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Abstract—Exploration and mapping is a fundamental capa-
bility of a swarm of robots: robots enter an unknown area,
explore it, and collectively build a map of it. This capability is
important regardless of whether the robots are crawling, flying,
or swimming. Existing exploration and mapping algorithms tend
to either be inefficient, or rely on having a dense swarm of
robots. This paper introduces Atlas, an exploration and mapping
algorithm for sparse swarms of robots, which completes a full
exploration even in the extreme case of a single robot. We develop
an open-source simulator and show that Atlas outperforms the
state-of-the-art in terms of exploration speed and completeness
of the resulting map.

Index Terms—Swarm, Exploration, Mapping, IoT, Micro-
Robots.

I. INTRODUCTION

In “swarm robotics”, a potentially large number of robots
carry out a task together, either because it cannot be carried
out by a single robot, or it can be done more efficiently by
a swarm. Applications for robotic swarms include carrying
equipment throughout a warehouse, collaboratively repairing
inaccessible structures, and localizing underground gas pipes.

In this article, we are interested in a specific application:
exploration and mapping. A swarm of robots is inserted into
an unknown area, the robots explore the area, and while doing
s0, collectively create a map of it. Applications include finding
survivors in a collapsed building after an earthquake, mapping
out a building before entering in military applications, or
exploring underwater caves.

We see exploration and mapping as a fundamental capability
of a swarm of robots. Regardless of the final application of the
swarm, or even whether it is composed of crawling, flying, or
swimming robots, the swarm will most likely need to conduct
some form of exploration and mapping. Creating a good map
depends on many things: the ability for the robots to move
well, their ability to sense the obstacles, the reliability of
their communication, and the performance of the navigation
algorithm that drives the exploration and mapping expedition.

This paper focuses on the latter. Our goal is to do a “hands-
on survey” of the literature of exploration and mapping. We
therefore develop a simulation platform, implement what we
believe are the most relevant proposals, and compare their
performance. We discover that existing efficient proposals
only generate complete maps when the swarm is very dense

(e.g. hundreds of robots deployed on a medium-sized office
floor). We therefore design Atlas, a systematic exploration and
mapping algorithm specifically designed for sparse swarms,
which creates complete maps even in the extreme case of a
single robot.

The contributions of this paper are threefold:

o We develop a simulator specifically for comparing ex-
ploration and mapping algorithms. This simulator is pub-
lished under an open-source license.

o We design Atlas, an exploration and mapping algorithm
for sparse swarms.

o We extract the performance of Atlas, as well as three
state-of-the-art algorithms, and present performance re-
sults on three representative scenarios.

The remainder of this paper is organized as follows. Sec-
tion II surveys the most relevant related work. Section III
details the open-source simulation platform developed for this
paper. Section IV shows by simulation that efficient algorithms
only work for dense networks. Section V introduces Atlas, an
algorithm specific to sparse swarms. Section VI describes the
simulation results. Finally, Section VII summarizes the paper
and discusses avenues for future work.

II. RELATED WORK

There are several ways to categorize exploration and map-
ping algorithms. At the most fundamental level, one distin-
guishing feature is whether the robots are coordinated as
the swarm of robots explores the area. In uncoordinated
algorithms, each robot in the swarm explores the area with-
out coordinating with other robots. This makes for a very
algorithmically simple solution, but yields inefficiencies, as
multiple robots might for example be exploring the same area.
In coordinated algorithms, the exploration of each robot is
done to explicitly complement that of the others.

The latter category involves robots sharing information as
they explore, which necessarily means some sort of (wireless)
communication. Here again, there are different ways for the
robots to share information. In distributed algorithms, robots
only exchange information with other robots that are close by.
The behavior of the swarm as a whole is “emergent”: many
local (often simple) interactions between neighbor robots
yield the overall behavior. Bio-inspired algorithms are often



distributed, mimicking for example the behavior of ants in a
colony. In centralized algorithms, the overall behavior of the
swarm is explicitly driven by a central controller. This con-
troller (e.g. a computer on the side of the area) receives infor-
mation from the robots (the position of each robots, the partial
map each has been able to explore, ...), and remotely controls
the movement of each robot. As with any taxonomy, hybrid un-
coordinated/coordinated or distributed/centralized approaches
are of course possible.

