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Integrating Features Acceleration in Visual Predictive Control

Franco Fusco1, Olivier Kermorgant1, and Philippe Martinet2

Abstract— This paper proposes new prediction models for
Visual Predictive Control that can lead to both better motions
in the feature space and shorter sensor trajectories in 3D.
Contrarily to existing first-order models based only on the
interaction matrix, it is proposed to integrate acceleration
information provided by second-order models. This allows
to better estimate the evolution of the image features, and
consequently to evaluate control inputs that can properly steer
the system to a desired configuration. By means of simulations,
the performances of these new predictors are shown and
compared to those of a classical model. Included experiments
using both image point features and polar coordinates confirm
the validity and generality of the approach, showing that the
increased complexity of the predictors does not prevent real-
time implementations.

I. INTRODUCTION

Visual servoing is a well established control strategy
allowing robust and precise positioning of a sensor in front of
an object. Thanks to the direct sensory feedback, it is robust
to modeling and calibration errors. Different setups can be
considered [1], depending on whether the sensor is mounted
on the end-effector of a robot or observing the system from
a fixed location, or on the type of extracted features (image
points, lines, reconstructed 3D pose, etc.).

Classical schemes generally rely on the use of a pro-
portional controller to regulate the current features to a
desired value. Such a control law is simple to implement,
but has some drawbacks. The first one is that the motion
of the sensor in the Cartesian space can be unsatisfactory
when large displacements are involved. A classical example
is the retraction that occurs when servoing from image
points in presence of large camera rotations about its optical
axis. Another issue is related to the time to convergence
of these schemes, with the system slowing down when
approaching the desired configuration due to the exponential
decay imposed by the proportional controller. Finally, to deal
with constraints such as visibility, joint limits and collision
avoidance, some modifications to the basic approach are
needed.

Several works can be found in the literature to address
these issues. Since the 3D motion of the sensor depends also
on the kind of selected features, some researches focused
on finding those that can guarantee better decoupling in the
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camera motion, such as image moments [2]. Other well-
known strategies exploit the so-called Efficient Second order
Minimization, which relies on the use of the pseudo-inverse
of the mean of the interaction matrix at the current iteration
and at equilibrium, or the mean of the pseudo-inverses [3],
[4]. To deal with constraints, a hierarchical stack of tasks
was considered in [5], while a solution based on weighting
matrices was used in [6].

Another approach is the one of Model Predictive Control
(MPC). Such strategy is appealing in visual servoing as it
provides a unified approach that can deal with most of the
problems mentioned above. In fact, by means of a model
of the system to be controlled, they can anticipate the states
that will be traversed. This allows to select optimal control
samples that will quickly guide the system towards a desired
configuration, while taking into account physical limitations.
Early approaches took low-level velocity controllers into
account in order to speed up the convergence [7], while later
works [8], [9] introduced different kind of constraints, such
as features visibility, joint limits, maximum motor efforts.
Finally, the use of the interaction matrix of the features to
generate predictions directly in image space was investigated
in different works [10], [11], [12]. The main drawback of
using predictive strategies is that they come at the cost of an
increased computational burden, especially when predictions
are generated along a large horizon. Nonetheless, if a good
trade-off between computational load and long horizons can
be found, the final performances can be highly satisfactory.

With the objective of enhancing the performances of a
MPC scheme, two directions are available: on one hand, the
focus could be on improving the optimization routine used to
obtain the control sequences to be sent to the actuators. On
the other hand, attempts to enhance the model used for the
predictions could be investigated. Intuitively, given an equal
prediction horizon, models that can provide more accurate
predictions should lead to better performances. In this paper,
we investigate this second route and contribute to the study of
Visual Predictive Control (VPC) by proposing two new local
models to evaluate the features. More precisely, our proposal
is to include acceleration information by considering second-
order models [13], [14], which generally allows to better
predict what will be the evolution of the features in the sensor
space over the prediction horizon. As a direct consequence,
this allows the control algorithm to produce better input
signals, steering the system along nicer paths in the 3D space.
Our work proposes a comparative study between existing
predictive strategies from the literature and those relying
on our predictors, while for a comparison of VPC against
classical approaches the reader is referred to [9], [10].



