ u 2

x + V + εA ′ V ′′ ρ 2
x

)
dx = 0. (81)



12 GELMAME ET AL.

Moreover, if the maximal existence time Tmax < +∞, then

lim
t→Tmax

‖Wx‖L∞ = +∞. (82)

Remark 1. The solution given in the previous theorem depends continuously on the initial
data in the sense: If W0, W̃0 ∈ Hs, such that ρ0, ρ̃0 > ρ∗, then there exists a constant
C(‖W̃‖L∞([0,T ],Hs), ‖W‖L∞([0,T ],Hs)) > 0, such that

‖W − W̃‖L∞([0,T ],Hs−1) 6 C ‖W0 − W̃0‖Hs . (83)

Remark 2. Theorem 1 holds also for periodic domains.

Remark 3. Note that if ρ ∈ [ρinf , ρsup] ⊂]0,+∞[, then 0 < α 6 P ′(ρ)/ρ 6 β < +∞.
This implies with the definition (78) that α(ρ− ρ̄)2 6 V 6 β(ρ− ρ̄)2. Then, the conserved
energy (81) is equivalent to the H1 norm of (ρ̃, u).

4.1. Preliminary results. Let Λ be defined such that Λ̂f = (1+ξ2)
1
2 f̂ . In order to prove

Theorem 1, we recall the classical lemmas.

Lemma 1. ([29]) Let [A,B]
def
= AB−BA be the commutator of the operators A and B. If

r > 0, then

‖f g‖Hr . ‖f‖L∞ ‖g‖Hr + ‖f‖Hr ‖g‖L∞ , (84)

‖[Λr, f ] g‖L2 . ‖fx‖L∞ ‖g‖Hr−1 + ‖f‖Hr ‖g‖L∞ . (85)

Lemma 2. ([15]) Let F ∈ Cm̃+2(R) with F (0) = 0 and 0 6 s 6 m̃, then there exists a
continuous function F̃ , such that for all f ∈ Hs ∩W 1,∞ we have

‖F (f)‖Hs 6 F̃ (‖f‖W 1,∞) ‖f‖Hs . (86)

In the following lemma, we prove the invertibility of the operator Lρ (4) and we obtain
some estimates satisfied by L−1

ρ .

Lemma 3. Let 0 < ρinf 6 ρ ∈ W 1,∞ and A ∈ C2(]0,+∞[) satisfying A ′ > 0, then the
operator Lρ is an isomorphism from H2 to L2 and

(1) If 0 6 s 6 m̃ ∈ N and A ∈ Cm̃+3(]0,+∞[), then∥∥L−1
ρ ∂x ψ

∥∥
Hs+1 . ‖ψ‖Hs + ‖ρ − ρ̄‖Hs

∥∥L−1
ρ ∂x ψ

∥∥
W 1,∞ , (87a)∥∥L−1

ρ φ
∥∥
Hs+1 . ‖φ‖Hs + ‖ρ − ρ̄‖Hs

∥∥L−1
ρ φ

∥∥
W 1,∞ . (87b)

(2) If 0 6 s 6 m̃ ∈ N and A ∈ Cm̃+3(]0,+∞[), then∥∥L−1
ρ ∂x ψ

∥∥
Hs+1 . ‖ψ‖Hs (1 + ‖ρ − ρ̄‖Hs) , (88a)∥∥L−1

ρ φ
∥∥
Hs+1 . ‖φ‖Hs (1 + ‖ρ − ρ̄‖Hs) , (88b)

(3) If φ ∈ Clim
def
= {f ∈ C, f(±∞) ∈ R}, then L−1

ρ φ is well defined and∥∥L−1
ρ φ

∥∥
W 2,∞ . ‖φ‖L∞ . (89)
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(4) If ψ ∈ Clim ∩ L1, then∥∥L−1
ρ ∂xψ

∥∥
W 1,∞ . ‖ψ‖L∞ + ‖ψ‖L1 . (90)

All the constants depend on s, ε, ρinf , ‖ρ− ρ̄‖W 1,∞ and not on ‖ρ− ρ̄‖Hs.

