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Statistical analysis of organs’ shapes
and deformations: the Riemannian and
the affine settings in computational
anatomy

Xavier Pennec

Abstract Computational anatomy is an emerging discipline at the interface
of geometry, statistics and medicine that aims at analyzing and modeling the
biological variability of organs’ shapes at the population level. Shapes are
equivalence classes of images, surfaces or deformations of a template under
rigid body (or more general) transformations. Thus, they belong to non-linear
manifolds. In order to deal with multiple samples in non-linear spaces, a con-
sistent statistical framework on Riemannian manifolds has been designed
over the last decade. We detail in this chapter the extension of this frame-
work to Lie groups endowed with the affine symmetric connection, a more
invariant (and thus more consistent) but non-metric structure on transfor-
mation groups. This theory provides strong theoretical bases for the use of
one-parameter subgroups and diffeomorphisms parametrized by stationary
velocity fields (SVF), for which efficient image registration methods like log-
Demons have been developed with a great success from the practical point of
view. One can further reduce the complexity with locally affine transforma-
tions, leading to parametric diffeomorphisms of low dimension encoding the
major shape variability. We illustrate the methodology with the modeling of
the evolution of the brain with Alzheimer’s disease and the analysis of the
cardiac motion from MRI sequences of images.

1 Introduction

At the interface of geometry, statistics, image analysis and medicine, compu-
tational anatomy aims at analyzing and modeling the biological variability of
the organs’ shapes and their dynamics at the population level. The goal is to
model the mean anatomy, its normal variation, its motion / evolution and to
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discover morphological differences between normal and pathological groups.
For instance, the analysis of population-wise structural brain changes with
aging in Alzheimer’s disease requires first the analysis of longitudinal mor-
phological changes for a specific subject, which can be done using non-linear
registration-based regression, followed by a longitudinal group-wise analy-
sis where the subject-specific longitudinal trajectories are transported in a
common reference [32, 20]. In both steps, it is desirable that the lon-
gitudinal and the inter-subject transformations smoothly preserve
the spatial organization of the anatomical tissues by avoiding inter-
sections, foldings or tearing. Simply encoding deformations with a
vector space of displacement fields is not sufficient to preserve the
topology: one needs to require diffeomorphic transformations (dif-
ferentiable one-to-one transformations with differentiable inverse).
Space of diffeomorphisms are examples of infinite dimensional man-
ifolds. Informally, manifolds are spaces that locally (but not glob-
ally) resemble a given Euclidean space. The simplest example is
the sphere or the earth surface which looks locally flat at a scale
which is far below the curvature radius but exhibit curvature and
a non-linear behaviour at larger scales.

Likewise, shape analysis most often relies on the identification of fea-
tures describing locally the anatomy such as landmarks, curves, surfaces,
intensity patches, full images, etc. Modeling their statistical distribution in
the population requires to first identify point-to-point anatomical correspon-
dences between these geometric features across subjects. This may be fea-
sible for landmark points, but not for curves or surfaces. Thus,
one generally considers relabelled point-sets or reparametrized
curve/surface/image as equivalent objects. With this geometric
formulation, shapes spaces are the quotient the original space of
features by their reparametrization group. One also often wants to re-
move a global rigid or affine transformation. One considers in this case the
equivalence classes of images, surfaces or deformations under the action of
this space transformation group, and shape spaces are once again quotient
spaces. Unfortunately, even if we start from features belonging to a nice Eu-
clidean space, taking the quotient generally endows the shape space with a
non-linear manifold structure. For instance, equivalence classes of k-tuples of
points under rigid or similarity transformations result in non-linear Kendall’s
shape spaces (see e.g. [15] for a recent account on that subject). The quotient
of curves, surfaces and higher dimensional objects by their reparametrizations
(diffeomorphisms of their domains) produces in general even more complex
infinite dimensional shape spaces [6].

Thus, shapes and deformations belong in general to non-linear manifolds,
while statistics were essentially developed for linear and Euclidean spaces.
For instance, adding or subtracting two curves does not really make sense. It
is thus not easy to average several shapes. Likewise, averaging unit vectors
(resp. rotation matrices) do not lead to a unit vector (resp. a rotation matrix).
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It is thus necessary to define a consistent statistical framework on manifolds
and Lie groups. This has motivated the development of Geometric Statistics
during the last decade [52]. We summarize below the main features of the
theory of statistics on manifolds, before generalizing it in the next section to
more general affine connection spaces.

1.1 Riemannian manifolds

While being non-linear, manifolds are locally Euclidean, and an infinitesimal
measure of the distance (a metric) allows to endow them with a Riemannian
manifold structure. More formally, a Riemannian metric on a manifold M
is a continuous collection of scalar products on the tangent space TxM at
each point x of the manifold. The metric measures the dot product of two
infinitesimal vectors at a point of our space: this allows to measure directions
and angles in the tangent space. One can also measure the length of a curve on
our manifold by integrating the norm of its tangent vector. The minimal
length among all the curves joining two given points defines the
intrinsic distance between these two points. The curves realizing
these shortest paths are called geodesics, generalizing the geometry of our
usual flat 3D space to curved spaces among which the flat torus, the sphere
and the hyperbolic space are the simplest examples.

The calculus of variations shows that geodesics are the solutions of a sys-
tem of second order differential equations depending on the Riemannian met-
ric. Thus, the geodesic curve γ(x,v)(t) starting at a given point x with a given
tangent vector v ∈ TxM always exists for some short time. When the time-
domain of all geodesics can be extended to infinity, the manifold is said to
be geodesically complete. This means that the manifold has no boundary nor
any singular point that we can reach in a finite time. As an important con-
sequence, the Hopf-Rinow-De Rham theorem states that there always exists
at least one minimizing geodesic between any two points of the manifold (i.e.
whose length is the distance between the two points) [12]. Henceforth, we
implicitly assume that all Riemannian manifolds are geodesically complete.

