
HAL Id: hal-02914750
https://hal.inria.fr/hal-02914750

Submitted on 12 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenges for Layout Validation: Lessons Learned
Santiago Bragagnolo, Benoît Verhaeghe, Abderrahmane Seriai, Mustapha

Derras, Anne Etien

To cite this version:
Santiago Bragagnolo, Benoît Verhaeghe, Abderrahmane Seriai, Mustapha Derras, Anne Etien. Chal-
lenges for Layout Validation: Lessons Learned. QUATIC 2020 - 13th International Conference on the
Quality of Information and Communications Technology, Sep 2020, Faro, Portugal. �hal-02914750�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362231577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02914750
https://hal.archives-ouvertes.fr


Challenges for Layout Validation: Lessons
Learned

Santiago Bragagnolo1,2, Benoît Verhaeghe1,2, Abderrahmane Seriai1,
Mustapha Derras1, and Anne Etien2

1 Berger-Levrault, Montpellier, France
{firstname}.{lastname}@berger-levrault.com

2 Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL, France
{firstname}.{lastname}@inria.fr

Abstract. Companies are migrating their software systems. The migra-
tion process contemplates many steps, UI migration is one of them. To
validate the UI migration, most existing approaches rely on visual struc-
ture (DOM) comparison. However, in previous work, we experimented
such validation and reported that it is not sufficient to ensure a result
that is equivalent or even identical to the visual structure of the interface
to be migrated. Indeed, two similar DOM may be rendered completely
differently. So, we decide to focus on the layout migration validation.
We propose a first visual comparison approach for migrated layout val-
idation and experiment it on an industrial case. Hence, from this first
experiment and already existing studies on image comparison field, we
highlight challenges for layout comparison. For each challenge, we pro-
pose possible solutions, and we detail the three main features we need
to create a good layout validation approach.

Keywords: GUI Migration · Challenges · Comparison · Validation

1 Introduction

With the fast evolution of programming languages and frameworks, companies
tend to update their software more and more. This evolution may imply the
migration of their application GUI [15]. To ensure the proper software operation
after the update, one needs to validate and ensure the correct the migration of
GUI. Whereas manual validation is always possible, it is tedious, error-prone,
time-consuming, and is expensive for the companies. So we look for automatic
validation approaches.

While approaches base their validation on DOM3 comparison [4], few discute
the validation of the rendered UI. The visual aspect of an application is mostly
neglected, although it is essential for the end-user of the application [11], and thus
to the acceptance of the new software. Since the software may also be accepted
or rejected by its look and feel, we consider that UI validation is extremely
important for the success of the migration.
3 Document Object Model



2 Bragagnolo et al.

A migration process has one of two different objectives in relation to the
migration of the UI: such process is rather visually constant, or layout con-
stant. In the case where a migration process is visually constant, it aims to
produce a migrated version with identical UI, from the layout of the widgets , to
the look and feel of the widgets. In the other hand, when the migration process is
layout constant, it aims to produce an enriched migrated version with the same
layout, but possibly visually different widgets. In both cases, the validation of
the migrated layout is a first step to the UI validation.

Inspired by other research fields [3, 13, 14], we propose an approach to com-
pare the layout of migrated applications with the original layouts. We exper-
imented with this approach on a real industrial migration project. From this
experience, we report a list of challenges for layout validation and provide some
solutions.

In the further sections, we discuss the need for validation in general and
particularly about layout validation (Section 2). We present the different existing
approaches to tackle down this problematics (Section 3), to explain the position
of our solution. We draft our validation process (Section 4), and give place to the
core of this article, the report of challenges (Section 5), where we describe each
of the problematics we found on the development of our method. We identify
the features that can help to solve those challenges (Section 6), and after a
conclusion, we present the middle term goals of our work (Section 7).

2 UI Validation

Our work takes place in collaboration with Berger-Levrault4, a major IT com-
pany selling Web applications developed in GWT. Unfortunately, GWT is no
longer maintained and the last update was made in 2015. As a consequence,
Berger-Levrault decided to migrate its applications to Angular 6. This migra-
tion is crucial since Berger-Levrault has more than 8 applications in GWT each
including more than 500 web pages.

