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Abstract Interactive compression refers to the problem of compressing data
while sending only the part requested by the user. In this context, the challenge
is to perform the extraction in the compressed domain directly. Theoretical
results exist, but they assume that the true distribution is known. In prac-
tical scenarios instead, the distribution must be estimated. In this paper, we
first formulate the model selection problem for interactive compression and
show that it requires to estimate the excess rate incurred by mismatched de-
coding. Then, we propose a new expression to evaluate the excess rate of mis-
matched decoding in a practical case of interest: when the decoder is the belief-
propagation algorithm. We also propose a novel experimental setup to validate
this closed-form formula. We show a good match for practical interactive com-
pression schemes based on fixed-length Low-Density Parity-Check (LDPC)
codes. This new formula is of great importance to perform model and rate
selection.

Keywords source coding · interaction · model selection · mismatched
decoding

1 Introduction

The way videos are consumed have considerably evolved in the last decade.
With the arrival of new data formats and new streaming platforms, users have
been enabled to interact with the content they watch, mostly by choosing
part of the data they want to access. Compressing data so that users are able
to extract only a part of it, called Interactive Compression/Coding (IC), re-
quires new tools. More precisely, it has been proven that predictive coding,
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widely used in standard video coders, can not be efficient in both storage and
transmission [1]. Indeed, the challenge in IC is to deal with the uncertainty
of the users’ request upon compression. This can be formulated as a source
coding problem, where a side information is available at the decoder, whereas
the encoder has access to the set of possible side information [1,2]. It differs
from predictive coding, where the side information is available at both encoder
and decoder. Therefore, the encoder in IC, relies on the statistics of the side
information, and not on its realization, and belongs to the general class of
model-based coding problems. Despite the efficiency of some proposed archi-
tectures to solve the IC problem [3–5], two key questions, related to IC (and
thus model-based coding) remain: i) which statistical model should we select
and send to the decoder for the data to be compressed? ii) at which encoding
rate should we compress the data? These two questions require to determine
the excess rate for mismatched decoding, i.e., when an approximate model is
used for decoding rather than the true model.

In mono source coding, i.e., source coding without any Side Information
(SI) source, the excess rate due to mismatched decoding is the KullbackLeibler
(KL) divergence between the true distribution of the source and the one used to
code/encode. This classical result holds for variable-length coding, and can be
extended to several other coding schemes such as: fixed-length and predictive
coding. However, all these generalizations don’t tackle the case of IC. Indeed,
IC is related to source coding with SI at the decoder. For this compression
problem, evaluating the excess rate is still an open problem [6], since it is
related to the mismatch capacity of a dual channel coding problem [7–9].

In this paper, we formulate the excess rate problem for different source
coding schemes in Section 2 and propose to model this excess rate for IC using
a closed form expression (relying on the KL divergence). Measuring the excess
rate experimentally is not an easy task. For that purpose, we propose a code
construction method in Section 3 that guarantees that the obtained rate is
achievable while keeping low complexity. Finally, We validate the proposed
model in Section 4 by comparing the rate using the true model and the one
obtained experimentally under mismatch decoding.

Notation. Throughout this paper, a random scalar source is denoted by
uppercase letters like X, and its realization is represented by the correspond-
ing lowercase italic letter x. Xn denotes a random sequence of length n. Calli-
graphic letter X represents the alphabet of random variable X. ⊕ denotes the
addition in the finite field of the operand.

2 Problem formulation

2.1 IC and excess rate for model selection

IC refers to the problem of compressing data, while allowing the user to access
any part of the data in the compressed domain. Interactivity with a visual
content occurs with several image modalities such as omnidirectional images
[3], or texture maps of 3D models [10]. Common to both applications is that
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(a) (b)

Fig. 1 Instances of users’ requests. (a) Omnidirectional images. Two examples of requested
viewports are shown in green. (b) 3D model and its texture map. Depending on user’s
navigation, users request different parts of the texture map (shown in green).

the image to be compressed is split into small blocks where the blocks are
encoded/decoded one after the other. The user requests part of the data,
and the server sends a compressed stream such that all blocks covering the
requested part can be decoded. Fig. 1 shows two examples of such requests,
depicted in green, for each image modality.

From the point of view of the encoder, each block must be compressed with
the help of already decoded blocks such that, whatever the neighboring blocks
available at the decoder, the transmitted compressed bitstream is sufficient to
decode the block. For instance in Fig. 1, the current block, in yellow, must be
encoded, whatever the request is, which means either if the already decoded
blocks are the red ones or the blue ones.