The function expx(v) = γ(x,v)(1) mapping the tangent space TxM at x to
the manifold M is called the exponential map at the point x. It is defined
on the whole tangent space but it is diffeomorphic only locally. Its inverse
logx(y) is a vector rooted at x. It maps each point y of a neighborhood of
x to the shortest tangent vector that allows to join x to y geodesically. The
maximal definition domain of the log is called the injectivity domain. It covers
all the manifold except a set of null measure called the cut-locus of the point.
For statistical purposes, we can thus safely neglect this set in many cases.
The Exp and Log maps expx and logx are defined at any point x of the
manifold (x is called the foot-point in differential geometry). They realize a
continuous family of very convenient charts of the manifold where geodesics
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starting from the foot-point are straight lines, and along which the distance
to the foot-point is conserved. These charts are somehow the “most linear”
chart of the manifold with respect to their foot-point (Fig.1)

In practice, we can identify a tangent vector v ∈ TxM within the in-
jectivity domain to the end-points of the geodesic segment [x, y = expx(v)]
thanks to the exponential maps. Conversely, almost any bi-point (x, y) on
the manifold where y is not in the cut-locus of x can be mapped to the vec-
tor −→xy = logx(y) ∈ TxM by the log map. In a Euclidean space, we would
write expx(v) = x+ v and logx(y) = y − x. This reinterpretation of addition
and subtraction using logarithmic and exponential maps is very powerful to
generalize algorithms working on vector spaces to algorithms on Riemannian
manifolds. It is also very powerful in terms of implementation since we can
express many of the geometric operations in these terms: the implementation
of the exp and log maps at each point is thus the basis of programming on
Riemannian manifolds.

1.2 Statistics on Riemannian manifolds

The Riemannian metric induces an infinitesimal volume element on each
tangent space, denoted dM, that can be used to measure random events on
the manifold and to define intrinsic probability density functions (pdf). It
is worth noticing that the measure dM represents the notion of uniformity
according to the chosen Riemannian metric. With the probability measure
of a random element, we can integrate functions from the manifold to any
vector space, thus defining the expected value of this function. However, we
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Fig. 1 Riemannian geometry and statistics on the sphere. Left: The tangent planes at

points x and y of the sphere S2 are different: the tangent vectors v and w at the point x
cannot be compared to the vectors t and u that tangent at the point y. Thus, it is natural to

define the scalar product on each tangent plane. Middle: Geodesics starting at x are straight

lines in a normal coordinate system at x and the distance is conserved up to the cut-locus.
Right: the Fréchet mean x̄ is the point minimizing the mean squared Riemannian distance

to the data points. It corresponds to the point for which the development of the geodesics

to the data points on the tangent space is optimally centered (the mean
∑

i logx̄(xi) = 0
in that tangent space is zero). The covariance matrix is then defined in that tangent space.

Figure adapted from [45].
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generally cannot integrate manifold-valued functions since an integral is a
linear operator. Thus, one cannot define the mean or expected “value” of a
random manifold element using a weighted sum or an integral as usual.

The main solution to this problem is to redefine the mean as the minimizer
of an intrinsic quantity: the Fréchet (resp. Karcher) mean minimizes globally
(resp. locally) the sum of squared Riemannian distance to our samples. As
the mean is now defined through a minimization procedure, its existence and
uniqueness may be questioned. In practice, one mean value almost always
exists, and it is unique as soon as the distribution is sufficiently peaked. The
properties of the mean are very similar to those of the modes of a distribution
in the Euclidean case. The Fréchet mean was used since the 1990s in med-
ical image analysis for redefining simple statistical methods on Riemannian
manifolds [43, 49, 44, 45, 17].

To compute the Fréchet mean, one can follow the Riemannian gradient of
the variance with an iteration of the type:

x̄t+1 = expx̄t

(
α

1

n

∑
i

logx̄t
(xi)

)
.

The algorithm essentially alternates the computation of the tangent mean
in the tangent space at the current estimation of the mean, and a geodesic
marching step towards the computed tangent mean. The value α = 1 corre-
sponding to a Gauss-Newton scheme is usually working very well, although
there are examples where it should be reduced due to the curvature of the
space. An adaptive time-step in the spirit of Levenberg-Marquardt is easily
solving this problem.

When the Fréchet mean is determined, one can pull back our distribu-
tion of data points on the tangent space at the mean to define higher order
moments like the covariance matrix Σ = 1

n

∑n
i=1 logx̄(xi) logx̄(xi)

T. Seen for
the most central point (the Fréchet mean), we have somehow corrected the
non-linearity of our Riemannian manifold. Based on this mean x̄ and this
covariance matrix Σ, we can define the Mahalanobis distance in the tangent
space by:

µ2
(x̄,Σ)(y) = logx̄(y)TΣ(-1) logx̄(y).

It is worth noticing that the expected Mahalanobis distance of a random
point is independent of the distribution and is equal to the dimension of
the manifold when its mean and covariance are known, as in the vector case
[43, 45]. A very simple extension of Principle Component Analysis (PCA)
consists in diagonalizing the covariance matrix Σ and defining the modes
using the eigenvectors of decreasing eigenvalues in the tangent space at the
mean. This method usually works very well for sufficiently concentrated data.
More complex methods like Principal Geodesic Analysis (PGA), geodesic
PCA or Barycentric Subspace Analysis (BSA) may be investigated for data
distributions with a larger support [46].
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A notion of Gaussian may also be defined on a manifold by choosing
the distribution that minimizes the entropy knowing the mean and the co-
variance. It was shown in [43, 45] that this amounts to consider a trun-
cated Gaussian distribution on the tangent space at the mean point which
only covers the injectivity domain (i.e. truncated at the tangential cut lo-
cus): the pdf (with respect to the Riemannian measure) is N(x̄,Σ)(y) =

Z(x̄, Σ) exp(− 1
2 logx̄(y)TΓ logx̄(y)). However, we should be careful that the

relation between the concentration matrix Γ and the covariance matrix Σ is
more complex than the simple inversion of the Euclidean case since it has to
be corrected for the curvature of the manifold.

Based on this truncated Gaussian distribution, one can generalize the mul-
tivariate Hotelling T-squared test using the Mahalanobis distance. When the
distribution is Gaussian with a known mean and covariance matrix, the law
generalize the χ2 law and [45] showed that is has the same density as in the
vector case up to order 3. This opens the way to the generalization of many
other statistical tests, as we should obtain similarly simple approximations
for sufficiently centered distributions.

Notice that the reformulation of the (weighted) mean as an intrinsic mini-
mization problem allows to extend quite a number of other image processing
algorithms to manifold-valued signal and images, like interpolation, diffusion
and restoration of missing data (extrapolation). This is the case for instance
of diffusion tensor imaging for which manifold-valued image processing was
pioneered in [50].