The remainder of this paper is organized as follows: in
Section II after recalling first and second-order models in
visual servoing, we introduce the MPC formulation exploited
by this paper. We present our predictors in Section II-C,
altogether with a local model based on the interaction matrix
that will be used for performance comparison. Simulations
are presented in Section III-A, in which we consider a redun-
dant serial manipulator with a camera mounted on its end-
effector. Finally, real experiments are included in Section III-
B to support our theoretical work. We consider two kinds of
features for the servoing task: normalized image point and
polar coordinates. In both cases, it is shown that including
acceleration information in the predictive control algorithm
enhances the quality of the motion of the manipulator in
comparison with local predictive models based solely on the
interaction matrix.

II. VISUAL PREDICTIVE CONTROL

A. Visual Servoing Models

The classical model exploited to link the relative motion
between the vision system and the observed object to the
evolution of the features is based on the interaction matrix
Ls of the feature set s ∈ Rm [15]:

ṡ = Lsv (1)

In this equation, the kinematic screw v ∈ R6 gathers the
linear and angular velocity of the camera with respect to
the object frame, expressed in the coordinate system of the
sensor itself. The interaction matrix is a function of s and
possibly of a set of parameters z ∈ Rp (such as depth for
image points or other 3D parameters not available in s), but
the dependencies are omitted above for brevity.

Second-order models can be considered as well, relating
the spatial velocity and acceleration of the sensor to the
second derivative of the feature vector. These models can
be briefly written in the form:

s̈ = Lsa + hs (2)

with a representing the relative acceleration of the sensor
expressed on the camera frame and hs being a function of
s, z and v. In particular, this last component can be written
as a collection of quadratic forms [16]:

hs =

vTG1v
· · ·

vTGmv

 (3)

wherein the (symmetric) matrices Gi are functions of s and
z only. The analytical expressions of these matrices can be
found in [13] for image point features, while those of polar
coordinates have been derived in (4a) and (4b).

Assuming a eye-in-hand configuration and denoting with
q ∈ Rn the joint vector of the robot, the two models
presented above can be rewritten in terms of joint velocities
and accelerations, q̇ and q̈ respectively. In particular, using
the geometric Jacobian J expressed in the base frame of

the robot and its derivative, the kinematics of the sensor is
described by:

v = T vo = TJq̇ (5a)

a = T ov̇ = T
(
Jq̈ + J̇q̇

)
(5b)

where vo represents the velocity of the camera expressed
in the base frame o of the robot, while T expresses a
change of basis from the base frame of the robot to the
one of the camera. It is a block-diagonal matrix in the
form T = diag( Rc o, Rc o), Rc o being the rotation matrix
expressing the orientation of the camera frame c with respect
to o. It depends on the current joint configuration of the
robot, and can be evaluated using the geometric model of the
manipulator. Also note that a is not the derivative of v (which
corresponds to the end-effector spatial velocity projected on
the camera frame). It is instead the projection on the sensor
frame of the spatial acceleration expressed in the base frame,
i.e., a = T d

dt (Jq̇). Injecting these expressions into (1) and
(2) leads to:

ṡ = LsTJq̇ = Jsq̇ (6a)

s̈ = Jsq̈ + µs (µs
.
= LsTJ̇q̇ + hs) (6b)

with Js sometimes referred to as feature Jacobian.
Using first and second-order models, the positioning task

is generally achieved via linearizing feedback control laws,
in which the aim is to enforce an exponential decay of the
error es = s−s? to zero, so that the features converge to the
desired value s?. One problem with such controllers is that
the convergence towards the target features slows down when
the error decreases, resulting in longer execution times. To
achieve faster responses, the control gains can be increased,
but only up to a given limit to avoid large noise amplification.

Another issue is related to the 3D motion of the sensor.
Features move along almost straight lines in Rm when using
linearizing strategies, corresponding to shortest paths in the
feature space. Due to the highly non-linear map between
the relative sensor/object pose and the features, such motion
can lead to sub-optimal camera trajectories in SE(3). A
well known example is the retraction problem which can
be observed when using image coordinates as features and
with the object being purely rotated around the optical axis
of the camera [17].

To overcome these problems, Predictive Controllers can be
exploited. They generally perform faster since they tend to
saturate control inputs to the allowed limits, thus reducing the
time to convergence. Furthermore, if properly tuned they can
enhance the overall quality of the motion by selecting paths
that, despite being locally sub-optimal in the feature space,
correspond to shorter robot motions [12]. Before entering
into the details of Visual Predictive Control, we will recall
in the next section the basics of generic nonlinear MPCs.

