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Abstract. Analogical proportions are statements of the form “a is to b
as c is to d”, where a, b, c, d are tuples of attribute values describing
items. The mechanism of analogical inference, empirically proved to be
efficient in classification and reasoning tasks, started to be better under-
stood when the characterization of the class of classification functions
with which the analogical inference always agrees was established for
Boolean attributes. The purpose of this paper is to study the case of
finite attribute domains that are not necessarily two-valued, i.e., when
attributes are nominal. In particular, we describe the more stringent class
of “hard” analogy preserving (HAP) functions f : X1×· · ·×Xm → X over
finite domains X1, . . . , Xm, X for binary classification purposes. This de-
scription is obtained in two steps. First we observe that such AP func-
tions are almost affine, that is, their restriction to any S1×· · ·×Sm, where
Si ⊆ Xi and |Si| ≤ 2 (1 ≤ i ≤ m), can be turned into an affine func-
tion by renaming variable and function values. We then use this result
together with some universal algebraic tools to show that they are essen-
tially unary or quasi-linear, which provides a general representation of
HAP functions. As a by-product, in the case when X1 = · · · = Xm = X,
it follows that this class of HAP functions constitutes a clone on X, thus
generalizing several results by some of the authors in the Boolean case.

1 Introduction

An analogy establishes a parallel between two situations, which are similar in
many respects and dissimilar in others. If such a parallel holds to some extent,
there are pairs (a, b) and (c, d) such as “a is to b in situation 1 as c is to d in
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situation 2” [7]. Analogical proportions are of the form “a is to b as c is to d”. It
is only recently that researchers have provided representations of this quaternary
relation in different settings [10, 12], or algorithms for finding an item d, given a,
b, and c, for building an analogical proportion from these three items when it is
possible [9]. The items considered in this paper are supposed to be represented
by vectors of attribute values.

Analogical inference relies on the idea that if four items a, b, c, d are in
analogical proportion for each of the n attributes describing them, it may still
be the case for another attribute. For instance, if class labels are known for
a, b, c and unknown for d, then one may infer the label for d as a solution
of an analogical proportion equation [16]. Obviously, analogical inference rule
is not a sound rule, and the effectiveness of analogical classifiers [2, 11] looks
quite mysterious. From a theoretical viewpoint it is quite challenging to find and
characterize situations where such an inference rule can be applied in a sound
way. In case of Boolean attributes, a first step for explaining this state of facts
was to characterize the set of functions for which analogical inference is sound,
i.e., no error occurs, no matter which triplets of examples are used. In [4], it was
proved that these so-called “analogy-preserving” (AP) functions coincide exactly
with the set of affine Boolean functions. Moreover, when the function is close
to being affine, it was also shown that the prediction accuracy remains high [5].
When attributes are valued on finite domains, which we refer to as the “nominal
case” (it includes the Boolean case), the problem of identifying the AP functions
had remained a challenging open problem until now. This paper aims to solving
this problem in the context of binary classification problems and to providing a
complete description of the more stringent class of “hard” AP functions.

The paper is organized as follows. Section 2 provides the necessary back-
ground on analogical proportions and analogical inference in the Boolean and in
the nominal cases. Then we introduce the notion of analogy-preserving functions
on which analogical inference never fails, and discusses an illustrative example in
the nominal case, which emphasizes the linkage of analogical proportions with
trees cataloguing items according to the values of the attributes used for de-
scribing them. Later, a local description of hard analogy preserving functions
is given in terms of almost affine functions, which is then extended to a global
description given in terms of the notion of quasi-linear functions.

2 Background

Postulates An analogical proportion is a 4-ary relation, denoted a : b :: c : d,
between items a, b, c, d, supposed to obey the following 3 postulates (e.g., [10]):

- ∀a, b, a : b :: a : b (reflexivity)
- ∀a, b, c, d, a : b :: c : d→ c : d :: a : b (symmetry)
- ∀a, b, c, d, a : b :: c : d→ a : c :: b : d (central permutation)

The repeated and alternate application of the two last postulates entail that an
analogical proportion a : b :: c : d has 8 equivalent forms: a : b :: c : d = c : d ::
a : b = c : a :: d : b = d : b :: c : a = d : c :: b : a = b : a :: d : c = b : d :: a : c = a :
c :: b : d. Some immediate consequences can be observed:
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i) ∀a, b, a : a :: b : b (identity)
ii) ∀a, b, c, d, a : b :: c : d→ d : b :: c : a (extreme permutation)
iii) ∀a, b, c, d, a : b :: c : d→ b : a :: d : c (inside pair reversing)
iv) ∀a, b, c, d, a : b :: c : d→ d : c :: b : a (complete reversal)

Boolean case Let us now assume for a while that a, b, c, d denote Boolean
variables, i.e., their values belong to the set {0, 1}. This may be thought of as
encoding the fact that a given property is true or false for the considered item.
Since items are usually described in terms of several properties, this modeling of
analogical proportions is then extended to tuples in a component-wise manner
as recalled later. As shown in [13], the minimal Boolean model obeying the
analogical proportion postulates makes a : b :: c : d true only for the six patterns

(a, b, c, d) ∈ {(0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 1, 1), (1, 1, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0)},

while a : b :: c : d is false for the other ten patterns of values for the four variables
a, b, c, d. This is the truth table of a quaternary connective that can be logically
expressed as a : b :: c : d = ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)) [12].