More formally, let us denote xn the current block, as the realization of a
random vector Xn, see Fig. 2. Then, for a given request k ∈ [1, L], the already
decoded blocks produce an estimate of the current block, denoted ynk and called
SI. This SI available at the decoder is not known in advance by the offline
encoder, since it depends on the current request. However, this SI belongs to
a set of SI sources, which is known to the encoder {ynk , k ∈ [1, L]}. Moreover,
once a request is received, for each block, the SI available at the decoder is
also known. Therefore, the online extractor can fetch from the compressed
bitstream the necessary information. We refer to this source coding problem,
introduced in [1,2], as IC. IC differs from the compound coding problem [11,
Sec. 3.1.9] by distinguishing the storage and transmission rates, denoted by R
and Rk respectively. The optimal coding rates for independent and identically-
distributed sources are:

R = max
i∈[1,L]

H(X|Yi), (1a)

Rk = H(X|Yk), (1b)

meaning that the source is encoded with respect to the worst-case correlation
at rate R and extracted at rate Rk (Rk ≤ R). This rate Rk is the same rate as
if the SI was known in advance. Therefore, interactivity has no impact on the
transmission rate, hence the advantage of the interactive problem formulation.
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Fig. 2 IC scheme.

The optimal coding rates (1) have been derived under the assumption that
the source statistics {PXYk , k ∈ [1, L]} are perfectly known at both encoder
and decoder. When the distributions are not known, a practical and optimal
solution is the two-stage code [12, Chap. 6]. In the context of IC, it consists in
1) computing an estimate {QYk , k ∈ [1, L]} of {PYk , k ∈ [1, L]} at both encoder
and decoder (note that the realizations ynk are available at both encoder and
decoder), 2) computing an estimate {QX|Yk , k ∈ [1, L]} of {PX|Yk , k ∈ [1, L]} at
the encoder and sending it to the decoder. Finally, data are encoded according
to the estimated distributions.

These estimates have double impact on the compression performance. First,
sending the distribution parameter adds an additional cost to the transmission
rate, denoted by costQX|Yk . Second, using an estimate rather than the true
distribution increases the data compression rate by an additional factor called
excess rate ∆R. The Minimum description length principle [13,14] consists in
choosing the estimate Q∗X|Yk , for a given estimate QYk , which minimizes the
global cost:

Q∗X|Yk = arg min
QX|Yk

costQX|Yk +HP (X|Yk) +∆RIC(PXYk , QX|YkQYk), (2)

where HP (X|Yk) stands for the conditional entropy computed with respect
to the true distribution PXYk . Efficient distribution selection requires a closed
form expression of the excess rate to avoid extensive simulations. The goal of
this paper is to propose an analytical estimation of the excess rate∆RIC(PXYk , QX|YkQYk),
for the IC scheme depicted in Fig. 2.

2.2 Restriction to a practical case of interest: linear codes with Belief
Propagation decoding

IC shown in Fig. 2, is an extension of the SlepianWolf (SW) coding problem,
depicted in Fig. 3(c). Indeed, as shown in [15,2], the optimal code construction
relies on a random binning argument for SW coding, and on an embedded
random binning argument for IC. This is a consequence of the uncertainty at
the encoder on the SI available at the decoder in Fig. 2, which is similar to
the unavailability of the SI at the encoder in Fig. 3(c).

Unfortunately, the excess rate induced by using a wrong (approximate)
distribution in SW coding is still an open problem [6]. This results from the
duality between channel coding and SW coding [6], and from the fact that
mismatched capacity is still an open problem [7–9]. Indeed, the excess rate in
(2) is an information-theoretical measure and therefore includes an implicit
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minimization over all possible decoding functions. Moreover, the excess rate
depends very much on the decoder. For instance, in the case of the Binary
Symmetric Channel (BSC) [16, p. 187], the excess rate is zero for maximum
likelihood decoding but is non-zero for Belief Propagation (BP) decoding, as
will be shown in Sec. 4. This is a consequence of the fact that maximum
likelihood decoding is equivalent to minimizing the Hamming distance between
codewords, which does not require the true distribution knowledge. Due to
the prohibitive complexity of maximum likelihood decoding, BP decoding is
extensively used. Therefore, we focus in the following on linear codes and BP
decoding, which is of interest in practical scenarios.

Similar to SW coding, excess rate in IC remains an open and difficult
problem. To overcome this issue and solve the model selection problem (2),
we propose a closed formula for the excess rate in IC coding in one case of
practical interest [3,10], namely linear codes and BP decoding. For the sake of
clarity, we denote ∆RIC

BP(PXYk , QX|YkQYk) the excess rate, when BP decoding
is applied. Then, we propose a novel code design method to show the accuracy
of the conjectured formula.