B. Model Predictive Control

Model Predictive Control is an optimal control technique
that aims at determining the best input signal to be applied
to a system by taking into account the future evolution



of the state. In our case, the continuous-time dynamics of
the system is approximated by a non-linear discrete-time
equivalent having the generic state-space form:

xk+1 = f (xk,uk) (7)

xk and uk being respectively the state and the control
samples at the discrete step k. A common formulation for the
MPC problem is a finite-horizon open-loop optimization that
takes into account the model above and a set of constraints.
In this optimization, the decision variables correspond to the
control sequence u = {uτ ,uτ+1, · · · ,uτ+nc−1}, τ denoting
the current time sample and nc being the number of control
samples, or control horizon, considered for the optimization.
Given the sequence u, np ≥ nc “future states” visited by
the system are evaluated using (7), np being the prediction
horizon. Note that the first nc states are produced starting
from xτ and applying the control samples in u, while the
remaining ones are obtained by repeatedly using uτ+nc−1

as input until a total of np predictions are obtained.
In order to evaluate the optimal control sequence, the

following problem has to be solved at the discrete time-
sample τ :

min
u

np∑
k=1

eTτ+kAkeτ+k +

nc−1∑
k=0

uTτ+kBkuτ+k (8)

subject to the constraints:

uτ+k ∈ U ⊆ Rnu k = 0, · · · , nc − 1 (9a)
xτ+k ∈ X ⊆ Rnx k = 1, · · · , np (9b)

The objective function is a quadratic stage cost that tries
to push the error ei = xi−x?i to zero, x?i being the desired
value of the state at step i. At the same time, the second
sum in (8) tries to minimize the norm of the control input.
The terms Ak and Bk are (semi)positive definite weighting
matrices that control the relative importance of the different
components in the objective.

The constraints (9a) generally correspond to a series of
inequalities that limit the control input within given bounds:

−ulim ≤ uτ+k ≤ ulim k = 0, · · · , nc − 1 (10)

Similarly, the set of constraints (9b) ensures that predicted
states remain inside the valid region X . They can represent,
e.g., visibility constraints or joint limits.

In principle, it would be possible to select very long
prediction and control horizons, solve the optimization once,
and send the optimal control inputs one after the other to
move the robot. However, this solution is not feasible for
different reasons, the main one being that the model used to
predict future states is usually just an approximation of the
real evolution. It is thus necessary to repeat the optimization
at each control iteration, in order to reduce the impact of
modeling and identification errors. Having to repeat as many
times as possible the optimization, it is thus desirable to
also find a trade-off between long predictions and short
computation times.

C. Visual Predictors using Acceleration

We propose in this section two new prediction models that
take into account the acceleration of the features in the sensor
space. As a starting point, we consider in the following a
formulation based on the interaction matrix evaluated at each
prediction sample, similarly to what has been proposed in
[10] and [12] (LMc predictor). In our case, we also consider
the joint configuration as part of the state vector, and the joint
velocity of the robot to be the control input of the system.
This allows the controller to internally handle the redundancy
and also to explicitly consider joint limits in the optimization.
We also assume that the set of parameters z appearing in Ls

can be described by models which are similar to (1) and
(2), i.e., such that ż = Lzv (Lz depending on s and/or z).
These parameters are predicted at each iteration as well, and
therefore the state vector x corresponds to the concatenation
of q, s and z. Given these choices, a velocity-based local
prediction model is written as:qk+1

sk+1

zk+1

 =

qksk
zk

+ ∆t

 I
Js,k

Jz,k

uk (11)

with Jz = LzTJ and ∆t representing the discretization
period for the model. This model, namely M1, will be
used later as a reference for comparison with our custom
predictors.