In preceding work [15], we proposed an approach to migrate the front-end of
applications. We implemented this approach to migrate the GWT applications
of Berger-Levrault to Angular. Once the migration is performed, we need to
validate that the applications are correctly migrated.

Migration and validation are part of the same process. Once the validation
is done, the results are going to be used for enhancing the migration and fixing
errors. This new migration has to be validated once again, triggering a new
process of migration. This loop recurs again until the process of migration is
finished. In this context, manual validation for each iteration of the migration
process is expensive in terms of money and time. Hence, we propose to rely on
automatic validation.

In this section we present the main migration validation approach we tried
from the literature and detail why it is not sufficient (Section 2.1). Then we
detail what is a layout validation (Section 2.2).
4 https://www.berger-levrault.com

https://www.berger-levrault.com


Challenges for Layout Validation: Lessons Learned 3

2.1 Current Migration Validation Approach

In the experimentations of validation of UI we started trying to use the common
means proposed by the literature. Joorabchi and Mesbah [5], Memon et al. [7]
and Sánchez Ramón et al. [11] defined metrics to verify the success of the migra-
tion process. They checked that all the widgets and attributes are detected by
their tools. Each widget and attribute must be identified and reachable, which
means the entity type must be discovered, migrated, and present in the tar-
get applications. Each widget should also belong to the right container and its
attributes created with the right value.

(a) GWT original
(b) Angular migration

Fig. 1: Migration of a page without considering the layout

We experimented with the above validation on the case of Berger-Levrault.
Despite that, it reported good results according to the proposed metrics, the
origin and generated UIs were completely different. Figure 1 presents the mi-
gration of one web page of a Berger-Levrault application. On the left-hand side
(Figure 1a), it shows the original page, and on the right-hand side (Figure 1b)
the page after the migration.

The traditional DOM proposes a tree as containing structure, where we can
have elements composed by other elements, defining a strong relation of con-
tainment and scoping. Like this we can define a document with header, body
and footer. Each of these parts can hold internal divisions, sections as well as
widgets and components, recursively contained. Comparing DOM expecting to
have a direct implication on the page rendering is the first solution. Two pages
(the original and the migrated ones) may have equivalent DOM and thus plainly
satisfy the proposed metrics. However, the migrated UI (Figure 1b) and the
original version (Figure 1a) do not have much in common to the human eye.

Comparing DOM might be a good starting point to compare pages but it is,
now-a-days, certainly not sufficient. In modern applications, the layout and style
are managed orthogonally to the DOM composition. Thus, these approaches are
not suitable for validating modern applications.

This is why we propose to add another dimension to the validation of the UI
migration: the layout.



4 Bragagnolo et al.

2.2 Layout Validation
From Merriam&Webster dictionary5 a Layout is the plan or design or arrange-
ment of something laid out.

From this definition, we consider that the layout is the position of the UI
elements the one against the others. In a UI, we have two main kinds of compo-
nents. Those that contain other components, for defining groups of components,
and those that are contained. The components containing others, such as field
set, card, panels, etc., are responsible for defining the main disposition of the
contained elements in the page. For this reason we call those UI elements: “struc-
tural layout elements”.

(a) Page (b) Page’s structural layout elements

Fig. 2: A layout example

In Figure 2, we present the relationship between the UI and its layout. Fig-
ure 2a shows the page as interpreted by the browser. And, in Figure 2b we
highlighted the structural layout elements of the showed content. By highlighting
these structural layout elements we are thus revealing the layout. The empty
layout boxes belong to adds that have been silenced by the usage of ad-blocking
plugins.

As we pointed out previously in Section 1, the migration may be required
to be visually constant or layout constant. To validate that the migrated UI
complies with the UI expectations we must take into account at least the layout.