The previous lemma is proven in [36] for the special case A (ρ) = ρ3/6. Here, the same
proof is followed

Proof. Step 0: In the first step, we prove, using the Lax–Milgram theorem, that Lρ is an
isomorphism from H2 to L2, let the bi-linear function a from H1 ×H1 to R such that

a(u, v)
def
= (ρ u, v) + 2 ε (ρA ′ ux, vx) .

Using that ρ is bounded and far from zero, one can easily show that the function a is
continuous and coercive, then Lax–Milgram theorem shows that there exists a continuous
bijection J between H1 and H−1, such that for all u, v ∈ H1 we have

a(u, v) = (Ju, v)H−1×H1 .

If Ju ∈ L2, and integration by parts shows that 2ε (ρA ′ux)x = ρu− Ju ∈ L2 and J = Lρ,
this implies that u ∈ H2 which finishes the proof that Lρ is an isomorphism from H2 to
L2.
Step 1: Let Lρu = φ+ ψx, then

‖u‖2
H1 = (u, u) + (ux, ux)

. (ρ u, u) + 2 ε (ρA ′ ux, ux)

= (Lρu, u) = (φ, u) − (ψ, ux)

. ‖u‖H1 (‖φ‖L2 + ‖ψ‖L2) ,

which implies that
‖u‖H1 . ‖φ‖L2 + ‖ψ‖L2 . (91)

Using the Young inequality ab 6 1
2α
a2 + α

2
b2 with α > 0 we obtain

‖ux‖2
H1 = (ux, ux) + (uxx, uxx)

. (ρ ux, ux) + 2 ε (ρA ′ uxx, uxx)

= −(ρ u, uxx) − (ρx u, ux) + 2 ε ((ρA ′ux)x − (ρA ′)xux, uxx)

= −(Lρ u, uxx) − (ρx u, ux) − 2 ε ((ρA ′)xux, uxx)

. α ‖uxx‖2
L2 + 1

α

(
‖Lρ u‖2

L2 + ‖ux‖2
L2

)
+ ‖u‖2

H1 .

Taking α > 0 small enough we obtain that

‖ux‖2
H1 . ‖Lρ u‖2

L2 + ‖u‖2
H1 .

then
‖ux‖H1 . ‖Lρ u‖L2 + ‖u‖H1 .

Taking φ = 0 (respectively ψ = 0) and using (91), we obtain∥∥L−1
ρ ∂x ψ

∥∥
H1 . ‖ψ‖H1

∥∥L−1
ρ φ

∥∥
Hs+1 . ‖φ‖L2 .
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An interpolation with (91) implies that∥∥L−1
ρ ∂x ψ

∥∥
Hs+1 . ‖ψ‖Hs ,

∥∥L−1
ρ φ

∥∥
Hs+1 . ‖φ‖Hs ∀s ∈ [0, 1]. (92)

Let now s > 0, and let Lρu = φ+ ψx, we then have

Lρ Λsu = [ρ,Λs]u + Λsφ + ∂x {− 2 ε [ρA ′,Λs]ux + Λsψ} .

Defining ũ = Λsu, φ̃ = [ρ,Λs]u+ Λsφ and ψ̃ = −2ε[ρA ′,Λs]ux + Λsψ and using (91), (85),
(86) we obtain

‖Λsu‖H1 . ‖[ρ,Λs]u‖L2 + ‖[ρA ′,Λs]ux‖L2 + ‖φ‖Hs + ‖ψ‖Hs

. ‖Λs−1u‖H1 + ‖ρ − ρ̄‖Hs ‖u‖W 1,∞ + ‖φ‖Hs + ‖ψ‖Hs .

Then, by induction (on s) and using (92) one obtains that (87) holds for all s > 0.
Step 2: If s 6 1, then (88) follows directly from (92). If s > 1, using the embedding
H1 ↪→ L∞, (87) and (92) for s = 1 we obtain (88).