2 An affine symmetric space structure for Lie groups

A classical way to perform statistics on shapes in computational anatomy is
to estimate or assume a template shape and then to encode other shapes by
diffeomorphic transformations of that template. This lifts the problem from
statistics on manifolds to statistics on smooth transformation groups, i.e. Lie
groups. The classical Riemannian methodology consists in endowing the Lie
group with a left (or right) invariant metric which turns the transformation
group into a Riemannian manifold. This means that the metric at a point x
of the group is obtained by the left translation Lx(y) = x ◦ y of the metric
at identity, or in a more computational way, that the scalar product of two
tangent vectors at x is obtained by left-translating them back to identify
using DLx−1 and taking the scalar product there. A right-invariant metric is
obtained if we use the differential of the right translation Rx(y) = y ◦ x to
identify the tangent space at x to the tangent space at identity. However, this
Riemannian approach is consistent with the inversion operations of the group
only if the metric is both left and right invariant. This is the case for compact
or commutative groups, such as rotations. But as soon as the Lie group is
a non direct product of simpler compact or commutative ones, such as rigid
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body transformations in 2D or 3D, there does not exist a bi-invariant metric:
left-invariant metrics are not right-invariant. Since the inversion exchanges
left and right, such metrics are not inverse consistent either. This means that
the Fréchet mean for a left (resp. right) invariant metric is not consistent
with inversion and right (resp. left) composition. In particular, the mean of
inverse transformations is not the inverse of the mean.

One can wonder if there exists a more general framework, obviously non-
Riemannian, to realize consistent statistics on these Lie groups. Indeed, nu-
merous methods in Lie groups are based on pure group properties, indepen-
dently of the action of transformations on objects. These methods rely in
particular on one-parameter subgroups, realized in finite dimensional matrix
Lie groups by the matrix exponential. There exist particularly efficient algo-
rithms to compute the matrix exponential like the scaling and squaring proce-
dure [23] or for integrating differential equations on Lie groups in geometric
numerical integration theory [21, 25]. In infinite dimension, one parameter
subgroups are deformations realized by the flow of Stationary Velocity Fields
(SVFs), as we will see in Section 3.1. Parametrizing diffeomorphisms with
SVFs was proposed for medical image registration by [3] and very quickly
adopted by many other authors [5, 59, 22, 42]. The group structure was also
used to obtain efficient low-dimensional parametric locally affine diffeomor-
phisms as we will see in Section 5.1.

In fact, these one-parameter subgroups (matrix exponential and flow of
SVF) are the geodesics of the Cartan-Schouten connection, a more invari-
ant and thus more consistent but non-metric structure on transformation
groups. We detail in this section the extension of the computing and statisti-
cal framework to Lie groups endowed with the affine symmetric connection. In
the medical imaging and geometric statistics communities, these notions were
first developed in [48, 34]. A more complete account on the theory appeared
recently in [51]. We refer the reader to this chapter for more explanations
and mathematical details.

2.1 Affine geodesics

Geodesics, exponential and log maps are among the most fundamental tools
to work on differential manifolds. In order to define a notion of geodesics in
non-Riemannian spaces, we cannot rely on the shortest path as there is no
Riemannian metric to measure length. The main idea is to define straight
lines as curves with vanishing acceleration, or equivalently curves whose tan-
gent vectors remains parallel to themselves (auto-parallel curves). In order to
compare vectors living in different tangent spaces (even at points which are
infinitesimally close), we need to provide a notion of parallel transport from
one tangent space to the other. Likewise, computing accelerations requires a
notion of infinitesimal parallel transport that is called a connection.
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In a local coordinate system, a connection is completely determined by
its coordinates on the basis vector fields: ∇∂i∂j = Γ kij∂k. The n3 coordinates

Γ kij of the connection are called the Christoffel symbols. A curve γ(t) is a
geodesic if its tangent vector γ̇(t) remains parallel to itself, i.e. if the covariant
derivative ∇γ̇ γ̇ = 0 of γ is zero. In a local coordinate system, the equation
of the geodesics is thus: γ̈k + Γ kij γ̇

iγ̇j = 0, exactly as in a Riemannian case.
The difference is that the affine connection case starts with the Christoffel
symbols, while these are determined by the metric in the Riemannian case,
giving a natural connection called the Levi-Civita connection. Unfortunately,
the converse is not always possible: many affine connection spaces do not
accept a compatible Riemannian metric. Riemannian manifolds are only a
subset of affine connection spaces.

What is remarkable is that we conserve many properties of the Rieman-
nian exponential map in affine connection spaces. For instance, the geodesic
γ(x,v)(t) starting at any point x with any tangent vector v is defined for a
sufficiently small time, which means that we can define the affine exponen-
tial map expx(v) = γ(x,v)(1) for a sufficiently small neighborhood. Moreover,
there exists at each point a normal convex neighborhood (NCN) in which any
couple of points (x, y) is connected by a unique geodesic γ(t) entirely con-
tained in this neighborhood. We can thus define the log-map locally without
ambiguity.

2.2 An affine symmetric space structure for Lie groups

In the case of Lie groups, the Symmetric Cartan-Schouten (SCS) connection
is a canonical torsion free connection introduced in 1926 shortly after the
invention of the notion of connection by Cartan [13]. This is also the unique
affine connection induced by the canonical symmetric space structure of the
Lie groups with the symmetry sg(h) = gh(-1)g. The SCS connection exists
on all Lie groups, and it is left and right-invariant. When there exists a bi-
invariant metric on the Lie group (i.e. when the group is the direct product
of Abelien and compact groups), the SCS connection is the Levi-Civita con-
nection of that metric. However, the SCS connection still exists when there
is no bi-invariant metric.