Gρ =



sin2 θ
Z2ρ − sin 2θ

2Z2ρ − cos θ
Z2 − (ρ2−1) sin 2θ

2Zρ
−ρ2 sin2 θ+2ρ2+sin2 θ

Zρ 0

− sin 2θ
2Z2ρ

cos2 θ
Z2ρ − sin θ

Z2
ρ2 cos2 θ−2ρ2−cos2 θ

Zρ

(ρ2−1) sin 2θ

2Zρ 0

− cos θ
Z2 − sin θ

Z2
2ρ
Z2

2ρ2 sin θ
Z − 2ρ2 cos θ

Z 0

− (ρ2−1) sin 2θ

2Zρ
ρ2 cos2 θ−2ρ2−cos2 θ

Zρ
2ρ2 sin θ

Z

(ρ2+1)(2ρ2 sin2 θ+cos2 θ)
ρ − (2ρ4+ρ2−1) sin 2θ

2ρ − (ρ2+1) cos θ

2

−ρ2 sin2 θ+2ρ2+sin2 θ
Zρ

(ρ2−1) sin 2θ

2Zρ − 2ρ2 cos θ
Z − (2ρ4+ρ2−1) sin 2θ

2ρ

(ρ2+1)(2ρ2 cos2 θ+sin2 θ)
ρ − (ρ2+1) sin θ

2

0 0 0 − (ρ2+1) cos θ

2 − (ρ2+1) sin θ

2 0


(4a)

Gθ =



sin 2θ
Z2ρ2 − cos 2θ

Z2ρ2 0 cos 2θ
Zρ2

sin 2θ
Zρ2 0

− cos 2θ
Z2ρ2 − sin 2θ

Z2ρ2 0 sin 2θ
Zρ2 − cos 2θ

Zρ2 0

0 0 0 − cos θ
Zρ − sin θ

Zρ 0

cos 2θ
Zρ2

sin 2θ
Zρ2 − cos θ

Zρ − (ρ2+2) sin 2θ

2ρ2
(ρ2+2) cos 2θ

2ρ2
sin θ
2ρ

sin 2θ
Zρ2 − cos 2θ

Zρ2 − sin θ
Zρ

(ρ2+2) cos 2θ

2ρ2
(ρ2+2) sin 2θ

2ρ2 − cos θ
2ρ

0 0 0 sin θ
2ρ − cos θ

2ρ 0


(4b)



To the best of our knowledge, prediction models used so
far in visual control all exploited only first-order approxima-
tions based on (1). Our first proposal is a new model, denoted
asM2, that considers a second-order Taylor series expansion
for the state vector, i.e., xk+1 = xk+∆tẋk+ 1

2∆t2ẍk. In this
case, the control input u is no longer the joint velocity of the
manipulator, but its acceleration. Clearly, to properly update
the state over several steps it is also necessary to predict
the value of all first derivatives of q, s and z. Regarding the
joint velocity, we can simply do that by numerical integration
of the joint acceleration. This implies that q̇ will be added
to the predicted state as well. Regarding the features and
the related parameters, we instead propose to estimate their
first derivative using their jacobians according to (6a), thus
avoiding the addition of further elements in the state vector.
As a result, the prediction model can be written as:
qk+1

q̇k+1

sk+1

zk+1

 =


qk + ∆tq̇k

q̇k
sk + ∆tJs,kq̇k + ∆t2

2 µs,k

zk + ∆tJz,kq̇k + ∆t2

2 µz,k

+


∆t2

2 I
∆tI

∆t2

2 Js,k
∆t2

2 Jz,k

uk

(12)
Our second proposal lies between classical approaches

based solely on velocity information and the acceleration-
controlled model presented above. Like in the first case,
it assumes the control input u to be the velocity of the
manipulator. However, it also exploits the fact that the second
term in (2) depends only on the current features/parameters
and the velocity of the sensor. As it is done in classical local
models, we assume that the twist of the camera is piece-
wise constant, and at the time-sample k it is thus possible
to evaluate vk as TJkuk. Altogether with sk and zk, this
allows to approximate features acceleration as s̈k ' hs,k (the
acceleration of the sensor is therefore not taken into account).
Using a similar procedure to evaluate z̈, this provides the
following update scheme:qk+1

sk+1

zk+1

 =

qksk
zk

+ ∆t

 I
Js,k

Jz,k

uk +

 0
∆t2

2 hs,k
∆t2

2 hz,k

 (13)

Since this model is a mix between those based on first
and second order models, we like to refer to it as hybrid
predictor, MH. One advantage of this update scheme with
respect to M2 is that it allows to integrate higher-order
information while still keeping the same size for the state
vector and introducing less elements into the model, reducing
the computational burden for the optimization.