It can be seen on this expression that the analogical proportion “a is to b as c
is to d” formally states that “a differs from b as c differs from d and b differs from
a as d differs from c”. It means that a = b⇔ c = d, and that a 6= b⇔ c 6= d (with
the further requirement that both truth value changes are in the same direction
(either from 1 to 0, or from 0 to 1, when going from a to b, and from c to d).
So, the analogy is as much a matter of dissimilarity as a matter of similarity.

Nominal case In the nominal case, attributes are supposed to take their values
on finite domains (which are not necessarily ordered). For instance, the attribute
domain of color may be the set {blue, red , yellow}. Let s and t be two values
in such a finite domain X. It follows from reflexivity and central permutation
postulates that s : t :: s : t and s : s :: t : t should hold. By the symmetry
postulate, s and t play the same role. Note also that s and t are not necessarily
distinct. This leads to a minimal model of analogical proportion for nominal
values, which can be stated as follows: a : b :: c : d holds if and only if

(a, b, c, d) ∈ {(s, t, s, t), (s, s, t, t) | s, t ∈ X}.

This clearly covers the Boolean case as a particular case, leading to the 6 lines
seen in the Boolean truth table. If |X| = n, we obviously have n4 tuples (a, b, c, d).
Among them, we have i) n valid analogies of type s : s :: s : s, ii) n(n − 1) of
type s : t :: s : t with s 6= t, and iii) n(n− 1) of type s : s :: t : t with s 6= t.

Hence, a total of n(2n−1), which shows that the number of valid analogies in-
creases with the square of the cardinality of the underlying set. For instance, for
an attribute such as color whose values belong to, e.g., X = {blue, red , yellow},
we have only 15 valid analogies among 81 combinations. For instance, red :
yellow :: red : yellow holds, but it is not the case for red : yellow :: red : blue.
Following the definition, an analogical proportion that holds with nominal at-
tribute values involves at most two distinct values. This remark will have impor-
tant consequences in the theoretical part of this paper. So, in the nominal case,
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a : b :: c : d is false if and only if |{a, b, c, d}| ≥ 3 or (a, b, c, d) ∈ Neg , where

Neg = {(s, t, t, s), (s, s, s, t), (s, s, t, s), (s, t, s, s), (t, s, s, s) | s, t ∈ X, s 6= t}.

Representing objects with a single Boolean or nominal attribute is usually
not expressive enough. In general, items are represented by tuples of values, each
component being the value of an attribute, either Boolean or nominal. Extending
the definition of analogy to nominal tuples of the form a = (a1, . . . , am) belonging
to a Cartesian product X = X1 × · · · × Xm can be done component-wise as
follows:

a : b :: c : d holds ⇔ ∀i ∈ [1,m], ai : bi :: ci : di holds.

Throughout the paper, the attribute domains X1, . . . , Xm are assumed to be
finite sets with at least two elements each.

Analogical inference In the Boolean case, the problem of finding an x ∈
{0, 1} such that a : b :: c : x holds, does not always have a solution. Indeed,
neither 0 : 1 :: 1 : x nor 1 : 0 :: 0 : x has a solution (since 0111, 0110, 1000, 1001
are not valid patterns for an analogical proportion). In fact, a solution exists if
and only if (a ≡ b) ∨ (a ≡ c) holds. When a solution exists, it is unique and is
given by x = c ≡ (a ≡ b). This corresponds to the original view advocated by S.
Klein [8], who however applied the latter formula even to the cases 0 : 1 :: 1 : x
and 1 : 0 :: 0 : x, where it yields x = 0 and x = 1 respectively.

In the nominal case, the situation is similar. The analogical proportion a :
b :: c : x may have no solution (s : t :: t : x has no solution as soon as s 6= t),
and otherwise (if a = b or a = c) the solution is unique, and is given by x = b if
a = c and x = c if a = b. Namely, the solutions of s : t :: s : x, s : s :: t : x, and
s : s :: s : x are x = t, x = t, and x = s, respectively.

This motivates the following inference pattern first proposed in [16]

∀i ∈ {1, . . . ,m}, ai : bi :: ci : di holds

am+1 : bm+1 :: cm+1 : dm+1 holds

which enables us to compute dm+1, provided that am+1 : bm+1 :: cm+1 : x
has a solution. This pattern expresses a rather bold inference which amounts to
saying that if the representations of four items are in analogical proportion on
m attributes, they should remain in analogical proportion with respect to their
labels. Note that, we can restrict ourselves to binary labels, since a multiple class
prediction can be obtained by solving a series of binary class problems.