Geodesics of the SCS connection are called group geodesics. The ones
going through the identity are the flow of left-invariant vector fields. They
are also called one-parameter subgroups since γ(s + t) = γ(s) ◦ γ(t) is an
isomorphism of Lie groups, that is a mapping that preserves the Lie group
structure. In matrix Lie groups, one-parameter subgroups are described by
the exponential exp(M) =

∑∞
k=0M

k/k! of square matrices. Conversely, if
there exists a square matrix M such that exp(M) = A, then M is said to be
a logarithm of the invertible square matrix A. In general, the logarithm of a
real invertible matrix is not unique and may fail to exist. However, when this
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matrix has no (complex) eigenvalue on the (closed) half line of negative real
numbers, then it has a unique real logarithm log(M), called the principal
logarithm whose (complex) eigenvalues have an imaginary part in (−π, π)
[27, 18]. Moreover, matrix exp and log can be very efficiently numerically
computed with the ‘Scaling and Squaring Method’ [23] and ‘Inverse Scaling
and Squaring Method’ [24].

Group geodesics starting from other point can be obtained very simply
by left or right translation: γ(t) = A exp(tA(-1)M) = exp(tMA(-1))A is the
geodesic starting at A with tangent vector M . In finite dimension, the group
exponential is a chart around the identity. In infinite dimensional Fréchet
manifolds, the absence of an inverse function theorem prevents the straight-
forward extension of this property to general groups of diffeomorphisms and
one can show that there exists diffeomorphisms as close as we want to the
identity that cannot be reached by one-parameter subgroups [28]. In practice,
though, the diffeomorphisms that we cannot reach have not yet proved to be
of practical use for any real-world application.

Thus, everything looks very similar to the Riemannian case, except that
group geodesics are defined from group properties only and do not require any
Riemannian metric. One should be careful that they are generally different
from the Riemannian exponential map associated to a Riemannian metric on
the Lie group.

2.3 Statistics in affine connection spaces

In order to generalize the Riemannian statistical tools to affine connection
spaces, the Fréchet / Karcher means have to be replaced by the weaker notion
of exponential barycenters, which are the critical points of the variance in Rie-
mannian manifolds. In an affine connection space, the exponential barycenters
of a set of points {x1 . . . xn} are implicitly defined as the points x for which
the tangent mean field vanishes:

M(x) =
1

n

n∑
i=1

logx(xi) = 0. (1)

While this definition is close to the Riemannian center of mass [19], it uses
the logarithm of the affine connection instead of the Riemannian logarithm.

For sufficiently concentrated distributions with compact support, typi-
cally in a normal convex neighborhood, there exists at least one exponential
barycenter. Moreover, exponential barycenters are stable by affine diffeomor-
phisms (connection preserving maps). For distributions whose support is too
large, exponential barycenters may not exist. This should be related to the
classical non-existence of the mean for heavy tailed distributions in Euclidean
spaces. The uniqueness of the exponential barycenter can be shown with ad-
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ditional assumptions, either on the derivatives of the curvature [9] or on a
stronger notion of convexity (semi-local convex geometry [1]).

Higher order moments can also be defined locally. For instance, the empir-
ical covariance field is the 2-contravariant tensor Σ(x) = 1

n

∑n
i=1 logx(xi) ⊗

logx(xi) and its value Σ = Σ(x̄) at the exponential barycenter x̄ is called the
empirical covariance. Notice that this definition depends on the chosen basis
and that diagonalizing the matrix makes no sense since we do not know what
are orthonormal unit vectors. Thus, tangent PCA is not easily generalized.
Despite the absence of a canonical reference metric, the Mahalanobis distance
of a point y to a distribution can be defined locally as in the Riemannian case
with the inverse of the covariance matrix. This definition is independent of
the basis chosen for the tangent space and is actually invariant under affine
diffeomorphisms of the manifold. This simple extension of the Mahalanobis
distance suggests that it might be possible to extend much more statistical
definitions and tools on affine connection spaces in a consistent way.

2.4 The case of Lie groups with the canonical
Cartan-Schouten connection

Thanks to the bi-invariance properties of the SCS connection, the exponential
barycenters of Eq.(1) define bi-invariant group means. Let {Ai} be a set
of transformations from the group (we can think of matrices here). Then
a transformation Ā verifying

∑
i log(Ā(-1) Ai) =

∑
i log(Ai Ā

(-1)) = 0 is a
group mean which exists and is unique for sufficiently concentrated data
{Ai}. Moreover, the fixed point iteration Āt+1 =

∑
i log(Ā(-1)

t Ai) converges
to the bi-invariant mean at least linearly (still under a sufficient concentration
condition), which provides a very useful algorithm to compute it in practice.

The bi-invariant mean turns out to be globally unique in a number of Lie
groups which do not support any bi-invariant metric, for instance nilpotent
or some specific solvable groups [48, 34, 51]. For rigid-body transformations,
the bi-invariant mean is unique when the mean rotation is unique, so that
we do not lose anything with respect to the Riemannian setting. Thus, the
group mean appears to be a very general and natural notion on Lie groups.

3 The SVF framework for shape and deformation
modeling

In the context of medical image registration, diffeomorphic registration was
introduced with the “Large Deformation Diffeomorphic Metric Mapping (LD-
DMM)” framework [57, 7], which parametrizes deformations with the flow of
time varying velocity fields v(x, t) with a right-invariant Riemannian met-
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ric (see [61] for a complete mathematical description). In view of reducing
the computational and memory costs, [3] subsequently proposed to restrict
this parametrization to the subset of diffeomorphisms parametrized by the
flow of stationary velocity fields (SVFs), for which efficient image registra-
tion methods like log-Demons have been developed with a great success from
the practical point of view. The previous theory of statistics on Lie groups
with the canonical symmetric Cartan-Schouten connection provides strong
theoretical bases for the use of these one-parameter subgroups.

3.1 Diffeomorphisms parametrized by stationary velocity
fields

To construct our group of diffeomorphisms, one first restricts the Lie algebra
to sufficiently regular velocity fields according to the regularization term of
the SVF registration algorithms [59, 22] or to the spline parametrization of
the SVF in [5, 42]. The flow of these stationary velocity fields and their
finite composition generates a group of diffeomorphisms that we endow with
the affine symmetric Cartan-Schouten connection. The geodesics are then
exactly the one-parameter subgroups generated by the flow of SVFs: the
deformation φ = exp(v) is parametrized by the Lie group exponential of a
smooth SVF v : Ω → R3 through the Ordinary Differential Equation (ODE)
∂φ(x,t)
∂t = v(φ(x, t)) with initial condition φ(x, 0) = x. It is known that not

all diffeomorphisms can be reached by such a one-parameter subgroup (we
might have to compose several ones to reach them all) but in practice this
does not seem to be a limitation.