Step 3: Let C0
def
= {f ∈ C, f(±∞) = 0}, using that L2 ∩C0 is dense in C0 one can define

L−1
ρ on C0. If φ is in Clim, we use the change of functions (see Lemma 4.4 in [36])

φ0(x)
def
= φ(x) − 1

ρ̄
Lρ

(
φ(−∞) + (φ(+∞) − φ(−∞))

ex

1 + ex

)
∈ C0,

the operator L−1
ρ can be defined as

L−1
ρ φ

def
= L−1

ρ φ0 + 1
ρ̄

(
φ(−∞) + (φ(+∞) − φ(−∞))

ex

1 + ex

)
. (93)

In order order to prove (89), let φ = Lρu, using the variable

z
def
=

∫
dx

2 ρ(x) A ′(ρ(x))
, (94)

we obtain that

φ = ρ u − ε

2 ρA ′ uzz. (95)

The classical maximum principle equations implies that ‖u‖L∞ 6 ‖φ‖L∞/ρinf , which implies
with (95) that ‖uzz‖L∞ . ‖φ‖L∞ , then the Landau–Kolmogorov inequality (see Lemma 4.3
in [36] for example) implies that ‖uz‖L∞ . ‖φ‖L∞ . The last inequality with the change of
variables (94) imply that ‖ux‖L∞ . ‖φ‖L∞ , using that 2ερA ′uxx = ρu − 2ε(ρA ′)xux − φ
we obtain (89).
Step 4: Note that

Lρ

∫ x

−∞

ψ

ρA ′ dy = ρ

∫ x

−∞

ψ

ρA ′ dy − 2 ε ψx.
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Applying L−1
ρ and ∂x one obtains

2 εL−1
ρ ∂x ψ = L−1

ρ

(
ρ

∫ x

−∞

ψ

ρA ′ dy

)
−
∫ x

−∞

ψ

ρA ′ dy,

2 ε ∂xL
−1
ρ ∂x ψ = ∂xL

−1
ρ

(
ρ

∫ x

−∞

ψ

ρA ′ dy

)
− ψ

ρA ′ .

The last two inequalities with (89) imply (90). �

4.2. Iteration scheme and energy estimate. Defining W
def
= (ρ̃, u)> and

B(W )
def
=

(
u ρ
$′ u

)
, F (W )

def
=

(
0

− εL−1
ρ ∂x

{
(ρ2A ′)

′
u 2
x + (ρV ′′/A ′)′ A ′2 ρ 2

x

}) ,
the system (79), (80) becomes

Wt + B(W )Wx = F (W ), W (0, x) = W0(x). (96)

The proof of the local existence of (96) is based on solving the linear hyperbolic system

∂tW
n+1 + B(W n) ∂xW

n+1 = F (W n), W n(0, x) = (ρ̃0(x), u0(x))>, (97)

for all n > 0, where W 0(t, x) = (ρ̃0(x), u0(x))>. Then, uniform (on n) estimates of an
energy that is equivalent to the Hs norm will be given. Taking the limit n→∞, we obtain
a solution of (96). Since $′ > 0, the system (97) is hyperbolic; which is an important
point to solve each iteration in (97).

For the sake of simplicity, let be W = W n (known on every step of the iteration) and
let W = W n+1 be the solution of the linear system

Wt + B(W ) ∂xWx = F (W ), W (0, x) = (ρ̃0(x), u0(x))>. (98)

Note that a symmetriser of B = B(W ) is

A = A(W )
def
=

(
$′ 0
0 ρ

)
. (99)

Let the energy of (98) be defined as

E(W )
def
= (ΛsW, AΛsW ) , (100)

where (·, ·) is the scalar product in L2. Since the matrix AB is symmetric, a helpful
feature for the energy estimates below, it justifies the use of A in the definition of the
energy E(W ). Note that if ρ is bounded and far from zero, then E(W ) is equivalent to
‖W‖2

Hs . In order to prove Theorem 1, the following energy estimate is needed.