In this paper, we adopt a completely different viewpoint: instead of adding
constraints for ensuring the soundness of analogical inference, we want to char-
acterize contexts where this inference is valid, without adding any further con-
straints. In the next section, we proceed with a discussion on analogical inference,
and we present the notion of analogy-preserving functions.

3 Analogy-preserving functions

In the analogical inference pattern that was introduced in the previous section,
we implicitly assume that there is a dependency that links labels to the values
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of the m attributes. More precisely, there is some unknown function f such that
em+1 = f(e1, . . . , em), for any item e = (e1, . . . , em). Such a function f can be
thought of as a classifier that associates to each item, a (unique) class based on
the values of the m attribute values describing it.

Since the solutions of analogical equations (when they exist) are unique, the
previous pattern can be also written as follows:

a1 · · · ai · · · am f(a)
b1 · · · bi · · · bm f(b)
c1 · · · ci · · · cm f(c)
d1 · · · di · · · dm f(d)

where a = (a1, . . . , am), b = (b1, . . . , bm), c = (c1, . . . , cm) and d = (d1, . . . , dm).

Remark 3.1. Note that in the nominal case, each column i has at most two
distinct elements belonging to the attribute domain Xi of attribute i.

As previously highlighted, the conclusions obtained by analogical inference
are brittle. This means here that for a given d = (d1, . . . , di, . . . , dm) for which
we want to evaluate f(d), there may exist several triplets (a,b, c) such that
f(a) : f(b) :: f(c) : x is solvable, maybe leading to different solutions. In that
case, at least from a theoretical viewpoint, it is clear that applying the analogical
inference principle for a given d will not give a unique value to predict f(d). To
cope with real-life situations, one generally uses a majority vote for computing
a plausible f(d). But an interesting particular case is when all the analogical
predictions are the same whatever the triplets. This will be the case as soon as
the function f is analogy-preserving, a notion we now formally define.

3.1 Basic notions and motivation

In the following, X1, . . . , Xm, X denote finite sets with cardinality at least 2.

Definition 3.2. Let X = X1 × · · · × Xm. A function f : X → X is analogy-
preserving (AP for short) if for every a,b, c,d ∈ X,

a : b :: c : d and solvable(f(a), f(b), f(c))⇒ sol(f(a), f(b), f(c)) = f(d),

where solvable(f(a), f(b), f(c)) means that there exists an x such that f(a) :
f(b) :: f(c) : x holds, and sol(f(a), f(b), f(c)) is the unique solution for x.

Note that if f is AP, there cannot exist a,b, c,d,a′,b′, c′ such that

1. a : b :: c : d and a′ : b′ :: c′ : d,
2. solvable(f(a), f(b), f(c)) and solvable(f(a′), f(b′), f(c′)), and
3. sol(f(a), f(b), f(c)) 6= sol(f(a′), f(b′), f(c′)).

In other words, AP functions are exactly those for which analogical inference
never fails. Let us denote by AP the set of all AP functions. The following
examples suggest that the class of AP functions is quite large and diverse.
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Example 3.3. Consider the class of essentially unary1 functions f : X→ X, i.e.,
of the form f(x) = ϕ(xi), for some map ϕ : Xi → X. It is not difficult to see that
such functions are AP. This corresponds to the simplest example of classifiers
since the predicted classes are then determined by the value of a single attribute.

Example 3.4. Consider now the class of injective functions f : X → X, i.e., of
functions that satisfy the condition: if x 6= y, then f(x) 6= f(y). Again, such
functions are AP. The key observation is that if a,b, c are pairwise distinct, then
so are f(a), f(b), f(c) and the condition solvable(f(a), f(b), f(c)) in the defini-
tion of AP functions does not hold. Thus injective functions are AP. However,
injective functions are of little interest in classification since the number of class
labels is expected to be smaller than the number of items.

Example 3.5. Using the same argument, we can relax the previous example to
obtain other classes of AP functions. For instance, let 1 = (1, . . . , 1) ∈ {0, 1}m
and consider the class of pseudo-Boolean functions f : {0, 1}m → X satisfying the
following condition: the kernel2 of f is the form ker f = {(a,a⊕1) | a ∈ {0, 1}m},
where ⊕ denotes addition modulo 2. Again, it is not difficult to verify that such
functions are AP. These are examples of “reflexive” functions [6], i.e., functions
satisfying the condition that for every x ∈ {0, 1}m, f(x⊕ 1) = f(x).

Example 3.6. Examples 3.4 and 3.5 can be generalized as follows. Recall that
the set B := {0, 1} constitutes a 2-element field with the operations ⊕ (addition
modulo 2) and ⊗ (multiplication modulo 2). For any natural number m, the
set Bm, equipped with scalar multiplication and addition of vectors, is a vector
space over B. Let V be a fixed subspace of the vector space Bm. Any function
f : Bm → X such that ker f is the set of affine spaces that are translations of
V is AP. Examples 3.4 and 3.5 correspond to the cases where V is the trivial
subspace and the 1-dimensional subspace {0,1}, respectively.