Many of the techniques developed for the matrix case can be adapted to
SVFs. This is the case of the scaling and squaring algorithm, which inte-
grates the previous ODE very effectively thanks to the iterative composition
of successive exponentials: exp(v) = exp(v/2) exp(v/2) = (exp(v/2n))n. In-
verting a deformation is usually quite difficult or at least computationally
intensive as we have to find ψ such that ψ(φ(x)) = φ(ψ(x)) = x. This is
generally performed using the least-square minimization of the error on the
above equation integrated over the image domain. In the SVF setting, such
a computation can be performed seamlessly since φ(-1) = exp(−v).

In order to measure volume changes induces by the deformation, one usu-
ally computes the Jacobian matrix dφ = ∇φT using finite differences, and
then takes its determinant. However, finite-differences schemes are highly
sensitive to noise. In the SVF framework, the log-Jacobian can be reliably
estimated by finite differences for the scaled velocity field v/2n, and then
recursively computed thanks to the chain rule in the scaling-and-squaring
scheme thanks to the additive property of the one-parameter subgroups. The
Jacobian determinant that we obtain is therefore fully consistent with the
exponential path taken to compute the diffeomorphism.
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Last but not least, one often needs to compose two deformations, for in-
stance to update the current estimation in an image registration algorithm.
The Baker Campbell Hausdorff (BCH) formula is a series expansion that
approximates the SVF

BCH(v, u) = log(exp(v) exp(u)) = v + u+
1

2
[v, u] +

1

12
[v, [v, u]] + . . .

as a power series in the two SVFs u and v. In this formula, the Lie bracket
of vector fields is v: [v, u] = dv u − du v = ∂uv − ∂vu. In the context of
diffeomorphic image registration, this trick to do all the computations in the
Lie algebra was introduced by [8].

3.2 SVF-Based Diffeomorphic Registration with the
Log-Demons

The encoding of diffeomorphisms via the flow of SVF [3] inspired several SVF-
based image registration algorithms [58, 8, 5, 59, 22, 42, 41, 29]. Among them,
the log-demons registration algorithm [58, 59, 60, 29] found a considerable
interest in the medical image registration community with many successful
applications to clinical problems [53, 36, 32, 55].

Given a pair of images I, J : R3 7→ R, the log-demons algorithm aims
at estimating a SVF v parametrizing diffeomorphically the spatial cor-
respondences that minimize a similarity functional Sim[I, J ◦ exp(v)]. A
classically used similarity criterion is the sum of square differences (SSD)
Sim[I, J ] =

∫
(I(x) − J(x))2dx. In order to symmetrize the criterion and

ensure inverse consistency, one can add the symmetric similarity criterion
Sim[I ◦ exp(−v), J ] [59] or more simply measure the discrepancy at the mid-
deformation point using Sim[I◦exp(−v/2), J◦exp(v/2)]. This last formulation
allows to easily symmetrize a similarity functional that is more complex than
the SSD, such as the local correlation coefficient (LCC) [29].

In order to prevent overfitting, a regularization term that promotes spa-
tially more regular solutions is added to the similarity criterion. In the log-
demons framework, this regularization is naturally performed on the SVF
v rather than on the deformation φ = exp(v). A feature of the demons’
type algorithms is also to introduce an auxiliary variable encoding for the
correspondences, here a SVF vc, in addition to the SVF v encoding for the
transformation [11]. The two variables are linked using a coupling criterion
that prevents the two from being too far away from each other. The criterion
optimized by the log-demons is then:

E(v, vc, I, J) = 1
σ2
i
Sim(I, J, vc) + 1

σ2
x
‖vc − v‖2L2

+ 1
σ2
T
Reg(v). (2)
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The interest of the auxiliary variable is to decouple a non-linear and non-
convex optimization problem into two simpler optimization problems that
are respectively local and quadratic. The classical criterion is obtained at the
limit when the typical scale of the error σ2

x between the transformation and
the correspondences tends to zero.

The minimization of (2) is alternatively performed with respect to the
correspondence SVF vc and the transformation SVF v. The first step is a
non-convex but purely local problem which is usually optimized via gradient
descent using Gauss-Newton or Levenberg Marquardt algorithms. To sim-
plify the second step, one can choose Reg(·) to be an Isotropic Differential
Quadratic Form (IDQF [10]), which leads to a closed form solution by convo-
lution. In most cases, one chooses this convolution to be Gaussian: v = Gσ∗vc,
which can be computed very efficiently using separable recursive filters.

4 Modeling longitudinal deformation trajectories in
Alzheimer’s disease

With the log-demons algorithm, we can register two longitudinal images of
the same subject. When more images are available at multiple time-points,
we can regress the geodesic that best describes the different registrations to
obtain a longitudinal deformation trajectory encoded by a single SVF [32, 20].
We should notice that while such a geodesic is a linear model in the space of
SVFs, it is a highly non-linear model on the displacement field and on the
space of images.

However, follow-up imaging studies usually require to transport this
subject-specific longitudinal trajectories in a common reference for group-
wise statistical analysis. A typical example is the analysis of structural brain
changes with aging in Alzheimer’s disease versus normal controls. It is quite
common in neuroimaging to transport a scalar summary of the changes over
time like the Jacobian or the log-Jacobian encoding for local volume changes.
This is easy and numerically stable as we just have to resample the scalar
map. However, this does not allow to compute the ”average” group-wise de-
formation and its variability, nor to transport it back at the subject level
to predict what will be the future deformation. To realize such a generative
model of the longitudinal deformations, we should normalize the deforma-
tions as a geometric object and not just its components independently. This
involves defining a method of transport of the longitudinal deformation pa-
rameters along the inter-subject change of coordinate system.
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4.1 Parallel transport in Riemannian and affine spaces

Depending on the considered parametrization of the transformation (displace-
ment fields, stationary velocity fields, initial momentum field...), different
approaches have been proposed in the literature to transport longitudinal
deformations. In the Riemannian and affine connection space setting, where
longitudinal deformations are encoded by geodesics parametrized by their
initial tangent vector, it is natural to consider the parallel transport of this
initial tangent vector (describing the longitudinal deformation) along the
inter-subject deformation curve. Parallel transport is an isometry of tangent
spaces in the Riemannian case, so that the norm is conserved. In the affine
connection case, this is an affine transformation of tangent spaces. Instead
of defining properly the parallel transport in the continuous setting and ap-
proximating it in an inconsistent discrete setting, it was proposed in [30] to
rely on a carefully designed discrete construction that intrinsically respects
all the symmetries on the problem: the Schild’s Ladder. This algorithm was
initially introduced in the 1970s by the physicist Alfred Schild [16] in the
field of the general relativity. The method was refined with the pole ladder
in [33] to minimize the number of steps when the transport is made along
geodesics. Schild’s and pole ladders only require the computation of exponen-
tials and logarithms, and thus can easily and consistently be implemented for
any manifold provided that we have these basic algorithmic bricks.

