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Visual Servoing

Encyclopedia of Robotics, Springer, 2020

François Chaumette

Synonyms

Vision-based control, Visual feedback

Definition

Visual servoing refers to the use of visual data as input of real-time closed-loop

control schemes for controlling the motion of a dynamic system, a robot typically. It

can be defined as sensor-based control from a vision sensor and relies on techniques

from image processing, computer vision, and control theory.

Overview

Basically, visual servoing consists in using the data provided by one or several cam-

eras so that a dynamic system achieves a task specified by a set of visual constraints

(Hutchinson et al. 1996; Chaumette et al. 2016). Such systems are usually robot

arms or mobile robots, but can also be virtual robots, or even a virtual camera. A

large variety of positioning tasks, or target tracking tasks, can be considered by con-

trolling from one to all the degrees of freedom (DoF) of the system (Marchand et al.

2005). Whatever the sensor configuration, which can vary from one on-board cam-

era located on the robot end-effector to several free-standing cameras, a set of visual

features has to be selected at best from the available image measurements, allowing
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to control the desired DoF. A control law has then to be designed so that these visual

features reach a desired value, defining a correct achievement of the task. A desired

planned trajectory can also be tracked. The control principle is to regulate the er-

ror between the current and desired values of the visual features to zero, or, in other

terms, to minimize an objective function from which Lyapunov-based stability anal-

ysis can be performed. With a vision sensor providing 2D measurements, potential

visual features are numerous, since 2D data (coordinates of particular points in the

image, parameters related to geometrical shapes, intensity levels of set of pixels,...)

as well as 3D data provided by a localization algorithm exploiting the extracted 2D

measurements can be considered.

Typically, an iteration of the control scheme consists of the following successive

steps:

• acquire an image;

• extract some useful image measurements;

• compute the current value of the visual features used as inputs of the control

scheme;

• compute the error between the current and the desired values of the visual fea-

tures;

• update the control outputs, which are usually the robot velocity, to regulate that

error to zero, i.e., to minimize its norm.

For instance, for the first example depicted on Fig. 1, the image processing part con-

sists in extracting and tracking the center of gravity of the moving people, the visual

features are composed of the two Cartesian coordinates of this center of gravity, and

the control scheme computes the camera pan and tilt velocities so that the center of

gravity is as near as possible of the image center despite the unknown motion of the

people. In the second example where a camera mounted on a six DoF robot arm is

considered, the image measurements are a set of segments that are tracked in the im-

age sequence. From these measurements and the knowledge of the 3D object model,

the pose from the camera to the object is estimated and used as visual features. The

control scheme now computes the six components of the robot velocity so that this

pose reaches a particular desired value corresponding to the object position depicted

in blue on the images.

Key Research Findings

Most if not all visual servoing tasks can be expressed as the regulation to zero of an

error e(t) defined by

e(t) = s(m(r(t)),a)− s∗(t). (1)

The parameters in (1) are defined as follows (Chaumette et al. 2016): the vector

m(r(t)) is a set of image measurements (e.g., the image coordinates of points, or the

area, the center of gravity and other geometric characteristics of an object, ...). These
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Fig. 1 Few images acquired during two visual servoing tasks: on the top, pedestrian tracking using

a pan-tilt camera; on the bottom, controlling the 6 degrees of freedom of an eye-in-hand system so

that an object appears at a particular position in the image (shown in blue).

image measurements depend on the pose r(t) between the camera and the environ-

ment, this pose varying with time t. They are used to compute a vector s(m(r(t)),a)
of visual features, in which a is a set of parameters that represent potential addi-

tional knowledge about the system (e.g., coarse camera intrinsic parameters or 3D

model of objects). The vector s∗(t) contains the desired value of the features, which

can be either constant in the case of a fixed goal, or varying if the task consists in

following a specified trajectory.

Visual servoing schemes mainly differ in the way that the visual features are

designed. As represented on Fig. 2, the two most classical approaches are named

image-based visual servoing (IBVS), in which s consists of a set of 2D parameters

that are directly expressed in the image (Weiss et al. 1987; Espiau et al. 1992), and

pose-based visual servoing (PBVS), in which s consists of a set of 3D parameters

related to the pose between the camera and the target (Weiss et al. 1987; Wilson

et al. 1996; Thuilot et al. 2002). In that case, the 3D parameters have to be esti-

mated from the image measurements either through a pose estimation process using

the knowledge of the 3D target model (Marchand et al. 2016), or through a tri-

angulation process if a stereovision system is considered. Inside IBVS and PBVS

approaches, many possibilities exist depending on the choice of the features. Each

choice will induce a particular behavior of the system. There also exist hybrid ap-

proaches, named 2-1/2D visual servoing, which combine 2D and 3D parameters in

s in order to benefit from the advantages of IBVS and PBVS while avoiding their

respective drawbacks (Malis and Chaumette 2000).