3 State of the Art
To compare the rendered UI after performing a migration, several solutions can
be considered regarding the approaches existing in the literature. First, in Section
5 https://www.merriam-webster.com/dictionary/layout

https://www.merriam-webster.com/dictionary/layout


Challenges for Layout Validation: Lessons Learned 5

3.1, we expose existing validation approaches used to compare the visual aspect
of two software systems. Second, in Section 3.2, we present approaches from
other research fields that are related to image comparisons and which we think
we can use in our domain.

3.1 Applications Comparison

Moran et al. [9] compared the UI of android applications. They proposed an
approach to detect GUI changes in evolving mobile applications (e.g., between
two versions of the same application). Their approach has two main concerns:
mapping the screens between the applications version (i.e., which previous screen
corresponds to which actual screen), and detecting the GUI changes. For the
change detection, they rely on a pixel by pixel comparison of the screenshots of
the previous and current applications.

Sánchez Ramón et al. [12] proposed an approach to infer a hierarchical layout
from a UI with hardcoded widgets positions. To retrieve this layout, they use
the closeness metric between two widgets. This metric allows them to compute
the visual proximity of two elements in a UI. By grouping widgets together, they
create the new layout definition.

Cao et al. [3] migrated web archives from HTML4 to HTML5. To validate
the migration they proposed to segment the original and the migrated pages in
blocks using the DOM. Then, they took screenshots of the original and migrated
applications with blocks and computed the differences between the two pages.

Sanoja and Gançarski [13] proposed a segmentation method for web page
analysis. Their method consists on dividing a web page into blocks. To retrieve
the blocks, CSS and HTML provide them the position of all widgets on the web
page, and they use background space to separate two blocks. For example, if
there is no space between two elements, they are considered in the same block.

Alpuente and Romero [1] proposed UI comparison based on DOM analysis.
Since the observation that two different DOM may render the same UI, they
proposed to infer the visual structure (i.e., tree) of a web application from its
DOM. To do so, they classified the HTML tags into four categories, the group,
the row, the col, and the text. Then, they translated the HTML DOM using their
terminology, and they compressed the new UI tree. The compression corresponds
to a simplification of the new tree, for example, by grouping two groups together.
They considered two different pages having the same visual tree as visually
similar.

The authors proposed different ways to represents layouts, infer them, and
compare them. Some approaches rely on DOM information and DOM compari-
son while others rely on screenshot comparison. Except [9] and [1], comparison
approaches use blocks as a way to simplify the comparison problem and focus
on the layout aspect. The blocks were created from DOM information.



6 Bragagnolo et al.

3.2 Images Comparison

Another strategy to compare images is to take inspiration from the work on
image retrieval. This field is focused on determining if an image is similar to or
contains another one.

Van Beusekom et al. [14] proposed an approach to retrieve images based on
their layouts. To do so, they extracted from each image its layout. The struc-
tural layout elements are represented by blocks. Then, to compute the distance
between two images, the authors compute the distance between the layouts, and
so between the blocks. To improve their result, they also match each block of an
image with the other block of the compared image.

Finally, the image comparison approaches [6, 10] are used to identify image
similarity. This approach allows one to compare two images and find if an image
is present in the other. It can be used to determine if two images are originally
identical even after distortion or rotation, or to determine if part of an image is
present in another one.

The proposed approaches might be used to compare two screenshots. How-
ever, since those approaches have been designed to retrieve an image inside
another it is different from our problem. So, further work must be done to verify
if their results are relevant in our context.

4 First Sketch of Solution

To validate the migration of the layout, i.e., the identical positioning of UI ele-
ments the ones against the others, we proposed and implemented an approach6.

Our approach aims to highlight the structural layout elements. It is inspired
by the definition of blocks proposed by Sanoja and Gançarski [13], Cao et al. [3]
and Van Beusekom et al. [14] The approach is divided into five steps.