Theorem 2. Let W = (ρ̃, u)>, ρ = ρ̃ + ρ̃, s > 2 and ρ∗, R > 0 then there exist K,T > 0
such that: if the initial data (ρ̃0, u0) ∈ Hs satisfy

inf
x∈R

ρ0(x) > ρ∗, E(W0) < R, (101)

and W ∈ C([0, T ], Hs) ∩ C1([0, T ], Hs−1), satisfying for all t ∈ [0, T ]

ρ > ρ∗, ‖W t‖Hs−1 6 K, E(W ) 6 R, (102)
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then there exists a unique W ∈ C([0, T ], Hs)∩C1([0, T ], Hs−1) a solution of (98) such that

ρ > ρ∗, ‖Wt‖Hs−1 6 K, E(W ) 6 R. (103)

Proof. For the existence of W see Appendix A in [27]. Defining F
def
= F (W ) and using (98)

we obtain

E(W )t = 2 (ΛsWt, AΛsW ) + (ΛsW, At ΛsW )

= − 2 (ΛsBWx, AΛsW ) − 2 (ΛsF , AΛsW ) + (ΛsW, At ΛsW )

= − 2 ([Λs, B]Wx, AΛsW ) − 2 (B ΛsWx, AΛsW )

− 2 (ΛsF , AΛsW ) + (ΛsW, At ΛsW )

= : I + II + III + IV, (104)

Now, some bounds of the four terms will be given. Note that

−1
2
I = ([Λs, u] ρ̃x, $

′ Λsρ̃) +
(
[Λs, ρ]ux, $

′ Λsρ̃
)

+
(
[Λs, u]ux, ρΛsu

)
+
(
[Λs, $′] ρ̃x, ρΛsu

)
.

Using (85) and (86) we obtain

|([Λs, u] ρ̃x, $
′ Λsρ̃)| 6 ‖[Λs, u] ρ̃x‖L2 ‖$′ Λsρ̃‖L2

. (‖u‖L∞ ‖ρ̃x‖Hs−1 + ‖u‖Hs ‖ρ̃x‖L∞) ‖$′‖L∞ ‖Λsρ̃‖L2

. ‖W‖2
Hs . E(W ).

All the terms of I can be studied by the same way to obtain

|I| . E(W ). (105)

Using that A and AB are symmetric, an integration by parts yield to

|II| = |(ΛsW, (AB)x ΛsW )| 6 ‖AB)x‖L∞ ‖W‖Hs . ‖W‖Hs . E(W ). (106)

Using the Young inequality 2ab 6 a2 + b2 one obtains

|III| 6 ‖A‖L∞
(
‖F‖2

Hs + ‖W‖2
Hs

)
From the inequality (88) we have

‖F‖Hs .
∥∥∥(ρ2A ′)′ u 2

x +
(
ρV ′′/A ′)′ A ′2ρ 2

x

∥∥∥
Hs−1

,

which implies with (84) and (86) that ‖F‖Hs is bounded, then

|III| . E(W ) + 1. (107)

Note that
∥∥∥ρ̃

t

∥∥∥
L∞
6
∥∥∥ρ̃

t

∥∥∥
Hs−1

6 K, then

|IV | 6 ‖At‖L∞ ‖W‖2
Hs . K E(W ) (108)
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The system (98) implies

‖Wt‖Hs−1 = ‖B(W )Wx + F‖Hs−1

. ‖B(W )‖L∞ ‖Wx‖Hs−1 + ‖B(W )‖Hs−1 ‖Wx‖L∞ + ‖F‖Hs

. E(W ) + 1. (109)

All the constants hidden in “.” do not depend on K and W . Using (105), (106), (107)
and (108) we obtain that

∂tE(W ) 6 C (K + 1) [E(W ) + 1], (110)

which implies with Gronwall lemma that

E(W ) 6 [E(W0) + 1] eC (K+1) t − 1. (111)

Since E(W0) < R, choosing first K > 0 and then T > 0 such that

C (R + 1) 6 K, [E(W0) + 1] eC (K+1)T − 1 6 R (112)

we obtain with (109) and (111) that ‖Wt‖Hs−1 6 K and E(W ) 6 R. Since ‖ρt‖L∞ .
‖W‖Hs−1 6 K and ρ0 > ρ∗ then taking T small enough we have ρ > ρ∗. �

4.3. Proof of Theorem 1. Theorem 2 shows that if the initial data satisfy (101), then
the sequence (W n)n∈N exists, it is uniformly bounded in C([0, T ], Hs) ∩ C1([0, T ], Hs−1)
and satisfies ρn > ρ∗. Using classical arguments of Sobolev spaces one can prove that
there exists W ∈ C([0, T ], Hs) such that W n converges “up to a sub-sequence” to W in
C([0, T ], Hs′) for all s′ ∈ [0, s[. Before taking the limit n→∞ in (97), we will verify that
if W n converges, then W n+1 converges too and towards the same limit. For that purpose,
let

Ẽn def
=
(
Λs−1 (W n+1 − W n), An Λs−1 (W n+1 − W n)

)
, (113)

using estimates as in the proof of Theorem 2 (see also [39, 44] for more details) one can
prove that for T > 0 small enough, we obtain that Ẽn+1 6 Ẽn/2, which implies that
‖W n+1 −W n‖Hs−1 → 0. Taking n → ∞ in the weak formulation of (97), we obtain that
W is a weak solution of (96). Using that W ∈ C([0, T ], Hs) and (96) we deduce that W is
a strong solution and W ∈ C1([0, T ], Hs−1).

In order to prove the blow-up criteria (82), we suppose that ‖Wx‖L∞ is bounded and we
prove that ρ is far from zero and ‖W‖Hs is bounded on any bounded time interval [0, T ].
Using the characteristics

χ(0, x) = x, χt(t, x) = u(t, χ(t, x)),

the conservation of the mass (79) becomes

d

dt
ρ + uxρ = 0, =⇒ ρ0(x) e−t ‖ux‖L∞ 6 ρ(t, x) 6 ρ0(x) et ‖ux‖L∞ ,

which implies that ρ is bounded and far from zero. The conservation of the energy (81)
with the Sobolev embedding H1 ↪→ L∞ imply that ‖W‖L∞ is bounded.
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Now, we will use that ρ is far from zero and the boundness of ‖W‖W 1,∞ to prove that
‖W‖Hs is also bounded. As in the proof of Theorem 2, let

A(W )
def
=

(
$′ 0
0 ρ

)
, B(W )

def
=

(
u ρ
$′ u

)
, Ẽ(W )

def
= (ΛsW, AΛsW ) ,

F (W )
def
=

(
0

−εL−1
ρ ∂x

{
(ρ2A ′)

′
u 2
x + (ρV ′′/A ′)′ A ′2 ρ 2

x

}) ,
the system (79), (80) then becomes

Wt + B(W )Wx = F (W ). (114)

As in (104), we have

Ẽ(W )t = − 2 ([Λs, B]Wx, AΛsW ) − 2 (B ΛsWx, AΛsW )

− 2 (ΛsF, AΛsW ) + (ΛsW, At ΛsW )

= : I + II + III + IV. (115)

Note that

−1
2I =

(
[Λs, u] ρ̃x, $

′ ρ̃
)

+
(
[Λs, ρ− ρ̄]ux, $

′ ρ̃
)

+
(
[Λs, $′(ρ)−$(ρ̄)] ρ̃x, ρ u

)
+ ([Λs, u]ux, ρ u) .

Using (85) and (86) we have

|([Λs, u] ρ̃x, $
′ ρ̃)| . (‖ρ̃x‖Hs−1 + ‖u‖Hs) ‖ρ̃‖Hs ,

where the multiplicative constant depend on ‖W‖W 1,∞ . Doing the same for all the terms
we obtain that

|I| . ‖W‖2
Hs . Ẽ(W ). (116)

As in (106), we obtain

|II| . Ẽ(W ). (117)

To estimate III, we use (87) and (90) to obtain that

‖F‖Hs . ‖ψ‖Hs−1 + ‖ρ̃‖Hs−1 (‖ψ‖L∞ + ‖ψ‖L1) , (118)

where ψ = (ρ2A ′)
′
u 2
x + (ρV ′′/A ′)′ A ′2 ρ 2

x . Using (84), (86) one obtain that ‖ψ‖Hs−1 .
‖W‖Hs . Due to the conservation of the energy (81), the quantity ‖W‖H1 is bounded, then
‖ψ‖L1 is also bounded. Using that ‖W‖W 1,∞ is bounded, we obtain that ‖ψ‖L∞ is also
bounded. The inequality (118) then becomes