To illustrate why the proposed models can lead to bet-
ter results, Fig. 1 shows a simple example of predictions
made using the three schemes above. This case considers
a free-flying camera that observes four image points while
retracting and rotating about its optical axis. The velocity
and acceleration of the sensor, which are both continuous
and non-constant, are sampled with a period of 50 ms, and
fed to each model to perform predictions for s and z in open-
loop. M1 slightly drifts from the actual state during time,
whereas M2 provides the most reliable predictions. Finally,

the hybrid predictor MH, despite being less accurate than
(12) due to the truncated approximation of s̈, provides a
rather good approximation of the real evolution.

Fig. 1. On the left: motion of four image points (in black) altogether with
predictions obtained using M1 (green), M2 (red) and MH (blue). On the
right: norm of the prediction error during time, for each strategy.

D. Visual Predictive Control Scheme

Our VPC scheme exploits the formulation reported in
Section II-B, with some adaptations specific to our studied
case. First of all, the objective of the controller is to steer
only the features from the initial configuration to a fixed
value s?. There is instead no need to ensure the convergence
of neither q nor z to any specific value. For this reason,
the matrices Ak are selected as diagonal, with the elements
corresponding to the joint configuration and to the features
parameters equal to zero.

Regarding the weight associated to the features, we adopt
the diagonal weighting matrix Qk = αkI, α being a tunable
parameter, similarly to what was done in related works. In
particular, in [18], [19] it was proposed to use α = 1/e,
corresponding to a decreasing weight of features samples.
This was justified by the fact that in these works, the authors
were also integrating an on-line trajectory generator, and the
decreasing factor ensured better tracking of the reference.
An increasing weighting policy was instead considered in
[10], where a factor α = 2 was used. They showed that
this can bear to higher decoupling in the camera motion,
since the optimization algorithm is “encouraged” to look for
solutions that are possibly sub-optimal in the short term, but
that ensure shorter overall motions and faster convergence.

The secondary objective of our VPC scheme is to evaluate
a motion that minimizes the velocity of the manipulator.
This is justified mainly by the fact that we are interested in
controlling a redundant robot, for which the visual task is not
sufficient to fully stabilize the joint position. By minimizing
the velocity, once the robot has completed the visual task
the optimal solution becomes to stop the robot, thus solving
the problem. To do that, we use the (constant) diagonal
matrix Rk = βI, β > 0 controlling the relative importance
with respect to the visual task. Note that the objective is to
minimize the velocity independently from the model used for
predictions. Since M1 and MH assume a velocity control,
we have Bk = Rk and Ak = diag (0n,Qk,0p). Instead,
as the velocity is part of the state vector in the case of
M2, the weighting matrix is inserted as part of Ak, i.e.,
Ak = diag (0n,Rk,Qk,0p), with the desired state q̇?k
simply being a zero-vector. In this case, the minimization



of the control input (the acceleration) is not included as an
objective (Bk = 0n). Indeed, minimizing the acceleration
would lead to a conservative velocity behavior, resulting in
potential instability or longer time to convergence.

Finally, two kind of state constraints are considered during
the optimization, in addition to control input bounds. The
first one is introduced to keep the joint configuration of the
robot within the allowed limits, i.e., qmin ≤ qτ+k ≤ qmax,
∀k = 1, · · · , np. The second set of state constraints is
introduced to prevent the object to leave the field of view of
the camera. When servoing from image points, the constraint
simply writes as smin ≤ sτ+k ≤ smax, with s containing
the x and y coordinates of the observed points. When polar
coordinates are used, the constraints above are expressed for
each point i in terms of the features ρi and θi as:

xmin ≤ ρi,k cos θi,k ≤ xmax
ymin ≤ ρi,k sin θi,k ≤ ymax

(14)

III. SIMULATIONS AND EXPERIMENTAL RESULTS

To investigate the performances of the proposed models,
we conducted several simulations and experiments. Our
setup involves a 7-dof Kuka LWR4+ arm, having a camera
mounted on top of its end-effector, as shown in Fig. 2.
The sensor observes a planar object with four black circles.
Depending on the experiment, either the image coordinates of
these points or their polar representation are used as features.

Several libraries have been used to implement the VPC
scheme. Pinocchio [20] has been used for the geometric
model of the robot, while the optimization algorithm SLSQP
[21], [22] from NLopt [23] was chosen to evaluate the control
sequence at each iteration. We also exploited the software
package CppADCodeGen [24] in order to generate efficient
code for the prediction models and to speedup computations.