In this process, the numerical accuracy of parallel transport algorithm is
the key to preserve the statistical information. The analysis of pole ladder
in [47] actually showed that the scheme is of order three in general affine
connection spaces with a symmetric connection, an order higher than ex-
pected. Moreover, the fourth order error term vanishes in affine symmetric
spaces since the curvature is covariantly constant. In fact, the error terms
vanish completely in a symmetric affine connection space: one step of pole
ladder realizes a transvection, which is an exact parallel transport (pro-
vided that geodesics and mid-points are computed exactly of course) [47].
These properties make pole ladder a very attractive alternative for paral-
lel transport in the framework of diffeomorphisms parametrized by SVFs.
In particular, parallel transport has a closed form expression Πv(u) =
log(exp(v/2) exp(u) exp(−v/2)) [33]. In practice, the symmetric reformula-
tion of the pole ladder scheme using the composition of two central symme-
tries (a transvection) gives numerically more stable results and was recently
shown to be better than the traditional Euclidean point-distribution model
on cardiac ventricular surfaces [26].
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4.2 Longitudinal modeling of Alzheimer’s progression

Parallel transport allows us to compute a mean deformation trajectory at the
group level and to differentiate populations on the basis of their full deforma-
tion features and not only according to local volume change as in traditional
tensor-based morphometry (TBM). We illustrate in this Section an applica-
tion of this framework to the statistical modeling of the longitudinal changes
in a group of patients affected by Alzheimer’s disease (AD). In this disease, it
was shown that the brain atrophy that one can measure using the registration
of time sequences of magnetic resonance images (MRI) is strongly correlated
to cognitive performance and neuropsychological scores. Thus, deformation-
based morphometry provides an interesting surrogate image biomarker for
the progression of the disease from pre-clinical to pathological stages.

Fig. 2 One year structural changes for 135 Alzheimer’s patients. A) Mean of the longitu-
dinal SVFs transported in the template space with the pole ladder. We notice the lateral
expansion of the ventricles and the contraction in the temporal areas. B) T-statistic for the

corresponding log-Jacobian values significantly different from 0 (p < 0.001 FDR corrected).

C) T-statistic for longitudinal log-Jacobian scalar maps resampled from the subject to the
template space. Blue color: significant expansion, Red color: significant contraction (Figure

reproduced from [33] with permission).
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The study that we summarize here was published in [33]. We took 135
Alzheimer’s subjects of the ADNI database with images at baseline and one
year later. The SVFs vi parametrizing the longitudinal deformation trajec-
tory φi = exp(vi) between the two time-points was estimated with the LCC
log-demons. These SVFs were then transported with the pole ladder from
their subject-specific space to the template reference T along the subject-to-
template geodesic, also computed using the LCC log-demons. The mean v̄ of
the transported SVFs in the template space parametrizes our model of the
group-wise longitudinal progression exp(tv̄). The spatial localization of signif-
icant longitudinal changes (expansion or contraction) was established using
one-sample t-test on the log-Jacobian scalar maps after parallel transport.
In order to compare with the traditional method used in tensor-based mor-
phometry, another one-sample t-test was computed on the subject-specific
log-Jacobian scalar maps resampled in the template space.

Results are presented in Figure 2. Row A illustrates the mean SVF of
the transported one-year longitudinal trajectories. It shows a pronounced
enlargement of the ventricles, an expansion of their temporal horns and a
consistent contracting flow in the temporal areas. It is impressive that the
extrapolation of the deformation along the geodesic from 1 year to 15 years
produces a sequence of very realistic images going from a young brain at
t = −7 years to a quite old AD brain with very large ventricles and almost
no hippocampus at t = 8 years. This shows that a linear model in a care-
fully designed non-linear manifold of diffeomorphisms can handle realistically
very large shape deformations. Such a result is definitely out of sight with
a statistical model on the displacement vector field or even with a classical
point distribution model (PDM), as is often done in classical medical shape
analysis.

Evaluating the volumetric changes (here computed with the log-Jacobian)
leads to areas of significant expansion around the ventricles with a spread
in the Cerebrospinal Fluid (CSF, row B). Areas of significant contraction
are located as expected in the temporal lobes, hippocampi, parahippocampal
gyrus and in the posterior cingulate. These results are in agreement with
the classical resampling of the subject-specific log-Jacobian maps done in
TBM presented in row C. It is striking that there is no substantial loss of
localization power for volume changes by transporting SVFs instead of resam-
pling the scalar log-Jacobian maps. In contrast to TBM, we also preserve the
full multidimensional information about the transformation, which allows to
make more powerful multivariate voxel-by-voxel comparisons than the ones
obtained with the classical univariate tests. For example, we could show for
the first time in [?] a statistically significant different brain shape evolutions
depending on the level of Aβ1−42 protein in the CSF. As the level of Aβ1−42 is
sometimes considered as pre-symptomatic of Alzheimer’s disease, we could be
observing the very first morphological impact of the disease. More generally,
a normal longitudinal deformation model allows to disentangle normal aging
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component from the pathological atrophy even with one time-point only per
patient (cross-sectional design) [35].

The SVF describing the trajectory can also be decomposed using Helmholtz’
decomposition into a divergent part (the gradient of a scalar potential) that
encodes the local volume changes and a divergence free reoriention pattern
[31]. This allows to consistently define anatomical regions of longitudinal
brain atrophy in multiple patients, leading to improved measurements of the
quantification of the longitudinal hippocampal and ventricular atrophy in
AD. This method provided very reliable results during the MIRIAD atro-
phy challenge for the regional atrophy quantification in the brain, with really
state of the art performances (first and second rank on deep structures) [14].