‖F‖Hs . ‖W‖Hs ,

which implies that
|III| . ‖W‖2

Hs . Ẽ(W ). (119)

The conservation of the mass (79) implies that ‖ρt‖L∞ = ‖(ρu)x‖L∞ which is bounded.
Then

|IV | . ‖W‖2
Hs . Ẽ(W ). (120)

The equations (116), (117), (119), (120) and (115) imply that

Ẽ(W )t . Ẽ(W ). (121)
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Gronwall’s lemma implies that Ẽ(W ) does not blow-up in finite time. This ends the proof
of the blow-up criteria (82). �

5. A generalised two-component Hunter–Saxton system

We have introduced the Sturm–Louville operator Lρ = ρ − 2ε∂xρA ′∂x and its inverse

Gρ = [1− 2ερ−1∂xρA ′∂x]
−1
ρ−1. At high frequencies, the operator ∂xGρ∂x obviously be-

haves like

∂x Gρ ∂x ∼ −1
2
ε−1 (ρA ′)−1. (122)

Thus, differentiating with respect of x the equation (55) and considering the high-frequency
approximation (122), the rbE equations become the system of equations

ρt + [ ρ u ]x = 0, (123)

[ut + uux + $x ]x =

(
1 +

ρA ′′

2 A ′

)
u 2
x +

(
(ρV ′′)′

2 ρ
− V ′′A ′′

2 A ′

)
ρ 2
x , (124)

that is a two-component generalisation of the Hunter–Saxton equation [25]. Smooth solu-
tions of (123), (124) satisfy the energy equation[

ρA ′ u2
x + A ′ V ′′ ρ2

x

]
t

+
[(
ρA ′ u2

x + A ′ V ′′ ρ2
x

)
u + 2 ρA ′ V ′′ ρx ux

]
x

= 0. (125)

There are several generalisations of the Hunter–Saxton equation in the literature, including
two-component generalisations. The generalisation (123)–(124) is apparently new and it
deserves to be studied since it is a simpler system than rbE, being somehow an asymptotic
approximation.

This generalised Hunter–Saxton (gHS) system of equations is to rbE what the Hunter–
Saxton equation [25] is to the dispersionless Camassa–Holm equation [10], i.e., a “high
frequency limit”. Since the Hunter–Saxton equation is integrable [26], it is of interest
to check if this property is shared with the gHS. It should be noted that equation (124)
corresponds to R = 0, as easily seen considering (52). From a physical viewpoint, the
Euler equations describe the “outer” part of a shock, while the gHS equations describe its
“inner” structure; the rbE equations being an unification of these two (outer and inner )
systems.

Integrating (124) with respect to x, we obtain

ρt + [ ρ u ]x = 0, (126)

ut + uux + $x = ∂−1
x

{(
1 +

ρA ′′

2 A ′

)
u 2
x +

(
(ρV ′′)′

2 ρ
− V ′′A ′′

2 A ′

)
ρ 2
x

}
+ g(t),

(127)

where (∂−1
x f)(x)

def
=
∫ x

0
f(y) dy and g(t) = ut(t, 0) + u(t, 0)ux(t, 0) +$′(ρ(t, 0))ρx(t, 0).

In the case $′ ≡ 0, the proof of local well-posedness of (126), (127) can be done by using
Kato’s theorem [28] as in [37, 38, 40, 50]. Following the proof of Theorem 1 and using the
inequality

‖∂−1
x f‖Hs+1([0,1]) . ‖f‖Hs([0,1]) ∀s > 0, (128)
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one can prove the following theorem

Theorem 3. Let m̃ > s > 2, P,A ∈ Cm̃+4(]0,+∞[) such that P ′(ρ) > 0, A ′(ρ) > 0 for
ρ > 0. Let also W0 ∈ Hs([0, 1]) be a periodic initial data satisfying infx∈[0,1] ρ0(x) > ρ∗ and
g ∈ C([0,+∞[), then there exist T > 0 and a unique periodic solution W ∈ C([0, T ], Hs)∩
C1([0, T ], Hs−1) of (126), (127) satisfying the non-emptiness condition infx∈[0,1] ρ(t, x) >
0 and the conservation of the energy

d

dt

∫ 1

0

(
ρA ′ u 2

x + A ′ V ′′ ρ 2
x

)
dx = 0. (129)

Moreover, the maximal existence time Tmax < +∞, then

lim
t→Tmax

‖Wx‖L∞ = +∞. (130)

Remark 4. The system (126), (127) do not change if A is replaced by −A . Then, the
result of Theorem 3 holds in the case A ′(ρ) < 0.