2.3 Conjectured closed form formula and strategy for numerical evidence

To motivate our closed form estimate of the excess rate in IC, we first review
various source coding problems. For the mono source compression problem
(without having any SI), see Fig. 3(a), the excess rate induced by the use of
a wrong distribution is derived in [16, Theorem 5.4.3]. In particular, when
a single source X with distribution PX is compressed with a variable-length
code constructed with distribution QX , the excess rate is

∆Rmonovl = DKL(PX ||QX), (3)

where subscript vl stands for variable-length code, DKL(PX ||QX) stands for
the KL divergence between PX and QX , and the variable-length code of rate
Rmonovl is defined by the following encoding and decoding functions:

fvl : Xn → {0, 1}∗, (4a)

gvl : {0, 1}∗ → Xn, (4b)

Rmonovl = lim
n→+∞

E[l(fvl(X
n)], (4c)

where l(u) is the length of the vector u and {0, 1}∗ = {∅, 0, 1, 00, 01, ...}
In IC, fixed-length coding is of great interest because a practical imple-

mentation based on fixed-length coding for interactive image compression is
proposed in [3]. For the mono source compression problem of Fig. 3(a), a
fixed-length code of rate Rmonofl is define as:

ffl : Xn → {1, 2, . . . , 2nR
mono
fl } = M, (5a)

gfl : M→ Xn ∪ {error}, (5b)
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Fig. 3 Some source coding schemes based on the availability of SI. (a) Mono source coding.
(b) Predictive coding. (c) SW coding.

By enlarging the typical set to take into account the uncertainty on the true
distribution, one can show [17, Section 3] that the excess rate remains the
same as the one for variable-length code (3):

∆Rmonofl = DKL(PX ||QX). (6)

Both results can be extended to the predictive coding scheme, see Fig. 3(b),
where a source X is compressed with SI Y available at both encoder and
decoder. The excess rate is

∆Rpred
fl = ∆Rpred

vl = DKL(PXY ||QX|Y PY ), (7)

where PXY stands for the true joint distribution, and QX|Y PY is the decoding
metric (the distribution used at decoder side).

In IC , the excess rate is an open problem (see Sec. 2.2), and we conjecture
that, in the case of linear codes decoded with BP, the excess rate for a specific
SI k can be well approximated by

∆RIC
fl = DKL(PXYk ||QX|YkQYk). (8)

This formula is of great interest as it allows to solve the model selection prob-
lem (2), without the need for extensive tests. This formula holds for any SI Yk
and, to simplify the notation, we drop index k in the remaining of the paper.
To show the accuracy of this conjectured formula (8), we will first optimize
the linear code ensemble Cn, parameterized by the fixed-length n, by solving
numerically

R∗(PXY , QXY ) = min
Cn:Pe(Cn,PXY ,QXY )−−−−→

n→∞
0
R(Cn), (9)

where Pe stands for the probability of error under BP decoding. Then, we will
compute the achievable excess rate with

∆RIC
fl = R∗(PXY , QX|Y PY )−R∗(PXY , PXY ), (10)
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and compare it with the conjectured formula (8). Numerical precision in (9) is
a key issue because in the context of IC , only small variations of the estimated
distribution QXY around the true distribution PXY are of practical interest.
Indeed, in IC , the encoder has access to both realization vectors xn and yn

and can provide an accurate estimate QXY .
A numerical solution to (9) can be obtained by introducing the mismatch

distribution into classical optimization approaches such as the quantized Den-
sity Evolution (DE) algorithm [18], or the Mutual-Information based algorithm
[19]. On one hand, the rate obtained by quantized DE is achievable but the
algorithm is very sensitive to its initialization, such that the obtained rate is
not necessary the best one. On the other hand, the Mutual-Information based
approach solves optimally a simplified problem such that the obtained rate
is not necessary achievable. These algorithms are therefore not sufficient to
test our conjecture and, in the next section, we propose a novel alternating
algorithm to solve (9), which insures that the optimal rate is indeed achiev-
able, without a need to resort to multiple random initializations or genetic
algorithms such as differential evolution [20].