In view of Remark 3.1 we will focus on the following subclass of AP functions.

Definition 3.7. An AP function f : X → X is called a hard AP (HAP) func-
tion if for all Si ⊆ Xi with |Si| ≤ 2 (1 ≤ i ≤ m) it holds that |Im f |S | ≤ 2, where
S := S1 × · · · × Sm. We denote the class of HAP functions by HAP.

Remark 3.8. Observe that HAP contains all essentially unary functions. If X
is a 2-element set, then HAP = AP.

3.2 ANF representations and affine functions

In this section we recall some well-known facts about the simplest interesting
case of functions, namely, the Boolean functions.

1 An argument xi is said to be inessential in f : X → X if for all (a1, . . . , am) ∈ X,
a′i ∈ Xi, we have f(a1, . . . , am) = f(a1, . . . , ai−1, a

′
i, ai+1, . . . , am). Otherwise, xi

is said to be essential in f . The number of essential arguments of f is called the
essential arity of f .

2 Recall that the kernel of f is ker f := {(a,b) ∈ {0, 1}m × {0, 1}m | f(a) = f(b)}.
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There are several formalisms to represent Boolean functions, such as the
classical DNF and CNF representations. However, in the analogical framework
the algebraic representation of Boolean functions turns out be more relevant
than the former classical representations based on the standard logical opera-
tors ∨ (disjunction) and ∧ (conjunction). Following [15, 17], each Boolean func-
tion f : {0, 1}m → {0, 1} (of arity m) is uniquely represented by a multilinear
polynomial called the algebraic normal form of f that we recall below.

Let B be the 2-element field over {0, 1} with its 2 usual operators ⊕ (addition
modulo 2) and ⊗ (multiplication modulo 2). Note that they correspond respec-
tively to the exclusive or and to the conjunction in logical terms. Equipped with
scalar multiplication (which coincides here with the multiplication modulo 2)
over B and addition, the set B[x1, . . . , xm] of polynomials on the m indetermi-
nates x1, . . . , xm is a vector space over B.

A (multilinear) monomial is a term of the form xI :=
∏

i∈I xi, for some
(possibly empty) finite set of positive integers I with the convention that 1 is
the empty monomial x∅. The size |I| is called the degree of xI , denoted d(xI).
A (multilinear) polynomial is a sum of monomials∑

I⊆{1,...,m}

ωI · xI

where each ωI belongs to B (addition is understood as addition modulo 2). Note
that the monomials 0 and 1 are just 0 ·x∅ and 1 ·x∅, respectively. The degree of
a polynomial is then the maximum degree among the degrees of its monomials.

An algebraic normal form (ANF) of a Boolean function f of arity m is simply
a multilinear polynomial in B[x1, . . . , xm] that represents it:

f(x1, . . . , xm) =
∑

I⊆{1,...,m}

ωI · xI .

It is well known that the ANF representation of a Boolean function is unique
(see, e.g., [6]), and thus we can define the degree d(f) of a Boolean function
f as the degree of the polynomial that represents it. Note that the constant 0
and 1 functions are the only Boolean functions of degree 0, whereas projections
(that correspond to the selection of a single attribute and that are represented
by variables xi) and their negations (that are represented by polynomials of the
form xi ⊕ 1) are the only functions of degree 1.

A Boolean function f : Bm → B is said to be affine if d(f) ≤ 1, i.e., there
exist ω0, ω1, . . . , ωm ∈ B such that

f(x1, . . . , xm) =

m∑
i=1

ωi · xi + ω0.

The set of affine functions of arity m is denoted by Lm, so that L =
⋃

m≥0 Lm

is the set of all affine functions. If ω0 = 0, then such an affine function is said to
be linear. Thus, affine functions are either linear functions or their negations.

Our interest in this class of affine functions is motivated by the characteriza-
tion of AP Boolean functions (i.e., in case when items are described by Boolean
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attributes) [4]: AP Boolean functions are exactly those Boolean functions that
are affine, i.e., AP = L.

In the following sections, we will generalize this result to the case of nomi-
nal attributes. This is not a straightforward extension of the Boolean case as we
shall see. Before doing that, we provide an illustrative example that puts nominal
analogical proportions in another perspective, and that reveals the close relation-
ship of analogical proportions and taxonomic trees, as recently suggested in the
Boolean case [1].

3.3 An illustrative example

In the illustrative example below, items are assumed to be described by means
of three attributes (i.e., m = 3), numbered from 1 to 3, namely: 1 = shape, 2 =
color, and 3 = weight, where respectively X1 = {circle (c), square (s)}, X2 =
{blue (b), red (r), yellow (y)}, and X3 = {light (l), heavy (h)}. Due to space
constraints, we chose a small example, with a non-Boolean nominal attribute,
namely, X2 with |X2| = 3. There are two class labels referred to by 0 and 1.