Huang et al. [1] propose an uncoordinated algorithm for
a swarm of robots to localize chemical leakages or radiation
in a factory. The authors define three main stages. Where the
robots explore the area via random walk, only changing their
direction once an obstacle is detected. If a target is detected
the robot stops for a short period of time to investigate the
contents of the detected target, and record the relative position
of this target.

“Random walk” is a canonical form of uncoordinated explo-
ration algorithms. Kegeleirs et al. [2] compare five flavors of
random walk: Brownian motion, correlated random walk, Lévy
walk, Lévy taxis, and ballistic motion. The authors implement
all five on a swarm of 10 wheeled mobile robots, let them
map out two types of lab environments, and quantify the
quality of the maps the swarm generates. They conclude that
ballistic motion yields the best maps for the same mapping
time as other approaches, mainly because the swarm covers
the environment faster. In ballistic motion, a robot moves in
a straight line until it detects an obstacle, then changes its
direction at random.

Li et al. [3] propose a distributed algorithm based on Brain
Storm Optimisation (BSO), which is one example of a coordi-
nated distributed algorithm, where robots cooperate using local
perception and local communication in order to decide the next
locations each robot should move to, by sharing the data about
the environment sensed by each robot. However, BSO is an
exploration algorithm and does not contain a mapping element,
and we therefore cannot include it in our simulation.

Ramaithitima et al. [4] is an example of a centralized
approach. All robots start at the same starting point inside
the yet unexplored area. The central controller (a computer)
is located at that starting point. Each robot is equipped with
sensors that allow it to distinguish between nearby robots
and obstacles. Robots can wirelessly communicate with one
another using a short-range radio. The robots form a wireless
mesh rooted in the central controller. This means that the cen-
tral controller receives location and robot/obstacle detection
information from each robot, and controls the movement of
all robots.

The navigation and mapping algorithm in [4] operates in
discrete steps. In each, the controller instructs some robots
to move, the robots move and report information back to the
controller. What happens at each step at the controller is as
follows. Based on the information received from the robots,
the controller builds the partial map discovered so far by the
swarm. This is represented internally as a Rips complex ,
through which the central server identifies the robots that are

next to unexplored cells (the “frontier subcomplex™) and the
robots that are next to obstacles (the “obstacle subcomplex™).
Based on a breadth-first search, the central controller identifies
the frontier robot to “push away” so as to expand the frontier
towards unexplored areas. After that robot has moved, the
central controller coordinates with the robots behind it to fill
in the void left by the frontier robot moving.

The algorithm presented in [4] results in more systematic
exploration, as opposed to random walk. The main downside
of this algorithm is that it requires a large number of robots
to yield a complete map. If there are not enough robots in
the swarm, the frontier is not complete and the resulting map
contains unexplored regions. In this paper, we implement this
algorithm and independently evaluate it (see Section VI).

Comparing exploration and mapping algorithms necessarily
means extracting some key performance indicators from each.
Yan et al. [5] analyzes the performance metrics and lists the
following as the most relevant: exploration time, exploration
cost, exploration efficiency, map completeness, and map qual-
ity. We use those in this paper.

Our intuition is that, given the advances in secure and
reliable networking, centralized approaches are particularly
appealing because they allow for systematic and efficient
exploration. We develop a simulation platform to quantify
and compare the performance of Ramaithitima’s [4] algorithm
(called “Ramaithitima” in the remainder of the paper) and two
variants of random walk. We show in Section IV that, while
efficient with a large number of robots, Ramaithitima does not
always result in full maps when using a sparse robot swarm.
We therefore design Atlas, a centralized exploration and map-
ping algorithm specifically designed for sparse swarms.

III. SIMULATION PLATFORM

Simulation appears as a good method to extract and com-
pare the performance of different exploration and mapping
algorithms. It allows for perfect repeatability (the exact same
scenario is presented to the different algorithms), resulting
in fair comparison. It also allows for repeating experiments
easily, and constructing a large enough dataset to present
statistically relevant results. Finally, while we clearly list the
several simplifications we take in Section VII, we believe
the simulator, as a tool, represents the behavior (location,
movement) of a robot well.