Fig. 2. The Kuka arm used in our experiments.

We detail in the next section two sets of simulations and
discuss few aspects related to parameters tuning. Afterwards,
we report results from real experiments which support the
feasibility and effectiveness of our approach. Note that no
comparison is performed between predictive approaches and
classical controls based on feedback linearization, which can
be found already in other works, e.g., [9], [10]. Instead, our
analysis focuses on the comparison between existing local
predictors based on the interaction matrix and our proposed
models.

A. Simulations
Simulations were run in a simple environment that updates

the state of the robot by integrating velocity/acceleration

commands, therefore not taking into account the dynamic
model of the manipulator. To simulate the visual feedback
gathered by a camera, the geometric model of the Kuka arm
was used, since all transformations are perfectly known in
simulation. Features are sent at a rate of 50 Hz, to match the
one used in real experiments, and the control period ∆tc is
thus set to 20 ms.

Depending on the difficulty of the problem, the optimiza-
tion might require more time than the control period. We thus
set, in NLopt, a time limit 0.9 ·∆tc = 18 ms as termination
condition in addition to other stopping criteria.

We compared the three models considering various setups,
and we report here two set of tests. In all shown cases, the
selected features are the image coordinates of four points. In
the first set, the camera has to perform a rotation of 180◦

about its optical axis, and a short translation. In the second
case, the motion requires to rotate also about the X and Y
axes of the camera and a larger translation is required as
well. These cases are known to be particularly challenging
for standard feedback control strategies, as they cause large
retraction of the sensor.

In the two tests, both the control and prediction horizon
are set to nc = np = 10. In addition, the discretization
time used in the predictors, ∆t, is chosen as ∆t = 5∆tc =
0.1 s. This allows the optimization to consider future states
that are sufficiently distant in the future, while keeping the
dimension of the prediction vector small enough to allow
a real time implementation. It must be noted, however,
that the optimization halts due to the time limit criterion
for all models. Nonetheless, we checked that a premature
ending of the optimization does not significantly alter the
performances. In particular, even when the optimization is
allowed to run for as long as 200 ms, the features error norm
reduces only by a small amount, while acceptable results can
still be obtained even if the limit is reduced up to 13 ms.

Other parameters were tuned by trial and error, and kept
constant across simulations. In particular, the value of α was
chosen as 1.1, in order to disfavor “greedy” motions that try
to move the features straight towards the goal configuration,
as discussed in Section II-D. We noticed that this is a suitable
choice especially when the camera has to perform large
rotations, like in reported simulations. The parameter β was
set to a small value compared to the one of α to allow
motions to be rather fast in the beginning, achieving quicker
converge to the desired feature configuration. We noticed that
depending on the kind of control input, the value needs to
be adjusted differently. In particular, β = 10−3 was used
for velocity-controlled models (M1 and MH). Regarding
M2, a smaller factor proved to work better in general, and
thus β was set to 10−4 in that case. To obtain these values,
we followed a simple procedure, firstly fixing α to 1 and
focusing on testing different values for β. We noticed that it
was sufficient to identify a suitable order of magnitude for it,
while precisely adjusting the value bears no major differences
in the performances. Afterwards, we considered the weight
associated to the last prediction sample, α′ .= αnp = α10.
By considering few different values for it, we could coarsely



tune α. Our final choice was α′ = 2.5, leading to α ' 1.1
as mentioned above.

1) First Simulation Test: In this first set of tests the
camera has to rotate of 180◦ around its optical axis, while
also performing a short translation (less than 7 cm) in order
to position in front of the four points.

Results are shown in Fig. 3. Each row corresponds to a
specific prediction model, and the columns report respec-
tively the features path in the image plane, the feature error
and a 3D view of the robot. In the first column, starting
points are represented with a circle, while a square is used
for the desired configuration. Green lines in the 3D view
help to visualize the motion of the sensor.