4 François Chaumette

s

s

R

c

�

R

c

�

s

�

s

�

R

c

R

c

Fig. 2 If the goal is to move the camera from frame Rc to the desired frame Rc∗ , two main ap-

proaches are possible: IBVS on the left, where the features s and s∗ are expressed in the image,

and PBVS on the right, where the features s and s∗ are related to the pose between the camera and

the observed object.

The features Jacobian

The design of the control scheme is based on the link between the time variation ṡ

of the features and the robot control inputs, which are usually the velocity q̇ of the

robot joints. This relation is given by

ṡ = Js q̇+
∂ s

∂ t
(2)

where Js is the features Jacobian matrix, defined from the equation above similarly

as the classical robot Jacobian. For an eye-in-hand system (see the left part of Fig. 3),

the term ∂ s
∂ t

represents the time variation of s due to a potential object motion, while

for an eye-to-hand system (see the right part of Fig. 3) it represents the time variation

of s due to a potential sensor motion.

As for the features Jacobian, in the eye-in-hand configuration, it can be decom-

posed as (Chaumette et al. 2016)

Js = Ls
cVe J(q) (3)

where

• Ls is the interaction matrix of s defined such that

ṡ = Lsv (4)

where v ∈ se3 is the relative velocity between the camera and the environment

expressed in the camera frame. More details on how to determine this matrix are

given below.

• cVe is the spatial motion transform matrix from the vision sensor to the end-

effector. It is given by (Khalil and Dombre 2002)



Visual Servoing Encyclopedia of Robotics, Springer, 2020 5

Fig. 3 In visual servoing, the vision sensor can be either mounted near the robot end-effector (eye-

in-hand configuration) or outside and observing the end-effector (eye-to-hand configuration). For

the same robot motion, the motion produced in the image will be opposite from one configuration

to the other.

cVe =

[
cRe [cte]×

cRe

0 cRe

]
(5)

where cRe and cte are, respectively, the rotation matrix and the translation vector

between the sensor frame and the end-effector frame, and where [cte]× is the

skew symmetric matrix associated to cte. Matrix cVe is constant when the vision

sensor is rigidly attached to the end-effector, which is usually the case. Thanks to

the robustness of closed-loop control schemes with respect to calibration errors,

a coarse approximation of cRe and cte is generally sufficient in practice to serve

as a satisfactory estimation of cVe to be injected in the control law. If needed, an

accurate estimation is possible through classical hand-eye calibration methods

(Tsai and Lenz 1989).

• J(q) is the robot Jacobian such that ve = J(q)q̇ where ve is the robot end-effector

velocity.

In the eye-to-hand configuration, the features Jacobian Js is composed of (Chaumette

et al. 2016)

Js =−Ls
cV f

f Ve J(q) (6)

where

• f Ve is the spatial motion transform matrix from the robot reference frame to the

end-effector frame. It is known from the robot kinematics model.

• cV f is the spatial motion transform matrix from the camera frame to the reference

frame. It is constant as long as the camera does not move. In that case, similarly

as for the eye-in-hand configuration, a coarse approximation of cR f and ct f is

usually sufficient.
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The interaction matrix

A lot of works have concerned the modeling of various visual features s and the

determination of the analytical form of their interaction matrix Ls. To give just

an example, in the case of an image point with normalized Cartesian coordinates

x = (x,y) and whose 3D corresponding point has depth Z in the camera frame, the

interaction matrix Lx of x is given by (Espiau et al. 1992)

Lx =

[
−1/Z 0 x/Z xy −(1+ x2) y

0 −1/Z y/Z 1+ y2 −xy −x

]
(7)

where the three first columns contain the elements related to the three components

of the translational velocity, and where the three last columns contain the elements

related to the three components of the rotational velocity.