Table 1 enumerates the 12 items, a,a′,b, . . . , f ′, that can be distinguished on
the basis of the three attributes above. Moreover, we consider 4 ways of classi-
fying them into the two classes, each of which corresponding to the 4 functions
g1, g2, g3, g4.

items shape color weight g1 g2 g3 g4
a c b l 1 1 1 1
a′ c b h 1 1 0 0
b c r l 1 0 0 1
b′ c r h 0 0 0 0
c c y l 0 1 0 1
c′ c y h 0 1 0 0
d s b l 1 0 1 1
d′ s b h 1 0 0 0
e s r l 1 1 0 1
e′ s r h 0 1 0 0
f s y l 0 0 0 1
f ′ s y h 0 0 0 0

Table 1. Items, attributes, and classifications.

Clearly, g1 is not an AP function since: i) a : a′ :: b : b′ holds, ii) 1 : 1 :: 1 : x
is solvable (just take x = 1), iii) but g1(b′) = 0 is not the solution of 1 : 1 :: 1 : x.

The function g2 looks more promising, since the 4-tuple a, a′, b, b′ is as-
sociated with 1 : 1 :: 0 : 0, which holds as an analogical proportion. However,
looking at a, b′, d, e′ we again have an analogical proportion on the three at-
tributes. However this is associated with 1 : 0 :: 0 : 1 which is not an analogical
proportion. Nonetheless, 1 : 0 :: 0 : x is not a solvable proportion: as such, it
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cannot be considered as a counter-example for proving that g2 is not AP. In
fact, by an exhaustive search we can see that there is no counter-example in the
table showing that g2 is not AP. Thus, g2 is AP: class 1 can be described by
the equivalence c ≡ ¬r (since ¬r = b ∨ y and ¬c = s here), and class 0 can be
described by c⊕ ¬r.

For g3, we can consider the following four tuples: c = (c, y, l) with g3(c) = 0,
c′ = (c, y, h) with g3(c′) = 0, d = (s, b, l) with g3(d) = 1, and d′ = (s, b, h) with
g3(d′) = 0. In this case, we have c : c′ :: d : d′ and solvable(g3(c), g3(c′), g3(d)),
but g3(c) : g3(c′) :: g3(d) : g3(d′) does not hold. This shows that g3 is not AP.
For g3, class 1 corresponds to the blue light objects, which clearly corresponds
to a monomial of degree 2.

The situation is simpler for g4, where class 1 corresponds to the light objects.
It is not difficult to see that it is essentially unary, and thus an AP function.

What happens with these different classification functions is better under-
stood by looking at classification trees, which is the topic of the next subsection.

3.4 Taxonomic trees

A table describing all the possible items that can be distinguished in terms of a
set of nominal attributes can be straightforwardly associated with a taxonomic
tree, taking the attributes in some order. The tree corresponding to Table 1,
with two binary attributes and one ternary one, is given in Figure 1. At the
third level, we retrieve the 2 · 2 · 3 = 12 items from a to f ′. They can be encoded
by following the path from the root, using a standard convention: at each level
the edges are numbered from the left from 0 to 1, or to 2. Thus, for example, b′

is associated with 011, corresponding to attribute values c, r,h; see Figure 1.
A large number of analogical proportions are hidden between the leaves of

such a taxonomic tree. Namely, in our example with 12 items, there are exactly 30
distinct analogical proportions on the three attributes (where all the elements in
the 4-tuples are distinct). For instance, we have a : a′ :: b : b′, or c : c′ :: d : d′.
This can be checked by observing that here these analogical proportions involving
3 attributes are either

– of the form uxt : uyt :: vxt : vyt (with one constant attribute value), or
– of the form uxt : vxz :: uyt : vyz (with no constant attribute value),

where t, u, v, x, y, z are attribute values, one by attribute in each tuple (such as
tux), since an analogical proportion can involve at most 2 distinct values for each
attribute. The ordering of attributes has no special meaning, but is the same in
each tuple. The 2 above patterns remain the same under symmetry. Note that

uxt : uxt :: vxt : vxt and uxt : vyt :: uxt : vyt

are not considered, since they hold trivially by identity or reflexivity. Note also
that the form uxt : vxz :: uyt : vyz is the same as uxt : uyt :: vxz : vyz by
central permutation (even if the number of constant attributes in the first and
second pairs of tuples vary from two to one).
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Fig. 1. Example of classification tree.

Reading this taxonomic tree horizontally, there is quite a number of analog-
ical proportions that hold between 4-tuples of items. Assume for a short while
that we only have a tree induced by 3 binary attributes. Then each of the two
forms uxt : uyt :: vxt : vyt and uxt : vxz :: uyt : vyz yields 6 analogical pro-
portions, i.e., in this case we have 12 distinct non-trivial analogical proportions.
Indeed, considering the first form uxt : uyt :: vxt : vyt, there are 3 · 2 = 6 possi-
ble choices of value for t in case of 3 binary attributes, the possible instantiations
of ux, uy, vx, vy being all equivalent due to analogical proportion postulates.
For the second form uxt : vxz :: uyt : vyz, we can observe that uxt and uyt
(as well as vxz and vyz) differ only on one attribute value. There are 6 possi-
ble instantiations for this attribute in case of 3 binary attributes, the possible
instantiations of the two remaining binary attributes being all equivalent.