First step: detecting pages to validate. The first step concerns the original and
the target applications. For each of them, this step consists in detecting all the
pages for which we have to validate the migration. By detection, we mean being
able to reach given pages if the list is known or crawling the full application in
the opposite case. Reaching a page is rather trivial, in traditional web develop-
ment approaches; by precising the related URL. However, it becomes complex,
for example in modern single page applications (from now on, SPA)7, where
different components are accessed not by using URL, but by applying specific
flows of user interactions, e.g., click, double click, hover, etc. The output of this
step is a list of pages of the source application to validate, the way to access
them, their corresponding pages in the migrated application as well as the way
to access these latter. There are different techniques of crawling and discovery
that suit this case. In the context of Berger-Levrault, we rely on the migration

6 https://github.com/badetitou/Pasino
7 A Single page application is a web application or website that interacts with the web
browser by dynamically rewriting the current web page

https://github.com/badetitou/Pasino


Challenges for Layout Validation: Lessons Learned 7

tool that provides us this information gathered during the process of migration.

The four next steps are iteratively repeated for each couple of pages (one of
the source application and its corresponding one in the migrated application).
We describe the next step for a couple of source and migrated pages.

Second step: browsing original and migrated pages. The two pages are browsed
by using a browser (i.e.,Firefox, Chrome, Edge, Safari, etc.). The same issues are
faced concerning SPA applications what is the case for Berger-Levrault applica-
tions. In that cases, we use Selenium8 to navigate through pages by simulating
user interactions and access to the page to analyze.

Third step: creating blocks. Each browsed page must be prepared and normal-
ized for further comparisons, i.e., the size of the pages must be the same before
taking screenshots to ease future image comparison. In this step, we choose and
extract the elements to compare. Since we are validating layouts, we must empha-
size the structural layout elements with their inner structural layout elements.
Since we are not validating the look of the components, such as buttons, labels,
text boxes, etc., we must underemphasize or silence the content for ignoring the
comparison of these details. Concretely, we create blocks corresponding to each
of the structural layout elements. In the context of Berger-Levrault, we apply a
new CSS on the pages. The CSS converts all fieldset widgets into blocks with
transparency. Thus, we can look at blocks composition.

Fourth step: taking screenshot. Our approach relies on a visual validation.
Consequently, after creating the blocks, we take snapshot of the result as a visual
mean of comparison. So we get an image with only structural layout elements.

Fifth step: comparing. We compare, pixel by pixel, the screenshots of the
source application and the ones of the migrated application.

(a) GWT original page (b) Angular migrated page

(c) Blocks GWT page (d) Blocks Angular page

Fig. 3: Apply approach on GWT to Angular migration

8 https://www.selenium.dev/

https://www.selenium.dev/


8 Bragagnolo et al.

We applied our tool on the migration project of Berger-Levrault from GWT
to Angular. Figure 3 shows the screenshots created by our approach using blocks.
On the left-hand side, it shows the original page screenshot and its corresponding
screenshot after applying the creation of blocks. On the right-hand side, it shows
the equivalent screenshots for the migrated page.

Fig. 4: Diff between pages

Although it looks visually equivalent, and there are no differences between
the two, the distance between the blocks and the size of the blocks are slightly
different. Figure 4 shows the difference pixel by pixel of the blocks screenshots.
Red pixels represent positions where there are differences between the source and
the migrated pages. Even though there are few perceptual differences between
the two images, the comparison of the blocks reports 9% of the exported image
incorrectly migrated.

(a) Blocks GWT page (b) Angular Grey box

Fig. 5: Difference in between original and a full grey block

This 9% may look like a small number. In our context, this is not true.
Indeed, Figure 5 shows pixel by pixel comparison, between the original page and
a full grey block of the same size. As can be seen in Figure 6, following the same
strategy to measure the difference between the two screenshots, it was reported
5% of the image bad exported. So, our strategy reports that a full grey block
layout is better than the one created from a real migration. But, it is completely
false. Thus, it confirms that we need a smarter way to validate layout migration.