6. Remarks on a special regularision

As proved in [36], the solutions given by Theorem 1 do not hold for all time in general.
An inspiring way to obtain global (in time) weak solutions, is to use an equivalent semi-
linear system of ordinary differential equations as in [8, 9, 20, 48]. In this case, the lemma
3 is not enough, and an explicit formula of the operator L−1

ρ is needed.
At this stage, the regularising factor A can be chosen freely, provided that A ′ > 0.

Here, we investigate further the special choice

A (ρ) = −A ρ̄ / ρ, (131)

where A > 0 is a constant. We show in this section that with this special choice of A , a
formula of L−1

ρ can be obtained, and the rbE system can be simplified.
The Sturm–Liouville operator becomes

Lρ = ρ − 2 εA ρ̄ ∂x ρ
−1 ∂x = ρ

[
1 − 2 εA ρ̄ ρ−1 ∂x ρ

−1 ∂x
]
, (132)

so its inverse is

Gρ =
[

1 − 2 εA ρ̄ ρ−1 ∂x ρ
−1 ∂x

]−1
ρ−1. (133)

Similarly, the operator Jρ becomes

Jρ = ∂−1
x ρGρ ∂x =

[
1 − 2 εA ρ̄ ρ−1 ∂x ρ

−1 ∂x
]−1

. (134)

This special choice for A suggests the change of independent variables (t, x) 7→ (τ, ξ)
with

τ
def
= t, ξ

def
=

∫
ρ(t, x) dx, (135)

i.e., ξ is a density potential (defined modulo an arbitrary function of t). After one spacial
integration, the equation (42) for the mass conservation yields

ξt + u ξx = K(t) ≡ 0, (136)
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K(t) being an arbitrary function of t (an integration ‘constant’) that can be set to zero
without loss of generality, thus providing a gauge condition for ξ (i.e., ξ is no longer defined
modulo an arbitrary function of t). Thus, with this change of independent variables, the
differentiation operators become

∂x 7→ ρ ∂ξ, Jρ 7→
[

1 − 2 εA ρ̄ ∂ 2
ξ

]−1
, Gρ ∂x 7→ Jρ ∂ξ, (137)

∂t 7→ ∂τ − ρ u ∂ξ, ∂t + u ∂x 7→ ∂τ , (138)

and the regularising term, together with (131), becomes

R = A ρ̄ J ∗
{

(ρV ′′′ + 3V ′′) ρ 2
ξ

}
, J(ξ)

def
=

1

2
√

2εAρ̄
exp

(
−|ξ|√
2εAρ̄

)
, (139)

where an asterix denotes a convolution product, i.e., J(ξ) ∗ f(ξ)
def
=
∫∞
−∞ J(ξ − ρ̃)f(ρ̃) dρ̃ =∫∞

−∞ J(ρ̃)f(ξ − ρ̃) dρ̃ for any function f . Note that J is the pseudo-differential operator Jρ
rewritten as an integral operator, because it is more convenient when applied to weakly
regular functions.