As visible in middle column of Fig. 3, all strategies
are able to quickly converge to the desired configuration:
within 1 s when using M1 and MH, and around 1.5 s with
M2. Nonetheless, the performances of M1 are otherwise
worse, showing some sudden changes of direction in the
feature space but more importantly retraction in 3D. We think
that this can be justified by the higher drifts associated to
a first-order linearization and consequently to less reliable
predictions. On the other hand, M2, despite converging less
quickly than the other models, presents smooth motions and
reduced retraction.MH also features nice evolution in image
space, fast convergence and very little retraction, but presents
few sudden changes of direction as visible in the 3D view.

Fig. 3. First simulation test. The rows correspond to M1 (top), M2

(middle) and MH (bottom), while the columns to the features trajectories in
the image (left), the feature error (center) and a 3D view of the manipulator
(right).

2) Second Simulation Test: In this second set of simula-
tions, a case presenting larger initial feature errors is shown.
With respect to the previous case, the sensor needs to perform
a larger translation (20 cm) and now features rotations of 15◦

and 30◦ around the X and Y axes respectively in addition to
a rotation around Z of 165◦.

Fig. 4 shows the obtained results in terms of features
evolution and 3D motion of the robot. Compared toM1, the
proposed approaches lead again to better performances, with
the features following rather smooth paths in the image. It
is also interesting to notice that these controls seem to steer
the features firstly along a translational path, subsequently

performing a mainly rotational motion. Considering the 3D
views, it can be seen that M1 performs a rather long
motion, leading to a slightly higher time to convergence.
M2 provides instead nice results, with regular motions and
reduced retraction. Finally, MH, despite presenting few
sudden changes in its motion like in the previous test,
features an overall good behavior similar to that of M2.

Fig. 4. Second simulation test. The rows correspond to M1 (top), M2

(middle) and MH (bottom), while the columns to the features trajectories in
the image (left), the feature error (center) and a 3D view of the manipulator
(right).

B. Experimental Tests

We now present the experimental results related to the
comparison of the different models. Since our hardware does
not yet allow to directly control the robot in acceleration, in
order to test M2 we numerically integrated the acceleration
signal produced by the VPC and sent the resulting signal to
the low-level velocity controller running on our robot.

To support the effectiveness and generality of our ap-
proach, we tested our controllers with different features: we
firstly considered standard image point coordinates (as in the
simulations included above) and then the polar coordinates
of the centers of the four circles printed on the object. In
both cases, our predictors outperform classical local models,
confirming the validity of our work.

1) Servoing from Image Points: Regarding parameters
tuning, experiments were run with the same values as in the
two sets of presented simulations, except for the value of β.
In fact, it was noticed that a larger value better suits real
experiments in which noise is also present. In practice, we
changed its value from 10−3 to 10−2 for the two velocity-
controlled schemes. In the case of M2, it was necessary to
increase it slightly more in order to reduce oscillations and
prevent the velocity to grow excessively. We decided to use
in this case β = 5 · 10−3, which, although not sufficient
to completely remove oscillations, was found to be a good
trade-off in order to maintain acceptable time to convergence.

Tests were performed by placing the planar object in front
of the robot and rotating it multiple times about its normal
axis, of an angle of almost 90◦(see the video accompanying
this paper). Note that the desired configuration s? was still



kept to a constant value, and therefore the rotations were
assumed as pulses perturbing the equilibrium of the system.

(a) M1 (b) M2 (c) MH

Fig. 5. Features trajectory in the image using respectively M1, M2 and
MH. Blue segments correspond to features displacements induced by the
object rotation, while green ones are due to the control moving the camera.

The trajectories followed by the features in the image
can be seen in Fig. 5. To help better interpret the results,
we used two different colors to distinguish between paths
crossed by the features mainly due to the motion of the
object (in blue) and those caused by the controller moving
the camera (green). The former are nearly perfect circles,
since the controller does not react fast enough and the robot
remains still for almost the entire time when the object
moves. Considering the motion induced by the controller,
the behavior is quite different depending on the involved
predictor. M1 is not able to perform a nice rotation, with
the features going either too near or too far from the ideal
circumference. This also results in an undesirable motion,
as it can be seen in the attached video. On the contrary,
the trajectory obtained using M2 is much closer to a pure
rotation about the optical center of the camera, and the
motion in 3D is satisfactory as well. Finally, MH gives
intermediate results, with features path that, despite not being
as nice as in the case of the second-order predictor, are not
deviating too much from a pure rotation. Furthermore, the
motion of the sensor features almost no retraction.