Challenges for Layout Validation: Lessons Learned 9

Fig. 6: Diff between original and a full grey block

5 Challenges of Layout Validation

From our experiment and the state of the art, we identified several challenges for
the layout validation. Those challenges have to be considered for future layout
validation tools. We identified 6 challenges: structural layout elements (Section
5.1), Ajax-based architecture (Section 5.2), successive shifting (Section 5.3), dy-
namic content (Section 5.4), interactive widget (Section 5.5), and overlap (Sec-
tion 5.6).

5.1 Structural Layout Elements

Problem: One major problem is how to identify the structural layout elements
in a page. In our experiment, we considered that fieldsets are the structural
layout elements of all pages. However, layout also exists in pages where the DOM
does not contain any fieldsets. So, one challenge is to define how the layout is
expressed.

Solution: We identified two ways to solve this problem. One is to rely on DOM
and CSS information. For each source language, we need to manually define what
are the structural elements. For example, it can be CSS classes in modern web
applications; or table nesting in legacy systems, as GWT. The other solution is
to extract the structural layout by analyzing the screenshots [13].

5.2 Ajax-based Architecture

Problem: One requirement to validate the UI migration is to be able to browse
each couple of source and migrated UI pages. One can think, for a web applica-
tion, of using URL of each page as a reference. However, recent web applications
are developed using the Ajax framework. Ajax allows developers to modify the
UI of a page without properly navigating, e.g., changing the URL. It is the case
of SPA promoted by recent UI frameworks: Angular, React, etc. So to browse a
page, a tool can not simply get the URL content but need to perform actions on
the UI.



10 Bragagnolo et al.

Solution: To browse each page, the validation tool needs to know the suite of
actions to perform, and a way to execute them. The suite of actions can be
extracted using a crawler [2], however, crawling SPA application is complex [8].
Then, to perform the actions, we propose to use already developed tools used
in GUI testing such as Selenium. Those tools allow one to programs interaction
with a UI.

5.3 Successive Shifting

Problem: As identified by Sanoja and Gançarski [13], the shifting of one block
(because it is rendered with an incorrect size or position) may cause shifting
of other blocks. Moreover, a slight error repeated on each block (for example
each block is larger by only a few pixels) may create important differences in a
screenshot but impact only slightly the layout.

Solution: Instead of comparing an image pixel by pixel or block position by
block position, one can compare the position of blocks relative to visually near
blocks. Thus, the validation approach will report minimal differences and not
completely different pages. This comparison is more complex because it requires
block identification, i.e., recognizing the same blocks in source and migrated
applications.

5.4 Dynamic Content

Problem: Some widgets, such as a table, can display information coming from
an external server. If the received data changed, or if the component does not
receive the data, the widget does not fill the same space in the original and
migrated UI. While missing data does not impact the layout definition (in terms
of relationships), it impacts the pixel to pixel comparison.

Solution: We found two ways to solve this problem. One is to identify the blocks
in the original and migrated UI, then to compute the relationship between blocks.
If the relationships are the same in the original and migrated UI, then the UI have
the same layout. The other is to empty out the dynamic components applying
some javascript routines, and thus do not consider data but still the default size
of the component.

5.5 Interactive Widget

Problem: Some widgets are interactive. It is the case of the expandable panel,
a panel that can be opened or closed by the user. The state of such components
does not impact the layout but can change the size of the blocks. Thus, in block
to block or pixel to pixel comparison, the validation tool reports bad migration
whereas for example, states are not the same, by default in both applications.



Challenges for Layout Validation: Lessons Learned 11

Solution: One solution is to collect the state of the widgets in the original appli-
cation, and then to set the state of the widgets in the migrated application before
taking the screenshot. To set the states, one can use a tool such as Selenium.

5.6 Overlap

Problem: User interfaces are composed of multiple structural layout elements,
i.e., panel, fieldset, card. Proposed approaches, like ours, validate the layout
migration by comparing layout composing blocks. Such approaches must consider
that some layout elements overlap other layout elements. So, the z-index, i.e.,
defining which widget is rendered on top of which one, must be extracted to
validate correctly the interface.