There are several simulation platforms commonly used for
(swarm) robotics, Argos [6] and Stage [7] being arguably
the most commonly used. These are however general-purpose
robotic simulators which embed models for the motors, the
battery life, the sensor accuracy, etc. Besides being complex
to use, the main danger is for the results on exploration
and mapping to be impacted by other considerations. We
therefore develop a minimalistic simulator purposely built for
exploration and mapping. The resulting simulator is written
in Object Oriented Python, in less than 1,000 lines of code.
It is composed of two main elements: the simulator which
generates log files, and the Jupyter Notebook-based analysis
script which extracts performance indicators from these log
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Fig. 1: We call a robot’s “l-neighborhood” the eight cells
directly surrounding it. At each tick, the robot can move to any
of the cells in its 1-neighborhood. We call “2-neighborhood”
the 16 cells directly surrounding the 1-neighborhood.

files and generates the graphs presented in this paper. To ensure
reproducibility, we follow rigorous software development best
practices. In particular, all the source code used in this paper is
part of a release, and bundled together with the instructions to
reproduce the log files, and re-generate the graphs. All source
code is released under an open-source license'.

A. Modeling

In the simulator, we represent a 2D area as a discrete number
of cells. A cell is an atomic quantum of space: a single cell can
either hold a single robot, be entirely filled by an obstacle, or
be entirely empty. As shown in Fig. 1, a robot can move to any
of the 8 cells in its 1-neighborhood. We call that movement
a “step”. A robot is not constrained in the direction it moves
to. That is, it can move North, then immediate South.

The simulator cuts time into discrete “ticks”. At each tick,
each robot can move by one step. Multiple (possible all) robots
can move during the same tick. The navigation algorithm
decides, at each tick, the movement of each of the robots.
It might choose to move a single robot, multiple, or all.

We assume each robot is equipped with the necessary
sensors to detect the presence of an obstacle or another
robot in its 1-neighborhood. These sensors allow the robot to
distinguish between obstacles and robots. The 1-neighborhood
of a robot therefore represents the robot’s sensing range.

We further assume robots can communicate together, and
can communicate back to the starting point where a central
controller is located, for centralized protocols.

B. Scenarios

We define three scenarios to run simulations on. The term
“scenario” encompasses both the location of the obstacles
in the area being explored, and the location of the starting
position. Fig. 2 shows the three scenarios, which we call
“empty”, “canonical” and “floorplan”.

We made all three exploration areas the same size
(80x21 cells) to be able to directly compare the impact of the
position of obstacles on the performance of the exploration
and mapping algorithms. In all scenarios, all robots start from
the same position.

A scenario goes as follows. All robots are initially at the
starting position which serves as a “door” into the exploration

I As an online addition to this paper, all the source code used in this
paper is published under a BSD open-source license at https://github.com/
openwsn-berkeley/Atlas

area. The goal of the algorithm is to map out that space,
i.e. find which of the 630 cells are obstacles, and which are not.
At the start of a simulation run, the exploration and mapping
algorithm knows nothing about the area. As the robots move
around in the area, they discover the position of the obstacles
by moving next to them, giving the algorithm a more and more
complete map. The simulation run ends when either the map
completes, or when the navigation algorithm does not trigger
any further robot movements. We call “completion ratio” the
portion of simulation runs that result in a complete map.

We want a collection of scenarios which trigger diverse
behaviors of the navigation algorithm. The “empty” scenario
is the simplest one: an empty room. We use it as a reference.
The “canonical” scenario is the one used extensively by Ra-
maithitima et al. [4]. Given that we implement Ramaithitima
and compare it against other algorithm, we wanted that com-
parison to be done in the same conditions as in [4]. Finally,
the “floorplan™ scenario represents a more complete end-to-
end use case, in which a swarm of robots is tasked to map out
a floor of an office building.

C. Running the Simulation

We end up implementing 4 algorithms, and have 3 scenarios.
To be able to compare the impact of the number of robots, we
run simulations for a number of robots ranging from 10 to
100, in steps of 10. We call a simulation cycle the resulting
4x3x10=120 simulation runs. We repeat that cycle 145 times.
The full simulation time is approx. 24 h, which we split across
multiple computers to speed up the simulation campaign.