By just changing the parameters representing the same image point, that is, by

using the cylindrical coordinates defined by γ = (ρ ,θ) with ρ =
√

x2 + y2 and θ =
Arctan(y/x), the interaction matrix of these parameters has a completely different

form (Iwatsuki and Okiyama 2005):

Lγ =

[
−cosθ/Z −sinθ/Z ρ/Z (1+ρ2)sinθ −(1+ρ2)cosθ 0

sinθ/(ρZ) −cosθ/(ρZ) 0 cosθ/ρ sinθ/ρ −1

]
(8)

This implies that using the Cartesian coordinates or the cylindrical coordinates as

visual features will induce a different behavior, that is, a different trajectory of the

point in the image and, consequently, a different robot trajectory. The main objective

in designing a visual servoing control scheme is thus to select the best set of visual

features in terms of stability, global behavior (adequate trajectories both in the image

plane and 3D space), and robustness to noise and to modeling and calibration errors

from the task to be achieved, the environment observed, and the available image

measurements. All these aspects can be studied from the interaction matrix of the

potential visual features.

Currently, the analytical form of the interaction matrix is available for most basic

features resulting from the perspective projection of simple geometrical primitives

such as circles, spheres, and cylinders (Espiau et al. 1992). It is also available for

image moments related to planar and almost-planar objects of any shape (Chaumette

2004), as well as for features selected from the epipolar geometry (Silveira and

Malis 2012), and, of course, also for coordinates of 3D points, parameters of 3D

geometrical primitives, and pose parameters, assuming these features are perfectly

estimated.

In the recent years, following the seminal works of Nayar et al. (1996) and

Deguchi (2000), a new trend has concerned the use of direct image content as input

of the control scheme (Han et al. 2010; Collewet and Marchand 2011). The main

objective of these works is to avoid the extraction, tracking and matching of ge-

ometrical measurements, such as points of interest or edges, so that the system is

extremely accurate and robust with respect to image processing errors. The basic
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idea is to consider the intensity of a set of pixels as visual features (s = I). From the

classical assumption in computer vision stating that the intensity level of a moving

point does not change (i.e., I(x, t) = I(x+dx, t+dt)), it is possible to determine the

interaction matrix corresponding to the intensity level of a pixel:

LI =−[
∂ I

∂x

∂ I

∂y
] Lx (9)

where [ ∂ I
∂x

∂ I
∂y
] is the spatial gradient of the intensity along the x and y directions.

Proceeding so leads to control a highly nonlinear system, with the drawback of a

relatively small convergence domain, and, in general, not expected robot trajectory,

plus the potential issue of robustness with respect to lighting variations. That is

why the idea of direct photometric visual servoing has been expended by either

considering other objective functions than ‖I− I∗‖, such as the mutual information

between the current and desired images (Dame and Marchand 2011), or other global

image representations (Duflot et al. 2019; Crombez et al. 2019), or by designing

photo-geometric visual features (Bakthavatchalam and Chaumette 2018).

All the works mentioned above have considered a classical vision sensor modeled

by a perspective projection. It is possible to generalize the approach to any sort of

sensors, such as omnidirectional cameras (Hadj-Abdelkader et al. 2008; Caron et

al. 2013), RGB-D sensors (Teulière and Marchand 2014), the coupling between a

camera and structured light (Motyl et al. 1992, Pagès et al. 2006), and even 2D

echographic probes (Mebarki et al. 2010). A large variety of visual features is thus

available for many vision sensors.

Finally, methods also exist to estimate off-line or online a numerical value of the

interaction matrix, by using neural networks for instance (Suh 1993, Wells et al.

1996), or the Broyden update (Koh and Hosoda 1994, Jägersand et al. 1997). These

methods are useful when the analytical form of the interaction matrix cannot be

determined, but any a priori analysis of the properties of the system is unfortunately

impossible.

Control

Once the modeling step has been performed, the design of the control scheme can be

quite simple for holonomic robots. The most basic control scheme has the following

form (Chaumette et al. 2016)

q̇ =−λ Ĵs
+

e+ Ĵs
+ ∂ s∗

∂ t
− Ĵs

+ ∂̂ s

∂ t
(10)

where, in the first feedback term, e = s− s∗ as defined in Eq. (1), λ is a positive

(possibly varying) gain tuning the time-to-convergence of the system, and Ĵs
+

is the

Moore-Penrose pseudoinverse of an approximation or an estimation of the features
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Jacobian. The exact value of all its elements is indeed generally unknown since

it depends of the intrinsic and extrinsic camera parameters, as well as of some 3D

parameters such as the depth of the point in Eqs. (7) and (8). Methods for estimating

these 3D parameters exist, either using the knowledge of the robot motion (De Luca

et al. 2008), or the knowledge of the 3D object model when it is available (Marchand

et al. 2016), or, up to a scalar factor, from partial pose estimation using the properties

of the epipolar geometry between the current and the desired images (Malis and

Chaumette 2000).