Solution: One solution to handle the overlap is to use transparency when dis-
playing the blocks. This solves the problem of a block inside another, but it does
not provide much information about which block is on top of which one. One
could use the DOM structure and CSS to extract this missing information.

6 Validation Helping Feature

Additionnaly to the identified challenges, we propose three important next fea-
tures for validation approach that would help solving the challenges: block iden-
tification (Section 6.1), traceability (Section 6.2), and comparing the relationship
between elements (Section 6.3).

6.1 Block Identification

Currently, our approach is based on the comparison pixel by pixel of two screen-
shots. Those screenshots are divided into blocks, but those blocks are not con-
sidered during the comparison. However, identifying the block in the screenshot
would enable one to perform more precise analyses. For example, one can count
the number of blocks or compare the pixels of a source block with the rest of
the migrated UI.

At the same time, such a feature will ease the traceability feature (see next
subsection) and allows one to compute blocks relationship, which is the main
concept of what layouts are.

6.2 Traceability

The traceability is the ability to identify blocks couple, i.e., which block in the
source application corresponds to which one in the migrated application. We
identified two ways to trace blocks: by analyzing the source code of the UI, or
by comparing blocks position between source and migrated UI.

For the source code, one can use DOM information to retrieve the block
couples. Indeed, DOM elements may have a unique id that can be migrated and



12 Bragagnolo et al.

so used to retrieve the block. One can also think of using XPath to retrieve the
same element in the UI.

In case the source code of the migrated or the source application does not
contain enough information, and if it is not editable, one can rely on compar-
ing blocks position if the block identification (see preceding section) is enabled.
Indeed, if the blocks are identified, one can recreate part of the blocks couples
by comparing the position of blocks in the source and migrated application.
Two blocks with approximately the same position in the source and migrated
applications are likely to represent the same UI element.

Having the traceability will allow more precise analyses. Instead of comparing
the UI of source application with the migrated one, one will be able to perform
the analysis block by block.

6.3 Block Relationship

The block identification should enable the block relationship analysis. Instead
of comparing pixel by pixel or block by block, the approach can compare the
relationships between the blocks. Indeed, relationships are what define layout.

To do so, we need to extract from source and migrated screenshots the rela-
tionship between blocks, and compare them. Such an extraction might be diffi-
cult because of the preceding identified challenges. However, dealing with block
relationship would be the final step in layout migration validation.

7 Conclusion and Future Work

From a previous experiment, we identified the lack of approach to test the layout
of migrated GUI. Moreover, many validation techniques proposed in the liter-
ature are getting obsolete with modern frameworks and architectures. In this
paper, we explored the state of the art and proposed a new simple approach
based on other research fields. Thus, we identified future challenges in layout
migration validation.

Finally, we proposed three main future work projects we will study: the block
identification in an image, the traceability between source and migrated GUI,
and the relationship between the blocks.



Bibliography

[1] Alpuente, M., Romero, D.: A visual technique for web pages comparison.
Electronic Notes in Theoretical Computer Science 235, 3–18 (2009)

[2] Amalfitano, D., Fasolino, A.R., Tramontana, P.: A GUI crawling-based
technique for android mobile application testing. In: 2011 IEEE Fourth
International Conference on Software Testing, Verification and Vali-
dation Workshops, pp. 252–261, IEEE (2011), ISBN 978-1-4577-0019-
4, https://doi.org/10.1109/ICSTW.2011.77, URL http://ieeexplore.ieee.org/
document/5954416/

[3] Cao, J., Mao, B., Luo, J.: A segmentation method for web page analysis
using shrinking and dividing. International Journal of Parallel, Emergent
and Distributed Systems 25(2), 93–104 (2010)

[4] Hayakawa, T., Hasegawa, S., Yoshika, S., Hikita, T.: Maintaining web ap-
plications by translating among different RIA technologies. GSTF Journal
on Computing p. 7 (2012)