With (τ, ξ) as independent variables, the mass and momentum equations, respectively
(42) and (48), become

ρτ + ρ2 uξ = 0, uτ + [ ρV ′ − V + εR ]ξ = 0, (140)

with R given by (139). Denoting υ
def
= 1/ρ the specific volume, the system (140) becomes

υτ = uξ, uτ =

[
d (υV )

dυ
+ εA ρ̄ J ∗

{
d3 (υV )

dυ3
υ 2
ξ

}]
ξ

. (141)

Eliminating u between these two relations, we obtain

υττ −
[

d (υV )

dυ

]
ξξ

= εA ρ̄ ∂ 2
ξ J ∗

{
d3 (υV )

dυ3
υ 2
ξ

}
. (142)

At high frequencies, this partial differential equation is approximately

υττ −
[

d (υV )

dυ

]
ξξ

≈ − d3 (υV )

dυ3

υ 2
ξ

2
, (143)

that can be rewritten

υττ −
d2 (υV )

dυ2
υξξ =

d3 (υV )

dυ3

υ 2
ξ

2
, (144)

that is a proper hyperbolic partial differential equation if

d2 (υV )

dυ2
> 0. (145)

Introducing the velocity c(υ)
def
=
√

d2(υV )/dυ2, the equation (144) is rewritten

υττ − c(υ)2 υξξ = c(υ) c′(υ) υ 2
ξ , (146)

an equation appearing in the theory of liquid crystals, for which smooth solution break
down in finite time [19].
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7. Conclusion and perspectives

In this paper, we have introduced the regularised barotropic Euler system (5), inspired by
the Hamiltonian regularisation of the shallow water (Saint-Venant) system with a constant
depth introduced in [13]. The latter work is generalised in two ways: (i) considering a
more general equation (i.e., barotropic Euler); (ii) introducing a family of regularisations
(involving an arbitrary function A (ρ)).

For this system — and also for the periodic generalised two-component Hunter–Saxton
system (6) — we prove the local (in time) well-posedness in Hs for s > 2 and a blow-up
criteria. As proven by Liu et al. [36], those solutions do not exist for all time, in general.

An interesting question that remains open is: Due to the energy equations (51) and
(125), do global weak solutions exist in H1 (or in Ḣ1 for (6))? Two possibilities, that have
been used for the Camassa–Holm equation, may also work for the systems introduced in
the present paper, i.e., using a vanishing viscosity [21] or using a semi-linear equivalent
system [8, 9, 20, 48]. Another interesting problem is the study of the limiting cases ε→ 0
and ε→∞ as in [22, 23].

Appendix A. Isentropic flows

Isentropic motions obey the equation of state

ρ / ρ̄ =
(
P /P̄

)1/γ
, P /P̄ = (ρ / ρ̄)γ , (147)

where ρ̄ and P̄ are positive constants characterising the fluid physical properties at the

rest state, and γ
def
= Cp/Cv is the (constant) ratio of specific heats Cp and Cv. It should be

noted that the constitutive relation (147) gauges the pressure field, so zero pressure level
can no longer be chosen arbitrarily without loss of generality. For these isentropic motions,
we have if γ 6= 1 (taking $(P̄ ) = 0)

$ =

∫ (
P̄

P

)1
γ dP

ρ̄
= $̄

(P/P̄ )
γ−1
γ − 1

γ − 1
= $̄

(ρ/ρ̄)γ−1 − 1

γ − 1
, (148)

V

P̄
=

γ

γ − 1

[
1

γ

(
ρ

ρ̄

)γ
− ρ

ρ̄

]
=

γ

γ − 1

[
1

γ

P

P̄
− ρ

ρ̄

]
, (149)

where $̄
def
= γP̄ /ρ̄, thence

P/P̄ =
(
c 2
s /$̄

)γ/(γ−1)
, c 2

s /$̄ = 1 + (γ − 1) ($/$̄). (150)

In the limiting case γ → 1 (isothermal motions), these relations become

c 2
s = $̄ =

P̄

ρ̄
,

ρ

ρ̄
=

P

P̄
= exp

($
$̄

)
,

V

P̄
=

ρ

ρ̄
log

∣∣∣∣ρρ̄
∣∣∣∣ − ρ

ρ̄
, (151)

so the speed of sound is constant while the density is not. The special case γ = 1 is relevant
for applications in oceanography because for seawater (at salinity 35 g/kg and atmospheric
pressure) γ ≈ 1.0004 at 0◦C and γ ≈ 1.0106 at 20◦C [30].
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Email address: didier.clamond@univ-cotedazur.fr

(Stéphane Junca) LJAD, Inria & CNRS, Université Côte d’Azur, France.
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