3 Code design under rate optimization and the case of mismatched
decoding

3.1 Duality with binary-input channel code optimization problem

In this section, we establish the duality between IC and channel coding and
write the optimization problem (9) as a binary-input channel code design prob-
lem. First, IC is an extension of the SW coding problems. More precisely, in
IC and for a given SI Y = Yk, the optimal code construction is the same as the
one for SW coding, see [15,2]. Second, channel coding and SW coding are dual
problems [21–24]. In particular, for linear codes with general distribution, the
duality between channel coding and SW coding problem has been established
in [22] and is shown in Fig. 4. This duality holds at the level of each individual
linear codebook and implies that when encoding Xn with SI Y n at the decoder
with a general distribution PXY , the decoding error probability of any single
linear coset code is exactly the decoding error probability of its dual channel
coding problem under maximum likelihood decoding or BP decoding.

Therefore, as in [22], the IC of source X with SI Y can be turned into a
channel coding problem, with channel input U , channel output VVV and channel
transition distribution PV |U where

V̄ = U ⊕X, ¯̄V = Y, VVV = (V̄ , ¯̄V ). (11)

Here U has uniform distribution with the same alphabet as X, but is in-
dependent of (X,Y ). This duality has been first formulated in [21] for binary
variables, where X is uniform and X,Y follow the distribution of a BSC. It has
then been extended in [22,23] to arbitrary variables by turning the X,Y vari-
ables into an equivalent symmetric channel with uniform input distribution.
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Fig. 4 Duality between SW coding and channel coding.

Fig. 5 LDPC bipartite graph.

Moreover, and without loss of generality, we restrict to the case of binary-
input channels. Indeed, thanks to the chain rule, one can turn any finite input
IC problem into a set of binary input IC subproblems, that can be solved
separately, while still achieving optimality of the original problem [25]. There-
fore, in the following, we assume that X = U = {0, 1}. As a consequence,
source coding rate R and channel coding rate Rch of the dual problems satisfy
Rch = 1−R, and the optimization problem (9) becomes

C(PV |U , QV |U ) = max
Cn:Pe(Cn,PV |U ,QV |U )−−−−→

n→∞
0
Rch(Cn), (12)

where QV |U stands for the dual mismatch decoding metric [6], Cn represents
the binary-input channel code with blocklength n, Rch(Cn) is the channel rate,
and Pe(Cn, PV |U , QV |U ) is the decoding error probability.

3.2 LDPC codes, optimization techniques and their limitation

We now restrict our discussion to the case that is of most practical interest
[3], namely the LDPC codes decoded with BP algorithms. Indeed, the linear
codebook-level duality holds very generally, and in particular for LDPC codes
with BP decoding algorithm and mismatched decoding metric [6].

An LDPC code [26] is a linear code that can be depicted as a bipartite
code Fig. 5, where a Variable Node (VN) represents a channel input variable
U , a Check Node (CN) represents a parity check equation, and an output
VN is the channel output variable VVV . BP decoding [27] provides an estimate
of the input vectors un given the output vector vvvn by exchanging messages.
For an edge between node C and node U , a message (lc from C to U , or
lv from U to C) is an estimate of the input variable U . Then, BP decoding
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consists in exchanging these messages by some update rules at both CN and
VN [27, Chapter 2], to provide an estimate of the input vectors un given the
output vector vvvn. In the case of mismatched decoding, the same update rules
are applied. The only change is the initialization mQ

0 (vvv), which now depends
merely on the mismatched decoding metric:

mQ
0 (vvv) = ln

QV |U (VVV = vvv|U = 0)

QV |U (VVV = vvv|U = 1)
= ln

QX|Y (X = v̄|Y = ¯̄v)

QX|Y (X = v̄ ⊕ 1|Y = ¯̄v)
, (13)

where vvv = (v̄, ¯̄v).
The design parameters of an LDPC code are the connection degrees of the

VN and CN from the edge perspective. More precisely, we denote the propor-
tion of edges connected to VN and CN of degree i by λi and ρi respectively.
The design parameters are summarized with the degree distribution polyno-
mials λ(x) =

∑dv
i=2 λix

i−1 and ρ(x) =
∑dc
i=2 ρix

i−1. It follows that the rate of
the LDPC code is equal to:

Rch
(
Cn(ρ, λ)

)
= 1−

∑dc
i=2 ρi/i∑dv
i=2 λi/i

. (14)

LDPC code optimization is performed for a random code ensemble (all
codes that satisfy the degree distribution constraints form an ensemble), and
for channels that have a monotonic behavior with respect to a scalar p. The
greater the p, the harder the channel is. An example of such a channel is the
BSC, where the parameter is the crossover probability p ≤ 0.5.