Because of the random nature of some algorithms, in each
of these cycles, the simulation does not execute in the same
way. We end up collecting logs for 13033 simulation runs. All
results are presented with a 95% confidence interval.

D. Simulation Outputs

Each run generates a line in a log file. This line is a JSON
string that contains the following metrics:

o The “heatmap” showing how often robots have visited
each of the cells. This is used to generate Fig. 6 (Sec-
tion VI-A).

o The “profile”, an array that indicates the number of cells
discovered at each tick. This is used to generate Fig. 4
(Section VI-B) and Fig. 5 (Section VI-C).

o The “mapping completion”, a boolean indicating whether
the map is complete at the end of the exploration. This
is used to generate Fig. 3 (Section IV).

IV. LIMITS OF RAMAITHITIMA IN SPARSE SWARMS

This section details preliminary simulation results for Ra-
maithitima. It shows that Ramaithitima does not guarantee
full exploration in sparse swarms (a small number of robots),
therefore justifying the creation of the Atlas algorithm. Atlas
is presented in Section V and its performance are examined
in Section VI

The Ramaithitima algorithm is presented in [4], and sum-
marized in Section II. From an implementation point of view,



canonical

floorplan

Fig. 2: The three simulated scenarios. All scenario areas are the same size (80x21 cells). The starting position is depicted as

a red cell on the right.

we implement it as a central controller. At each step of the
simulation, that central controller starts by identifying the
frontier robots. These are the robots which have at least one
unexplored cell in their 2-neighborhood. From that set, it
identifies the closest robot to the start position, and moves
it to a cell further from the start position. Rather than use
Euclidian distance, the controller uses the Dijkstra algorithm
to compute the distance between two cells in the area, i.e. the
number of steps a robot would have to take to go from one
cell to the other if it took the shortest path. It repeats this
process and moves as many frontier robots as possible. It then
moves the non-frontier robots so they fill in the voids left by
the frontier robots moving. This results in the swarm moving
as a pack.

This approach works well when there is a large number of
robots, as simulated in [4]. With less robots, the problem is that
the frontier robots aren’t always side-by-side, so by moving
each away from the starting point, it is possible to “forget” to
explore an area.

To quantify this problem, we plot in Fig. 3 the completion
ratio of Ramaithitima for a number of robots between 10
and 100. The more robots, the higher the completion ratio,
which is expected. Fig. 3 also shows that, the more cluttered
the area, the lower the probability of creating a complete map.
Yet, even with 100 robots, the completion ratio stays below
80%. Worse, regardless of the number or robots, there are
always cases, even if rare, in which Ramaithitima does not
result in complete exploration.

All other algorithms evaluated in this paper (including Atlas,
our proposal) have a completion ratio of 100% in all cases.

V. ATLAS

Atlas can be seen as an improvement of Ramaithitima to
ensure mapping completion even in the extreme case of having
only a single robot. It uses systematic exploration. Robots are
controlled by a central controller which maintains a partial
map throughout the exploration and sends robots to explore
yet unexplored zones within the area. The main difference
with Ramaithitima is that, instead of focusing on the frontier
robots, it focuses on the frontier cells.

The central controller of Atlas does the following at each
step. It starts by identifying the frontier cells, i.e. open cells
which have an unexplored cell in their 1-neighborhood. From
that set, it keeps only the cells which have the closest distance
to the starting point. As Ramaithitima, Atlas uses topological
distance (i.e. number steps along the shortest path), not Eu-
clidian distance. Once it has the set of frontier cells and the set

of robots, it identifies the robot that is closest to any frontier
cell, and moves it toward the frontier cell.

The overall behavior is that the frontier expands away from
the starting position, and the robots are controlled to “push”
the frontier further from the starting point. In the extreme case
of a single robot, that robot makes circular movements around
the starting point, one step further from it at each revolution.
In scenarios where there are many obstacles, the swarm can
be cut into subgroups as it navigates around obstacles. The
full behavior of Atlas is implemented in 177 lines of code in
the simulator.