Fig. 6. Features error norm during the first rotation of the object.

The evolution of the feature error during time is reported
for the first rotation of the object in Fig. 6. It can be
seen that the first-order predictor is outperformed by MH,
taking almost half a second longer to reach the same er-
ror magnitude. It should also be noted that M2, besides
being the slowest, presents a rather large overshoot. This
is hard to observe from Fig. 5(b), but is clearly visible in
the video attachment. Such oscillatory behavior had been
observed sometimes in simulation as well, but after proper
tuning of the parameters it had been removed. On the other

hand, as mentioned in the beginning of this section, it was
hard to completely remove them in the real implementation
without further sacrificing performances. We believe that one
explanation for these oscillations is to be found in the use
of the integrator to obtain the velocity command from the
acceleration. As neither this block nor the low-level velocity
controller are taken into account in the prediction, model
uncertainties become larger and predictions are thus less
reliable, finally leading to lower performances in practice.

2) Servoing from Polar Coordinates: In this last set of
experiments, we tested the performances of the predictors
when polar coordinates of the point centers are used as fea-
tures. Parameters have been kept as in previous experiments,
with the exception for the weight associated to angles errors.
In fact, the angle errors eθi (which are expressed in radians)
tend to vary more than the radii ρi for the same displacement.
For this reason, their weight in the objective was reduced of a
factor of 5, i.e., Qk = αkdiag(1, 1/5, 1, 1/5, 1, 1/5, 1, 1/5).

It is well-known that, in classical servoing, polar coor-
dinates perform well when the object is subject to a pure
rotation around the optical axis of the camera. Hence, we
focus on a case in which the object performs a relatively large
translational motion. This is known to lead to less satisfactory
trajectories for the system due to the non-linearities in the
interaction matrix. As it can be seen in Fig. 7, the results
obtained in this case with the three predictors detailed in
this paper perform, in comparison, similarly to the previous
case: M1 features the worst results, both in terms of points
trajectories and in 3D – as shown in the video attachment.
On the other hand, both M2 and MH perform better, with
more satisfactory image and 3D trajectories.

(a) M1 (b) M2 (c) MH

Fig. 7. Trajectory of the point centers in the image using respectively
M1, M2 and MH when servoing from polar coordinates. Blue segments
correspond to displacements induced by the object translation, while green
ones are due to the control moving the camera.

The evolution of the features errors is finally given in
Fig. 8. It can be seen that all models present a less smooth
evolution compared to the case of servoing from image coor-
dinates. We believe that this is mainly due to the optimization
being harder to accomplish due to the rather high non-
linearities corresponding to polar coordinates. Nonetheless,
the benefits coming from considering the acceleration in
the predictors are still evident, with M2 and MH being
characterized by lower maximal errors with respect to M1.



Fig. 8. Features error norm during the motion using polar coordinates. On
the left, the error associated to ρ. On the right, the error associated to θ.

IV. CONCLUSIONS

We presented in this article new models for Visual Pre-
dictive Control that lead to better robot motions, thanks to
the inclusion of features acceleration in the feature space.
The performances of our models were compared against
another local predictor based solely on the first-order in-
teraction matrix. By means of simulations, it was shown
that convergence can be achieved in a short time while
avoiding undesirable behaviors even in presence of large
displacements. The results were validated also thanks to
real experiments with an industrial redundant robot, showing
the benefits of integrating acceleration information into the
predictors. In addition, by considering different features
to describe the observed object, we demonstrated that the
approach is general and that its effectiveness is not bound to
a specific parameterization of the observed object.

We are willing to test the proposed approach using image
moments as features. This case is more complex due to the
structure of the interaction matrix, which depends also on
higher-order moments, theoretically leading to a parameter
vector z of infinite dimension. In addition, as we mentioned
in the last section, the controllers are not able to react
immediately to object motions. In order to achieve high
speed performances in dynamic environments, we believe
that a key improvement will be to actively estimate the
kinematics of the observed object [25], [26], and to take it
into account explicitly inside the prediction models. Finally,
a further development might consider time-varying features
references, rather than fixed configurations as it was done
in simulations and experiments. This will likely require to
adapt the formulation of the optimization problem, since
the objective (8) currently contains a contribution that tries
to minimize the joint velocity of the manipulator, which
is in contrast with a task that requires the manipulator to
continuously move.
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