LDPC code optimization can be classified into two categories. In the first
category, the rate of the code is fixed and the goal is to find the hardest channel
(i.e. with the maximum threshold) that can be achieved with vanishing error
probability [20]. This leads to

max
(ρ,λ)

p, (15a)

subject to R(Cn(ρ, λ)) = R0, (15b)

Pe(Cn, PV |U (p)) −−−−→
n→∞

0, (15c)

where PV |U (p) stands for the channel distribution PV |U with parameter p, and
where the first constraint is linear in the design parameter (14). The second
category of code design consists in fixing the distribution and optimizing the
rate:

max
(ρ,λ)

R
(
Cn(ρ, λ)

)
, (16a)

subject to Pe(Cn, PV |U (p)) −−−−→
n→∞

0. (16b)

In both problems (15) and (16), the difficulty lies in the evaluation of the
asymptotic error probability as a function of the design parameters (ρ, λ) in
(15c) and (16b). The accurate evaluation is called DE [20,27] and consists in
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tracking the evolution of the densities of the messages involved in the itera-
tive BP algorithm. When the number of iterations of BP goes to infinity, the
messages have a continuous density, and (15c) becomes an infinite dimensional
constraint. To solve (15), one can use a genetic algorithm such as differential
evolution at the price of a very high complexity, since at each iteration (of
the global optimizer), several DE are performed (where one DE consists in
a great number of iterations up to the convergence of the BP algorithm). A
way to simplify the infinite dimensional constraint (16b) is to quantize the
densities and add a slow-convergence constraint [18, Constraint 2 in Sec. III].
This leads to multiple linear constraints [18], one per BP iteration. Therefore,
the solution is an iterative algorithm, where each iteration solves a linear pro-
gramming problem. Both approaches are quite accurate, but suffer a very high
complexity and the need for an accurate first estimation.

A faster solution consists in replacing the whole density by a scalar param-
eter [27]. A popular approach, called Extrinsic Information Transfer Chart
(EXIT) chart, consists in computing a mutual information to approximate
the density, and (15c) and (16b) become a one dimensional equation linear
in the design parameters [19] and the whole problem is a linear programming
problem. The price to pay for this simplification is a lack of accuracy.

In the following, we propose a novel algorithm for solving problem (16)
since our goal is to perform rate optimization (12). We first propose a way
to solve the inaccuracy problem of the EXIT chart analysis and combine the
EXIT chart based optimization (Section 3.3.1) with a novel channel hardening
approach (Section 3.3.2) to provide an efficient initialization to start the opti-
mization problem proposed in [18]. This way, the obtained rate is guaranteed
to be achievable since it is obtained with quantize DE algorithm [18]. Second,
the accurate proposed initialization insures that the final rate is closed to the
optimum one.

In the following, we detail our approach for the case of mismatch decoding,
but note that this can also efficiently apply for the case without mismatch.
The only difference between the mismatched and classical approaches lies in
the initialization. In the case of mismatched decoding, the distribution of the
initial message mQ

0 (vvv) (13) is

P0 =

|X|·|Y|∑
vvv∈X×Y

PX,Y (X = v̄, Y = ¯̄v) · δmQ0 (vvv), (17)

where vvv = (v̄, ¯̄v) and δt is a Dirac delta function at point t.

3.3 Code design through rate optimization with rate-achievability guarantee

3.3.1 Rough solution with consistency or channel decomposition

An EXIT chart [28], is a technique which tracks the mutual information be-
tween the transmitted bit U and the soft Log-likelihood ratio (LLR) messages
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Lv corresponding to this bit. This mutual information can be computed as
[28][29, chapter 9.6]:

I(U ;Lv) = 1−
∑
u=±1

1

2

∫ ∞
−∞

pLv|U (lv|u)·log2

(pLv|U (lv|U = −1) + pLv|U (lv|U = 1)

pLv|U (lv|u)

)
dlv.

(18)

The technique relies on the Gaussian approximation of messages exchanged
between VN and CN processors, in which the output extrinsic information of
one processor is the input a priori information for the other one and vice versa.
Here the same notation of [28] is used, i.e., the mutual information between the
extrinsic (a priori) information coming out of (into) a processor and the code
bit associated with that processor is denoted by IE (IA). In a binary input
additive white Gaussian noise (BIAWGN) channel, the input LLR messages
have also Gaussian distribution and are consistent. Assuming consistency con-
dition is also valid for other Gaussian messages exchanged between VN and
CN, (18) for VN will be simplified to:

I(U ;Lv) = J(σ) = 1−
∫ +∞

−∞

e−
−(lv−σ

2

2
)2

2σ2

√
2πσ

log2(1 + e−lv )dlv.