5 The SVF framework for Cardiac motion analysis

Cardiac motion plays an important role in the function of the heart and ab-
normalities in the cardiac motion can be the cause of multiple diseases and
complications. Modeling cardiac motion can therefore provide precious infor-
mation. Unfortunately, the outputs from cardiac motion models are complex.
Therefore, they are hard to analyze, compare and personalize. The approach
described below relies on a polyaffine projection applied to the whole cardiac
motion and results in a few parameters that are physiologically relevant.

5.1 Parametric diffeomorphisms with locally affine
transformations

The polyaffine framework assumes that the image domain is divided into
regions defined by smooth normalized weights ωi (i.e summing up to one over
all regions). The transformation of each region is modeled by a locally affine
transformation expressed by a 4× 4 matrix Ai in homogeneous coordinates.
Using the principal logarithm Mi = log(Ai) of these matrices, we compute the
SVF at any voxel x (expressed in homogeneous coordinates) as the weighted
sum of these locally affine transformation [4, 2]:

vpoly(x) =
∑
i

ωi(x)Mi x.

The polyaffine transformation is then obtained by taking the flow of SVF
using the previous scaling and squaring algorithm for the exponential. This
leads to a very flexible locally affine diffeomorphism parametrized by very few
parameters. In this formulation, taking the log in homogeneous coordinates
ensures that the inverse of the polyaffine transformations is also a polyaffine
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Fig. 3 A low dimensional parametrization of diffeomorphisms for tracking cardiac motion

in cine-MRI: the flow of an affine transformation with 12 parameters (middle) is generating
a local velocity field around each of the 17 AHA regions (on the left). The weighted average

of these 17 affine velocity fields produces a global velocity field whose flow (the group

exponential) is parametrizing the heart deformation (on the right). In this context, motion
tracking consists in optimizing the 12*17=204 regional parameters, which is easily done in

the log-demons framework.

transformation. This property is necessary to create generative motion mod-
els.

As shown in [56], the log affine matrix parameters Mi can be estimated
explicitly by a linear least squares projection of an observed velocity field
v(x) into the space of Log-Euclidean Polyaffine Transformations (LEPT’s).
Denoting Σij =

∫
Ω
ωi(x)ωj(x)xxTdx and Bi =

∫
Ω
ωi(x)v(x)xTdx, the op-

timal matrix of log-affine transformation parameters M = [M1,M2, ...Mn],
minimizing the criterion C(M) =

∫
Ω
‖
∑
i ωi(x)Mix − v(x)‖2dx is given by

M = BΣ(−1). The solution is unique when the Gram matrix Σ of the basis
vectors of our polyaffine SVF is invertible. This gives rise to the polyaffine log-
demons algorithm where the estimated SVF at each step of the log-demons
algorithm is projected into this low dimensional parameter space instead of
being regularized.

A cardiac-specific version of this model was proposed in [38] by choosing
regions corresponding to the standard American Heart Association (AHA)
regions for the left ventricle (Fig.3). The weights ωi are normalized Gaus-
sian functions around the barycenter of each regions. Furthermore, an addi-
tional regularization between neighboring regions was added to account for
the connectedness of cardiac tissue among neighboring regions, as well as
an incompressibility penalization to account for the low volume change in
cardiac tissue over the cardiac cycle.
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5.2 Towards intelligible population-based cardiac motion
features

The interpretability of the affine parameters of each region can be consid-
erably increased by expressing the local affine transformations in a local co-
ordinate system having radial, longitudinal vector and circumferential axes
for each region. The resulting parameters can be related to physiological de-
formation: the translations parameters correspond to the motion along the
radial, longitudinal, and circumferential axes while the linear part of the
transformation encodes the circumferential twisting, radial thickening, and
longitudinal shrinking. In a first study, the parameters were further reduced
by assuming the linear part of each matrix Mi to be diagonal, thus reducing
the number of parameters to 6 per region. These intelligible parameters were
then used by supervised learning algorithms to classify a database of 200
cases with equal number of infarcted and non-infarcted subjects (the STA-
COM statistical shape modeling). A 10-fold cross-validation showed that the
method was achieving more than 95% of correct classification on yet-unseen
data [54].

In [37, 38, 39], relevant factors discriminating between the motion patterns
of healthy and unhealthy subjects were identified thanks to a Tucker decom-
position on Polyaffine motion parameters with a constraint on the sparsity
of the core tensor (which essentially defines the loadings of each mode com-
bination). The key idea is to consider that the parameters resulting from the
tracking of the motion over cardiac image sequences of a population can be
stacked in a 4-way tensor along motion parameters × region × time × sub-
ject. Performing the decomposition on the full tensor directly using 4-way
Tucker Decomposition has the advantage of describing how all the compo-
nents interact (as opposed to matricising the tensor and performing 2-way
decomposition using classical singular value decomposition). The Tucker ten-
sor decomposition method is a higher-order extension of PCA which com-
putes orthonormal subspaces associated with each axis of the data tensor.
Thus, we get modes that independently describe: a reduced basis of trans-
formations (common to all regions, all time-points of the sequence and all
subjects); a spatial basis (region weights) that localize deformations on the
heart; a set of modes along time that triggers the deformation; and discrim-
inative factors across clinical conditions. In order to minimize the number
of interactions between all these modes along all the tensor axes, sparsity
constraints were added on the core tensor. The sparsity of the discriminating
factors and their individual intelligibility appears to be a key for a clear and
intuitive interpretation of differences between populations in order to gain
insight into pathology-specific functional behavior.

The method was applied to a data-set of 15 healthy subjects and 10 Tetral-
ogy of Fallot patients with short axis cine MRI sequences of 12 to 16 slices
(slice thickness of 8mm) and 15 to 30 image frames. The decomposition was
performed with 5 modes per axis and the core tensor loadings for each sub-
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Fig. 4 Dominant mode combinations common to healthy and ToF cohorts: affine mode 2
(a), temporal modes 2 and 4 (b), and regional mode 2 (c). Key - a: anterior, p: posterior,

s: septal, l: lateral. Figure reproduced from [37] with permission.

ject were averaged for the different groups. This showed that the two groups
share some common dominant loadings. As expected, the Tetralogy of Fallot
group also has some additional dominant loadings representing the abnormal
motion patterns in these patients.