In case of two binary attributes and one ternary attribute as in the example,
a similar counting can be made. For the first form, we now have 1 · 3 + 2 · 2 =
7 possible instantiations for t. Moreover when t is not a value of the ternary
attribute, we have 3 possible ways of instantiating ux, uy, vx, vy. Altogether
the first form then yields 1 · 3 + 2 · 2 · 3 = 15 analogical proportions. For the
second form there are 3 ways of instantiating the “changing attribute” if it is
the ternary one; and 2 · 2 if it is a binary attribute, in this later case there
are 3 possible ways of instantiating the remaining attributes. Again, we get 15
analogical proportions, and a total of 30 distinct analogical proportions.

As suggested by the above example, the number of analogical proportions
increases rapidly with the cardinalities of the attribute domains and with the
number of levels in the tree. This suggests how important the presence of ana-
logical proportions in a classification process is.

Given one of our functions gi, nothing forbids to consider its value as another
attribute (an n-ary one if there are n classes). So instead of considering a, we
consider (a, gi(a)) as an (m + 1)-tuple. We can then carry on the building of
the tree as the dotted part in Figure 1 associated with the example. But now,
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a choice has to be made between the different classification options for each
item corresponding to a path from the root to a leaf: the classification option
is related to the value of gi (in our case 0 or 1). If the class assignment is not
“well-balanced” the resulting function will not be AP, as in Fig. 1 where we can
clearly observe that 0001 : 0011 :: 0101 : 0110 does not hold (on the 4th digit).

4 Local description of HAP functions: almost affine functions

Recall that B denotes the 2-element field with ⊕ (addition modulo 2) and ⊗
(multiplication modulo 2). In the Boolean case, i.e., when X1 = · · · = Xm =
X = B, the class of AP functions was completely described in [4], where the
following theorem was proved:

Theorem 4.1. A function f : Bm → B is AP if and only if it is affine. In
particular, the class of AP functions constitutes a clone of Boolean functions,
i.e., it contains all projections and it is closed under compositions.

To extend this result to HAP functions in the arbitrary nominal case (see
Subsection 3.1), we shall make use of the following useful observations. From
the definition of HAP functions it follows that the restriction f |S of a HAP
function f to any subset S := S1× · · · ×Sm ⊆ X = X1× · · · ×Xm with |Si| ≤ 2
(1 ≤ i ≤ m) must have at most 2 distinct values. Therefore, every such function
can be thought of as a Boolean function by a suitable renaming of variable and
function values. Thus, from Theorem 4.1, we have the following corollary.

Corollary 4.2. Let X be a set, let S1, . . . , Sm be 2-element sets, and set S :=
S1×· · ·×Sm. A function f : S → X is HAP if and only if there exist ϕf : {0, 1} →
X and ϕf

i : Si → {0, 1} such that

f |S = ϕf (ϕf,S
1 (x1)⊕ · · · ⊕ ϕf,S

m (xm)⊕ c). (1)

Remark 4.3. Note that the term ⊕ c can be encoded into ϕf so that (1) can be
simplified into

f |S = ϕf (ϕf,S
1 (x1)⊕ · · · ⊕ ϕf,S

m (xm)). (2)

We will generalize these results by introducing the notion of “almost affine”
functions, and show that HAP functions are exactly the almost affine functions.

Definition 4.4. A function f : X → X is almost affine if for any Si ⊆ Xi

with |Si| ≤ 2, and S := S1 × · · · × Sm, there exist ϕf,S : {0, 1} → Im(f |S) and

ϕf,S
i : Si → {0, 1} such that f |S = ϕf,S(ϕf,S

1 (x1)⊕ · · · ⊕ ϕf,S
m (xm)).

Theorem 4.5. A function f : X→ X is HAP if and only if it is almost affine.

Proof. By Corollary 4.2, we know that every HAP function is almost affine.
Moreover, by definition, every restriction f |S of an almost affine function f is
AP on S ⊆ X. Therefore, f is HAP. ut
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As we will see, this description is quite useful. However, it has some limita-
tions since it requires a local inspection on each subset

S = S1 × · · · × Sm ⊆ X = X1 × · · · ×Xm.

In the next section we provide a global description of almost affine functions,
and thus a description of HAP functions.

5 Global description of HAP functions: quasi-linear functions

In the previous section, we showed that the class of HAP functions f : X → X
coincides exactly with the class of almost affine functions. In this section we will
show that the HAP functions are either essentially unary or quasilinear.

Definition 5.1. A function f : X→ X is quasilinear if there exist ϕ : {0, 1} →
X and ϕi : Xi → {0, 1} (1 ≤ i ≤ m) such that f = ϕ(ϕ1(x1)⊕ · · · ⊕ ϕm(xm)).