Let σA and σE denote the standard deviations of the consistent-Gaussian
distribution of the messages coming into and out of a VN of degree dv, re-
spectively. The extrinsic and a priori mutual information of the VN is equal
to:

IAC = J(σA) and IEV = J
(√

σ2
in + σ2

0

)
, (19)

where σ2
0 represents the standard deviation of the initial LLR message distri-

bution and σ2
in = (dv − 1)σ2

A is the variance of the Gaussian input messages
coming from the neighboring CN to VN of degree dv.

For non-Gaussian SW coding problems which have discrete LLR distribu-
tion as in (17), the output distribution of VN update with consistent-Gaussian
input messages is indeed a mixture of Gaussian as:

pLv|U (lv|U = +1) = P0 ~N(
σ2
in

2
, σ2
in)

=

|X|·|Y|∑
vvv∈X×Y

PX,Y (X = v̄, Y = ¯̄v) ·N(
σ2
in

2
−mQ

0 (vvv), σ2
in),

where ~ represents the convolution operation. Therefore, when we have dis-
crete output, the messages are no more consistent (they are still symmetric)
and thus (19) is no longer valid for IEV . We propose two solutions to compute
IEV , first by assuming that the distribution is still consistent, and second by
decomposing the output distribution to BSC [30].
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1- Assuming consistency assumption: Inspired by [19, eq. 35] one can as-
sume the distribution is still consistent, let J(σ, t) be:

J(σ, t) = 1−
∫ ∞
−∞

e−
(lv−σ

2

2
−t)2

2σ2

√
2πσ

log2(1 + e−lv )dlv.

Then, IEV becomes

IEV =

dv∑
d=2

λd ·
|X|·|Y|∑
vvv∈X×Y

PXY (vvv)J
(√

(d− 1)[J−1(IAV )]2,mQ
0 (vvv)

)
. (20)

We approximate this mutual information with Gauss-Hermite quadrature.
2- Decomposition into BSCs: A binary-input symmetric memoryless chan-

nel can be separated into sub-channels which are BSCs [30]. Since pLv|U (lv|u)
is symmetric, using a quantizer we can decompose it to (W + 1) BSC with
intervals 0 < ζ0 < ζ1 < ... < ζW < +∞. We have

Pw =

∫ ζw

ζw−1

pLv|U (lv|U = +1)dlv +

∫ −ζw−1

−ζw
pLv|U (lv|U = +1)dlv,

εw =
1

Pw

∫ −ζw−1

−ζw
pLv|U (lv|U = +1)dlv,

Iw = 1− hb(εw),

where Pw is the probability of sub-channel w, εw is its corresponding cross-over
probability of the BSC sub-channel and Iw is the corresponding mutual infor-
mation of the sub-channel. hb(ε) denotes the binary entropy function. Without
loss of generality, the sub-channel w = 0 can be interpreted as a BSC with
crossover probability 0.5 [30]. The mutual information of IEV can be obtained
by taking the expectation of the mutual information of the subchannels:

IEV =

dv∑
d=2

λi Ew{Idw} =

dv∑
d=2

λi

W∑
w=0

P (d)
w I(d)w . (21)

As it can be seen in (20) or (21), the EXIT function for the VNs depends
on the initial messages and IAV . To obtain the CN EXIT function, the ap-
proximate duality property is exploited [31,32]. This states that a degree-d
single parity-check code and that of a degree-d repetition code are related as

IE,SPC(d, IA) = 1− IE,REP (d, 1− IA).

As can be seen, the EXIT function for CN only depends on IAC .
EXIT curves can be used to design LDPC codes [32]. We will consider only

check-regular LDPC codes. In order to converge to a vanishing probability of
error for decoding, the EXIT chart of the VN has to lie above the inverse of
the EXIT chart for the CN. The target in the code optimization is to maximize



Excess rate for model selection in interactive compression using BP decoding 13

the rate (14) while considering a fixed CN degree distribution and a fixed P0.
Therefore, we obtain the optimization method as

maximize
∑dv
i=2 λi/i

subject to I−1EC(IAC) < IEV (IAV , P0)

and to
∑dv
i=2 λi = 1, λi ≥ 0, i = 2, 3, .., dv

, (22)

where IAV = IEC and the optimization is solved by discretization of IAV ∈
(0, 1) and applying linear programming. Using this optimizer we can have a
first rough estimate of the code parameters which satisfies (12) approximately.

3.3.2 Refined solution for a fake harder channel

In general, the EXIT chart optimization is optimistic in the sense that the
optimized degree distribution might not have vanishing probability of error
[19]. To make sure that the optimized degree distribution is valid, after the
EXIT chart optimization we evaluate the decoding error probability of its
output degree distribution with DE [18]. If the optimized degree distribution
coming out of the EXIT chart optimization does not have a zero decoding error
probability, we optimize the degree distribution for a more difficult channel.