VI. SIMULATION RESULTS

This section presents simulation results and compares the
performance of four navigation and mapping algorithms:
Ramaithitima, Atlas, and two random walk variants: pure
random walk and ballistic random walk. In pure random walk,
each robot moves to a randomly chosen open cell in its 1-
neighborhood at each step. In ballistic random walk, each
robot keeps moving in the same direction until it hits an
obstacle or another robot. It then picks another direction at
random.

A. Heatmaps

Fig. 6 allows us to qualitatively understand the behavior
of the algorithms by plotting a heatmap of the number of
times robots have visited each cell. With random walk, robots
tend to hover around the start position, making it a very
long process to explore the entire area. With ballistic, robots
quickly move about the area, but because the robots are not
coordinated, they tend to bounce around the same features
over and over. In the Ramaithitima case, we can clearly see
that some areas are visited very often, others not; it is the latter
that causes Ramaithitima to sometimes “forget” to explore an
area. The robot swarm in Atlas progresses from right to left;
a small number splits off to explore each of the rooms. Its
systematic nature makes the heatmap more homogeneous and
symmetrical.

B. Mapping Profiles

We call mapping profile the plot that shows the number of
explored cells as a function of time. It is a good representation
to see the overall behavior of the algorithm. Fig. 4 shows the
mapping profiles of the algorithms for the floorplan scenario.

We clearly see that Random Walk explores rapidly at the
very beginning (<100 ticks), then takes a very long time to
discover the last unexplored cells. Ballistic performs poorly
in cluttered areas, but performs well when no obstacles are
present, despite being uncoordinated.
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a 100-robot swarm. The opacity of each cell is mapped to a
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Ramaithitima and Atlas are coordinated, with a central con-
troller which ensures the exploration is done in a systematic
way. Both exhibit a mostly constant exploration rate (a straight
line in Fig. 4). The non-linearities of the Ramaithitima profile
are because of the different rooms being explored, creating
“bursts” of explored cells. We also see that the 95% confidence
interval widens for Ramaithitima at the end of the exploration,
as some explorations complete, others not. We can clearly see
the systematic nature of Atlas, which shows a linear mapping
profile throughout the exploration. This is because Atlas is
designed so robots always move toward non-explored areas.

C. Mapping Speed

We call “mapping speed” the number of ticks from the
moment the first robot enters the area until the moment the
area is fully mapped. Fig. 5 plots the mapping speed as
a function of the number of robots, for all algorithms for
the floorplan scenario. For fair comparison, the speed (and
associated 95% confidence interval) are presented only for
cases where the mapping completes in all runs. No results
appear for Ramaithitima as it often does not complete.

In all cases, we see that the mapping is faster with more
robots, which is expected. We see that a coordinated algo-
rithm such as Atlas is significantly faster than uncoordinated
algorithms (note the log scale on the y-axis). Interestingly, we
see that Ballistic performs very poorly when there are many
obstacles and few robots, and they tend to enter a repetitive

Fig. 4: Mapping profiles of the algo-
rithms for the Floorplan scenario: the
number of cells discovered over time.
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Fig. 5: Mapping speed for the floor-
plan scenario: time until the area is
fully explored and mapped.

pattern preventing robots from quickly exploring the full area.
The complete set of results are presented in the research report
published as a companion to this paper [8]

VII. SUMMARY AND AVENUES FOR FUTURE WORK

This paper surveys existing exploration and mapping algo-
rithms, and proposes a taxonomy. We present an open-source
simulator specifically designed for evaluating exploration and
mapping algorithms. We show that existing algorithms tend
to be either inefficient, or rely on dense swarms of robots.
We develop Atlas, an algorithm that also produces complete
maps with sparse swarms. We show by simulation that Atlas
outperforms the state-of-the-art in terms of mapping accuracy
and mapping speed.

This research opens up several avenues for future work. Our
current simulator assumes an ideal network interconnecting the
robots, yet real wireless networks suffer from limited range,
limited capacity, and packet loss. Similarly, our simulator as-
sumes perfect localization and ideal sensors. In a real system,
robots don’t always know exactly where they are, and are
equipped with sensors which might wrongly detect an obstacle.
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