[5] Joorabchi, M.E., Mesbah, A.: Reverse engineering iOS mobile appli-
cations. In: 2012 19th Working Conference on Reverse Engineering,
pp. 177–186, IEEE (2012), ISBN 978-0-7695-4891-3 978-1-4673-4536-
1, https://doi.org/10.1109/WCRE.2012.27, URL http://ieeexplore.ieee.org/
document/6385113/

[6] Karami, E., Prasad, S., Shehata, M.: Image matching using sift, surf,
brief and orb: performance comparison for distorted images. arXiv preprint
arXiv:1710.02726 (2017)

[7] Memon, A., Banerjee, I., Nagarajan, A.: GUI ripping: Reverse engineering of
graphical user interfaces for testing. In: Proceedings IEEE Working Confer-
ence on Reverse Engineering (WCRE 2003), pp. 260–269, IEEE Computer
Society Press, Los Alamitos CA (Nov 2003)

[8] Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based web
applications through dynamic analysis of user interface state changes.
ACM Transactions on the Web 6(1), 1–30 (2012), ISSN 15591131,
https://doi.org/10.1145/2109205.2109208, URL http://dl.acm.org/citation.
cfm?doid=2109205.2109208

[9] Moran, K., Watson, C., Hoskins, J., Purnell, G., Poshyvanyk, D.: Detecting
and Summarizing GUI Changes in Evolving Mobile Apps. arXiv:1807.09440
[cs] (Jul 2018), URL http://arxiv.org/abs/1807.09440, arXiv: 1807.09440

[10] Morel, J.M., Yu, G.: Asift: A new framework for fully affine invariant image
comparison. SIAM journal on imaging sciences 2(2), 438–469 (2009)

[11] Sánchez Ramón, O., Sánchez Cuadrado, J., García Molina, J.: Model-
driven reverse engineering of legacy graphical user interfaces. Automated
Software Engineering 21(2), 147–186 (2014), ISSN 0928-8910, 1573-7535,
https://doi.org/10.1007/s10515-013-0130-2, URL http://link.springer.com/10.
1007/s10515-013-0130-2

https://doi.org/10.1109/ICSTW.2011.77
http://ieeexplore.ieee.org/document/5954416/
http://ieeexplore.ieee.org/document/5954416/
https://doi.org/10.1109/WCRE.2012.27
http://ieeexplore.ieee.org/document/6385113/
http://ieeexplore.ieee.org/document/6385113/
https://doi.org/10.1145/2109205.2109208
http://dl.acm.org/citation.cfm?doid=2109205.2109208
http://dl.acm.org/citation.cfm?doid=2109205.2109208
http://arxiv.org/abs/1807.09440
https://doi.org/10.1007/s10515-013-0130-2
http://link.springer.com/10.1007/s10515-013-0130-2
http://link.springer.com/10.1007/s10515-013-0130-2


14 Bragagnolo et al.

[12] Sánchez Ramón, Ó., Sánchez Cuadrado, J., García Molina, J., Vanderdon-
ckt, J.: A layout inference algorithm for graphical user interfaces. Informa-
tion and Software Technology 70, 155–175 (2016)

[13] Sanoja, A., Gançarski, S.: Migrating web archives from html4 to html5:
A block-based approach and its evaluation. In: Kirikova, M., Nørvåg, K.,
Papadopoulos, G.A. (eds.) Advances in Databases and Information Systems,
pp. 375–393, Springer International Publishing, Cham (2017), ISBN 978-3-
319-66917-5

[14] Van Beusekom, J., Keysers, D., Shafait, F., Breuel, T.M.: Distance mea-
sures for layout-based document image retrieval. In: Second International
Conference on Document Image Analysis for Libraries (DIAL’06), IEEE
(2006)

[15] Verhaeghe, B., Etien, A., Anquetil, N., Seriai, A., Deruelle, L., Ducasse,
S., Derras, M.: GUI migration using MDE from GWT to angular 6: An
industrial case. In: 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), Hangzhou, China (2019),
URL https://hal.inria.fr/hal-02019015

https://hal.inria.fr/hal-02019015

	Challenges for Layout Validation: Lessons Learned