Keeping in mind that for the initial messages, the position of the LLRs in
the space and their associated probabilities will be determined by the decoding
metric QXY and the source distribution PXY , respectively, the term difficult
channel means that with the same decoding metric we assume that the prob-
ability of receiving the wrong symbol is higher than the true one. This affects
the probabilities of the initial messages and can be achieved by decreasing the
probability of positive LLRs and increasing the negative LLRs probabilities in
P0 of (17) by a gap ε:

PXY (X = v̄, Y = ¯̄v) =

{
PXY (X = v̄, Y = ¯̄v)− ε · PY (Y = ¯̄v) if mQ0 (vvv) > 0

PXY (X = v̄, Y = ¯̄v) + ε · PY (Y = ¯̄v) if mQ0 (vvv) < 0
. (23)

This way we are sure that the decoding metric is fixed and only its proba-
bility distribution is changing. For a binary-input binary-output source, this
corresponds to increasing the crossover probabilities (PX|Y (X = 1|Y = 0) and
PX|Y (X = 0|Y = 1)) by ε.

We increase the difficulty of the channel until the optimized degree can
converge to zero decoding error by DE test. In the EXIT curve computations,
we apply both VN EXIT curves of (20) and (21) and pick the one which
provides the higher channel rate (with vanishing error probability).

3.3.3 Final solution

With the EXIT chart optimization we are able to have a rough estimation of
the LDPC degree distributions, but this estimation is not optimal. Indeed, the
assumption of having Gaussian density for the messages used in EXIT chart,
was to simplify and stabilize the numerical computation of the evolution of the
message densities. In order to relax this Gaussian assumption, we tune this
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rough estimation by another optimization, proposed by Chung et al. [18], which
uses discretized DE in its “inner” loop and takes as input the rough estimation
of degree distribution and tries to optimize it iteratively. The details of the
algorithm can be found in [18]. For the case of SW coding, again the initial
message density of (17) is used during the calculation of message densities.

To design LDPC codes using discretized DE, again the channel rate is
maximized using linear programming which results in optimizing the λ(x) for
a fixed ρ(x). For that, unlike EXIT chart optimization, the algorithm must be
initiated with a λ(x) that results the channel code rate lower than the desired
rate. Then the optimization is run to update the degree distributions to λ′(x)
and increase the channel code rate maintaining the following constrains:

maximize
∑dv
i=2 λi/i

subject to
∑dv
i=2 λi = 1, λi ≥ 0, i = 2, 3, .., dv

and to λ′(x) is not significantly different from λ(x)
and to λ′(x) produces smaller probability of error

. (24)

We recursively tune the output of (24) until the output λ(x) does not
change significantly. The details of the algorithm is given in Algorithm 1.
Here EXIT opt(mQ

0 , P, dc) is the EXIT chart optimization function discussed
in Section 3.3.1 which takes as input the initial messages and their associated
probabilities for a fixed check-regular LDPC codes with ρ(x) = xdc−1. The out-
put of this function is the optimized variable degree distribution λ. The func-
tion DE(mQ

0 , P0, (λ, ρ)) analyzes the performance of LDPC code ensemble for
a pair of degree distribution (λ, ρ) using DE algorithm and the output of this

function is the probability of error pe. The functionQDE opt(mQ
0 , P0, λinit, dc)

optimize the degree distribution starting from λinit for fixed mQ
0 , P, dc using

quantized/discretized DE discussed here.

4 Experimental results

We first show the significance of the model selection problem encountered in
IC. Indeed, Table 1 shows the KL divergence for typical values of distributions
observed in [3]. More precisely, for IC of images shown in Fig. 1, if the block to
be encoded is of size 8×8 pixels, for each SI provided for the block (predictions
generated from neighboring blocks), the cost to encode a distribution with 1
bit is 1/64 = 0.156 bit per pixel, which is on the same order of magnitude
as the values in Table 1. Therefore, as explained in (2), there is a trade-off
between the cost to encode a distribution and its corresponding excess rate
caused by using the approximate distribution.

Second, we show that the code optimization algorithm proposed in Sec-
tion 3 allows to get better codes than state of the art methods and is therefore
an accurate method to evaluate the best possible compression rate, and thus
the excess rate. For that, we compare the output of our code optimization
with the code optimization of [33]. For the distribution defined in [33, section
IV-A], the best compression rate in [33] is 0.6 while our method achieves 0.589
(the lower the rate, the better the compression) with the same maximum VN
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Algorithm 1 Algorithm for LDPC code design
Input:

PXY as the true joint distribution and QXY = QX|Y .PY as the decoding metric.