The second term of the control scheme anticipates for the variation of s∗ in the

case of a varying desired value. The third term compensates as much as possible

a possible target motion in the eye-in-hand case and a possible camera motion in

the eye-to-hand case. They are both null in the case of a fixed desired value and

a motionless target or camera. They serve as feedforward terms for removing the

tracking error in the other cases (Corke and Good 1996).

Following the Lyapunov theory, the stability of the system can be studied

(Chaumette et al. 2016). Generally, visual servoing schemes can be demonstrated to

be locally asymptotically stable (i.e., the robot will converge if it starts from a local

neighborhood of the desired pose) if the errors introduced in Ĵs are not too strong.

Some particular visual servoing schemes can be demonstrated to be globally asymp-

totically stable (i.e., the robot will converge whatever its initial pose) under similar

conditions. This is, for instance, the case for the pan-tilt camera control depicted on

Fig. 1, for PBVS assuming the 3D parameters involved are perfectly estimated, and

for well-designed IBVS schemes.

Finally, when the visual features do not constrain all the DoF, it is possible to

combine the visual task with supplementary tasks, for instance, joint limits avoid-

ance or the visibility constraint (to be sure that the target considered will always

remain in the camera field of view). In that case, the redundancy framework (Naka-

mura et al. 1987) can be applied and the new error to be regulated to zero has the

following form:

en = Ĵs
+

e+(I− Ĵs
+

Ĵs) e2 (11)

where (I− Ĵs
+

Ĵs) is a projection operator on the null space of the visual task e so

that the supplementary task e2 will be achieved at best under the constraint that it

does not perturb the visual task. A similar control scheme to (10) is now given by

q̇ =−λ en −
∂̂en

∂ t
(12)

This scheme has, for instance, been applied for the first example depicted in Fig. 4

where the rotational motion of the mobile robot is controlled by vision while its

translational motion is controlled by the odometry to move at a constant velocity.

Any other more advanced control strategy can be applied such as optimal con-

trol (Nelson and Khosla 1995, Hashimoto et al. 1996), coupling path planning and

visual servoing (Mezouar and Chaumette 2002, Chesi 2009, Kazemi et al. 2013),

model predictive control (Ginhoux et al. 2005, Allibert et al. 2010), or quadratic
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programming (Agravante et al. 2016) when visual tasks and visual constraints have

to be simultaneously handled with other tasks and constraints. Particular care has

to be considered for underactuated and nonholonomic systems for which adequate

control laws have to be designed (Hamel and Mahony 2002; Mebarki et al. 2015;

Mariottini et al. 2007; Lopez-Nicolas et al. 2010).

Examples of Application

Potential applications of visual servoing are numerous. It can be used as soon as

a vision sensor is available and a task is assigned to a dynamic system. A non-

exhaustive list of examples is (see also Fig. 4)

• the control of a pan-tilt-zoom camera, as illustrated in Figure 1 for the pan-tilt

case;

• grasping using a robot arm;

• locomotion and dexterous manipulation with a humanoid robot;

• micro- or nano-manipulation of MEMS or biological cells;

• pipe inspection by an underwater autonomous vehicle;

• autonomous navigation of a mobile robot in indoor or outdoor environment;

• aircraft landing;

• autonomous satellite rendezvous;

• biopsy using ultrasound probes or heart motion compensation in medical robotics.

• virtual cinematography in animation.

Future Directions for Research

Visual servoing is a mature area. It is basically a nonlinear control problem for which

numerous modeling works have been achieved to design visual features so that the

control problem is transformed as much as possible to a linear control problem. On

one hand, improvements on this topic are still expected for instantiating this gen-

eral approach to particular applications. On the other hand, designing new control

strategies is another direction for improvements, especially when supplementary

data coming from other sensors (force, tactile, proximity sensors) are available. Fi-

nally, the current expansion of deep learning may rejuvenate the field (Levine et

al. 2016; Bateux et al. 2018; Pandya et al. 2019), especially for the dense direct

methods that use the same input and end-to-end approach.
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Fig. 4 Few applications of visual servoing: navigation of a mobile robot to follow a wall using

an omnidirectional vision sensor (top line), grasping a ball with a humanoid robot (middle line),

assembly of MEMS and film of a dialogue within the constraints of a script in animation (bottom

line).

Cross References

• Aerial Manipulation, Visual Servoing in

• Vision for the Marine Environment

• Active Vision

• Visual Navigation

• Visual Tracking
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