We are going to make use of Jablonski’s Fundamental Lemma (see, e.g. [14]).

Lemma 5.2 (Jablonski’s Fundamental Lemma).

1. Let f : Xm → X be a function that has at least two essential arguments and
|Im(f)| = ` > 2. Then there exist sets Si ⊆ X (1 ≤ i ≤ m) with |Si| ≤ 2 such
that for S := S1 × · · · × Sm, |Im(f |S)| ≥ 3.

2. More generally, let f : X → X be a function that has at least two essential
arguments and |Im(f)| = ` > 2. Then for any k with 2 < k ≤ `, there exist
sets Si ⊆ Xi (1 ≤ i ≤ m) with |Si| ≤ k − 1 such that for S := S1 × · · · × Sm,
|Im(f |S)| ≥ k.

Lemma 5.3. Let f : X → X. Assume that for all Si ⊆ Xi with |Si| ≤ 2 (1 ≤
i ≤ m), and S := S1×· · ·×Sm, we have that |Im(f |S)| ≤ 2. Then f is essentially
unary or |Im(f)| ≤ 2.

Proof. Suppose, to the contrary, that f has at least two essential arguments and
|Im(f)| = ` ≥ 3. By Lemma 5.2, item 2, there exist sets Si ⊆ Xi (1 ≤ i ≤ m)
with |Si| ≤ 2 such that for S := S1 × · · · × Sm, |Im(f |S)| ≥ 3. We have reached
a contradiction. ut

In other words, Lemma 5.3 asserts that an almost affine function f is either
essentially unary or has a range of at most two elements.

Proposition 5.4. A function f : X → X is almost affine if and only if it is
essentially unary or quasilinear.

Proof. Assume that f : X → X is almost affine and has at least two essential
arguments. Then |Im(f)| ≤ 2 by Lemma 5.3.

We are going to show that for all Si ⊆ Xi (1 ≤ i ≤ m) and S := S1×· · ·×Sm,

there exist maps ϕf,S : {0, 1} → X and ϕf,S
i : Si → {0, 1} such that

f |S = ϕf,S
(
ϕf,S
1 (x1)⊕ · · · ⊕ ϕf,S

m (xm)
)
.
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The claim holds whenever |Si| ≤ 2 (1 ≤ i ≤ m) by definition.
We proceed with an inductive argument. Assume that the claim holds for all

sets Si ⊆ Xi (1 ≤ i ≤ m) with |Si| ≤ ki for some k1, . . . , km with 2 ≤ ki ≤ |Xi|.
We will show that if j ∈ {1, . . . ,m} and kj < |Xj |, then the claim holds also for
all sets Si ⊆ Xi (1 ≤ i ≤ n) with |Si| ≤ ki (i 6= j) and |Sj | = kj + 1.

So, let Si ⊆ Xi (1 ≤ i ≤ m) with |Si| ≤ ki (i 6= j) and |Sj | = kj + 1, and
write S := S1 × · · · × Sm. Assume that a, b ∈ Sj , a 6= b. Let S′j := Sj \ {b} and
S∗j := {a, b}, and let

S′ := S1 × · · · × Sj−1 × S′j × Sj+1 × · · · × Sm,

S∗ := S1 × · · · × Sj−1 × S∗j × Sj+1 × · · · × Sm,

T := S1 × · · · × Sj−1 × {a} × Sj+1 × · · · × Sm = S′ ∩ S∗,
T ′ := S1 × · · · × Sj−1 × {b} × Sj+1 × · · · × Sm = S \ S′.

By the inductive hypothesis, there exist maps ϕf,S′ , ϕf,S′

i (1 ≤ i ≤ m) and

ϕf,S∗ , ϕf,S∗

i (1 ≤ i ≤ m) such that f |S′ = ϕf,S′
(
ϕf,S′

1 (x1) ⊕ · · · ⊕ ϕf,S′

m (xm)
)
,

and f |S∗ = ϕf,S∗
(
ϕf,S∗

1 (x1)⊕ · · · ⊕ ϕf,S∗

m (xm)
)
.

Let now ϕf,S := ϕf,S′ , ϕf,S
i := ϕf,S′

i for i 6= j, and define ϕf,S
j : Sj → {0, 1} as

the extension of ϕf,S′

j : S′j → {0, 1} that satisfies the condition ϕf,S
j (a) = ϕf,S

j (b)

if and only if ϕf,S∗

j (a) = ϕf,S∗

j (b).

It remains to show that f |S = ϕf,S
(
ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

m (xm)
)
. Let x =

(x1, . . . , xm) ∈ S. If x ∈ S′ then

ϕf,S
(
ϕf,S
1 (x1)⊕ · · · ⊕ ϕf,S

m (xm)
)

= ϕf,S′
(
ϕf,S′

1 (x1)⊕ · · · ⊕ ϕf,S′

m (xm)
)

= f(x).