Degree dc for the check-regular nodes, i.e. ρ(x) = xdc−1

Maximum degree of the variable nodes dmaxv
The maximum value of permitted gap ε to εmax and increase step of the gap to ∆ε

Output: λopt

1: Initialize ε← 0
2: while ε ≤ εmax do
3: mQ0 ← using QXY in (13)

4: Assign probabilities P0 to mQ0 using (23)

5: λopt ← EXIT opt(mQ0 , P0, dc). Note: apply both consistency assumption & decom-
position into BSCs methods and choose the one that provides higher channel rate.

6: pe ← DE(mQ0 , P0, (λopt, ρ))
7: if pe ≈ 0 then
8: break
9: end if

10: ε← ε+∆ε
11: end while
12: repeat

13: λopt ← QDE opt(mQ0 , P0, λopt, dc)
14: until λopt or the rate resulting from (λopt, ρ) converge

Table 1 The KL divergence between the true joint distribution and the approximate distri-
bution when crossover probability PX|Y (0|1) = PX|Y (1|0) = p is quantized using different
number of bits.

# bits
p = 0.05

PY (0) = 0.1
p = 0.05

PY (0) = 0.5
p = 0.2

PY (0) = 0.1
p = 0.2

PY (0) = 0.5
p = 0.3

PY (0) = 0.1
p = 0.3

PY (0) = 0.5
1 0.208 0.208 0.01 0.01 0.009 0.009
2 0.047 0.047 0.032 0.032 0.018 0.018
3 0.002 0.002 0.001 0.001 0.001 0.001
4 0.007 0.007 0.002 0.002 0.001 0.001

degree and check regular node degree. The degree distributions of our code
are:

λ(x) = 0.238796x+0.210703x2+0.117978x5+0.125822x6+0.306701x19, and ρ(x) = x6.

Finally, we test our conjecture in (8) by computing the excess rate using
LDPC codes with BP decoding, based on Algorithm 1, and comparing it with
KL divergence. We first optimize the code without mismatch and then with
mismatch to find the rate. Tests have been carried out for binary variables un-
der different configurations of joint distribution PX,Y as the true distribution,
from symmetric or asymmetric PX|Y to uniform or non-uniform marginals
PY . For each joint distribution PX,Y , 30 decoding metrics QXY = QX|Y PY
are considered as approximate distributions in which QX|Y is a BSC with pa-
rameter q ranging from 0.009 to 0.26 with step 0.0087. Indeed, we assume that
an accurate estimate of the SI distribution PY is available at both encoder and
decoder at no cost, QY = PY , since in IC the SI is available at encoder and
decoder.
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The maximum VN degree is set to 100 in all experiments, and 11 bit is
used to quantize DE. Let r = log |X| − rch = 1− rch denotes the compression
rate in which rch is the rate of optimized channel code. At high channel code
rates (low source code rates), with a fixed maximum VN degree, LDPC codes
with higher check-regular degrees perform better. Therefore, for designing code
with respect to the true distribution PXY we increase the degree of the check
nodes until the optimized code produced by the code optimizer framework
(Algorithm 1) has less than 0.01 difference in rate compared to the theoretical
limit HP (X|Y ) given in (1b), i.e., conditional entropy between the source and
SI given the true distribution PXY . We denote this CN degree with D∗c and
the corresponding compression rate with rP . For each approximate decoding
metric, we optimize the code for all CN degrees which are less than or equal
to D∗c and pick the one which has a lower compression rate and denote it by
rQ. Finally, we compare the excess rate ∆RICBP = rQ− rP with our conjecture
formulated in (8), i.e., DKL(PXY ||QX|Y PY ).

Results are shown in Fig. 6. We can see that in almost all cases of interest
(see Table 1), the KL is a good measure to estimate the excess rate. This
means concretely that one can use the KL metric for estimating the excess
rate ∆RICBP in (2) instead of computing it in practice, reducing at the same
time the computational complexity.

5 Conclusion

In IC, selecting the model to use for decoding and thus to transmit to the
decoder is an important task. In particular, it requires to evaluate the impact
of an approximate model on the compression rate. We characterized this excess
rate in terms of the mismatched capacity of the dual channel, for model based
source coding, which is an open problem. For these coding schemes, we showed
experimentally that the KL divergence between the true and the approximate
model is a proper estimate of the excess rate experienced by mismatched BP
decoding of LDPC codes. This was evidenced by a new algorithm that allows
to design LDPC codes decoded with BP according to any decoding metric.
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