The common dominant mode combinations are plotted in Fig.4 (top row).
The affine mode for the dominant mode combinations (Fig.4, a) shows pre-
dominant stretching in the circumferential direction related to the twisting
motion in the left ventricle. The temporal modes (Fig.4, b) show a dominant
pattern around the end- and mid-diastolic phases for mode 2, which may be
due to the end of relaxation and end of filling. The dominant regions for these
mode combinations are anterior (Fig.4, c). The dominant mode combinations
for the Tetralogy of Fallot group are plotted in Fig.4. The affine mode for
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Fig. 5 Three views of the first (top row) and second (bottom row) spatial modes for

the healthy controls (left) and for the Tetralogy of Fallot patients (right). The modes for
the healthy controls represent the radial contraction and circumferential motion, whereas

the modes for the Tetralogy of Fallot patients represent the translation towards the right

ventricle. Yellow arrows indicate the general direction of motion. Figure ©IEEE 2015,
reproduced from [38] with permission

the first dominant combination (Fig.4, d) indicates little longitudinal mo-
tion. The corresponding temporal mode (Fig.4, e) represents a peak at the
end systolic frame (around one third of the length of the cardiac cycle). The
corresponding regional mode (Fig.4, f) indicates that there is a dominance in
the motion in the lateral wall. This is an area with known motion abnormali-
ties in these patients given that the motion in the free wall of the left ventricle
is dragged towards the septum. The temporal mode for the second dominant
mode (Fig.4, h) has instead a peak around mid-systole, with corresponding
regional mode (Fig.4, i), indicating dominance around the apex, which may
be due to poor resolution at the apex. The SVF corresponding to the first
two spatial modes are shown in Fig.5. The first mode for the healthy con-
trols appears to capture both the radial contraction and the circumferential
motion (shown in block yellow arrows). The Tetralogy of Fallot modes, on
the other hand, appear to capture a translation of the free wall and septal
wall towards the right ventricle (RV). This abnormal motion is evident in the
image sequences of these patients.
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6 Conclusion

We have presented in this Chapter an overview of the theory of statistics on
non-linear spaces and of its application to the modeling of shapes and defor-
mations in medical image analysis. When the variability of shapes becomes
important, linear methods like point distribution models for shapes or linear
statistics on displacement vector fields for images and deformations become
ill-posed as they authorize self intersections. Considering non-linear spaces
that are locally Euclidean (i.e. Riemannian manifolds) solves this issue. The
cost to pay is that we have to work locally with tangent vectors and geodesics.
However, once the exponential and log maps are implemented at any point of
our shape space, many algorithms and statistical methods can be generalized
quite seamlessly to these non-linear spaces.

For statistics on deformations, we have to consider smooth manifolds that
have an additional structure: transformations form a Lie group under com-
position and inversion. One difficulty to use the Riemannian framework is
that there often does not exists a metric which is completely invariant with
respect to all the group operations (composition on the left and on the right,
inversion). As a consequence, the statistics that we compute with left or
right-invariant metrics are not fully consistent with the group structure. We
present in this chapter an extension of the Riemannian framework to affine
connection spaces that solves this problem. In this new setting, all the compu-
tations continue to be related to geodesics using the exp and log maps. Here,
geodesics are defined with the more general notion of straight lines (zero
acceleration or auto-parallel curves) instead of being shortest paths. Every
Riemannian manifold is an affine connection space with the Levi-Civita con-
nection, but the reverse is not true. This is why we can find a canonical
connection on every Lie group (the symmetric Cartan-Schouten connection)
that is consistent with left and right composition as well as inversion while
there is generally no bi-invariant Riemannian metric.

We have drafted the generalization of the statistical theory to this affine
setting, and we have shown that it can lead to a very powerful framework
for diffeomorphisms where geodesics starting from the identity are simply
the flow of stationary velocity fields (SVFs). Very well known non-linear
registration algorithms based on this parametrization of diffeomorphisms are:
the log-demons [59], Ashburner’s DARTEL toolbox in SPM8 [5] and the
NiftyReg registration package [42, 41]. The combination of these very efficient
algorithm with the well-posed geometrical and statistical framework allows
to develop new methods for the analysis of longitudinal data. Furthermore,
the affine symmetric structure of our group of deformation provides parallel
transport algorithms that are numerically more stable and efficient than in
the Riemannian case. We showed on two brain and cardiac applications that
this allows to construct not only statistically more powerful analysis tools,
but also generative models of shape motion and evolution.
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With polyaffine deformations in the cardiac example, we have also shown
that the deformation parameters can be localized and aligned with biophys-
ical reference frames to produce a diffeomorphism parametrized by low di-
mensional and intelligible parameters. Such a sensible vectorization of defor-
mations is necessary for sparse decomposition methods: each parameter has
to make sense individually as an atom of deformation if we want to describe
the observed shape changes with an extremely low number of meaningful
variables. This opens the way to very promising factor analysis methods dis-
sociating the influence of the type of local deformation, the localization, the
time trigger and the influence of the disease as we have shown with the sparse
Tucker tensor decomposition. There is no doubt that these methods will find
many other applications in medical image analysis.

For efficiency, the medical applications shown in this chapter were im-
plemented using C++ software dedicated to 3D image registration param-
eterized by SVFs. An open-source implementation of the symmetric log-
demons integrated into the Insight Toolkit (ITK) is available at http:

//hdl.handle.net/10380/3060. A significant improvement of this software
including the more robust LCC similarity measure and symmetric confi-
dence masks is available at https://team.inria.fr/epione/fr/software/
lcclogdemons/ [29], along with additional standalone tools to work on SVFs
including the pole ladder algorithm [33]. The code for the polyaffine log-
demons is also available as an open-source ITK package at https://github.
com/ChristofSeiler/PolyaffineTransformationTrees [56]. For Rieman-
nian geometric data which are less computationally demanding than the very
large 3D images, it can more comfortable to work in python. The recent
Geomstat Python toolbox https://github.com/geomstats/geomstats pro-
vides an efficient and user friendly interface for computing the exponential
and logarithmic maps, geodesics, parallel transport on nonlinear manifolds
such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie
groups of transformations, and many more. The package provides methods
for statistical estimation and learning algorithms, clustering and dimension
reduction on manifolds with support for different execution backends, namely
NumPy, PyTorch and TensorFlow, enabling GPU acceleration [40].
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