Assume now that x ∈ S\S′ = T ′. Then xj = b, so x ∈ S∗. If ϕf,S∗

j (a) = ϕf,S∗

j (b),

then also ϕf,S
j (a) = ϕf,S

j (b), and we have

ϕf,S
(
ϕf,S
1 (x1)⊕ · · · ⊕ ϕf,S

j (b)⊕ · · · ⊕ ϕf,S
m (xm)

)
=

ϕf,S
(
ϕf,S
1 (x1)⊕ · · · ⊕ ϕf,S

j (a)⊕ · · · ⊕ ϕf,S
m (xm)

)
=

ϕf,S∗
(
ϕf,S∗

1 (x1)⊕ · · · ⊕ ϕf,S∗

j (a)⊕ · · · ⊕ ϕf,S∗

m (xm)
)

=

ϕf,S∗
(
ϕf,S∗

1 (x1)⊕ · · · ⊕ ϕf,S∗

j (b)⊕ · · · ⊕ ϕf,S∗

m (xm)
)

= f(x).

If ϕf,S∗

j (a) 6= ϕf,S∗

j (b), i.e., ϕf,S∗

j (a) ⊕ 1 = ϕf,S∗

j (b), then also ϕf,S
j (a) ⊕ 1 =

ϕf,S
j (b), and we have

ϕf,S
(
ϕf,S
1 (x1)⊕ · · · ⊕ ϕf,S

j (b)⊕ · · · ⊕ ϕf,S
m (xm)

)
=

ϕf,S
(
ϕf,S
1 (x1)⊕ · · · ⊕ ϕf,S

j (a)⊕ 1⊕ · · · ⊕ ϕf,S
m (xm)

)
=

ϕf,S∗
(
ϕf,S∗

1 (x1)⊕ · · · ⊕ ϕf,S∗

j (a)⊕ 1⊕ · · · ⊕ ϕf,S∗

m (xm)
)

=

ϕf,S∗
(
ϕf,S∗

1 (x1)⊕ · · · ⊕ ϕf,S∗

j (b)⊕ · · · ⊕ ϕf,S∗

m (xm)
)

= f(x).

Therefore ϕf,S
(
ϕf,S
1 (x1)⊕ · · · ⊕ ϕf,S

m (xm)
)

= f(x) for all x ∈ S. ut



14 M. Couceiro et al.

Example 5.5. Note that both g2 and g4 of Subsection 3.3 are in fact HAP func-
tions, since both are quasilinear. Indeed, g2 and g4 can be represented as

g2(x1, x2, x3) = ϕ(ϕ1(x1)⊕ ϕ2(x2)⊕ ϕ3(x3))

with

ϕ1 : {c, s} → {0, 1}, c 7→ 0, s 7→ 1,

ϕ2 : {b, r, y} → {0, 1}, b 7→ 1, r 7→ 0, y 7→ 1,

ϕ3 : {l,h} → {0, 1}, l 7→ 0, h 7→ 0,

ϕ : {0, 1} → {0, 1}, 0 7→ 0, 1 7→ 1

and
g4(x1, x2, x3) = ψ(ψ1(x1)⊕ ψ2(x2)⊕ ψ3(x3))

with

ψ1 : {c, s} → {0, 1}, c 7→ 0, s 7→ 0,

ψ2 : {b, r, y} → {0, 1}, b 7→ 0, r 7→ 0, y 7→ 0,

ψ3 : {l,h} → {0, 1}, l 7→ 1, h 7→ 0,

ψ : {0, 1} → {0, 1}, 0 7→ 0, 1 7→ 1.

Moreover, g4 is essentially unary because

g4(x1, x2, x3) = γ(x3)

with γ : {l,h} → {0, 1}, l 7→ 1, h 7→ 0.

We have seen that the class of HAP functions on X coincides with the class
of almost affine functions on X. In the case when X1 = · · · = Xm = X, this
class is exactly Burle’s clone of quasilinear functions [3], thus generalizing the
last assertion of Theorem 4.1.

Proposition 5.6. For every finite X, the class of HAP functions on X con-
stitutes a clone, i.e., it contains every projection on X and it is closed under
forming compositions: if f : Xn → X and each gi : Xm → X is HAP on X, then
so is f ′ = f(g1, . . . , gn) : Xm → X.

6 Conclusion

The above results describe the class of hard analogy-preserving functions over
finite domains, including the Boolean case as a particular case. The case of non-
finite domains remains open. Still it is an important step towards a better un-
derstanding of analogical inference. The analogy-preserving functions are those
for which analogical inference never fails for predicting their values. Still the set
of situations where analogical inference gives good predictions is much larger, as
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shown by experiments, since a good prediction does not require that all predic-
tions given by triplets are the same, but that a majority of triplets give the good
prediction. However, these theoretical results contribute to a better understand-
ing of analogical inference and show that applying analogical proportion-based
inference amounts to enforcing linearity as much as possible, at least in a local
manner. Analogical proportions are pervasive, as shown by their abundance in
taxonomic trees, and are thus an important notion for reasoning from data.
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