
HAL Id: hal-02330418
https://hal.archives-ouvertes.fr/hal-02330418v2

Submitted on 3 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Minimizing the Maximum Color for the 1-2-3
Conjecture

Julien Bensmail, Bi Li, Binlong Li, Nicolas Nisse

To cite this version:
Julien Bensmail, Bi Li, Binlong Li, Nicolas Nisse. On Minimizing the Maximum Color
for the 1-2-3 Conjecture. Discrete Applied Mathematics, Elsevier, 2021, 289, pp.32-51.
�10.1016/j.dam.2020.09.020�. �hal-02330418v2�

https://hal.archives-ouvertes.fr/hal-02330418v2
https://hal.archives-ouvertes.fr

On Minimizing the Maximum Color for the 1-2-3 ConjectureI

Julien Bensmaila, Bi Lib, Binlong Lic, Nicolas Nissea

aUniversité Côte d’Azur, CNRS, Inria, I3S, France
bXidian University, Xi’an, China

cNorthwestern Polytechnical University, Xi’an, China

Abstract

The 1-2-3 Conjecture asserts that, for every connected graph different from K2, its edges
can be labeled with 1, 2, 3 so that, when coloring each vertex with the sum of its incident
labels, no two adjacent vertices get the same color. This conjecture takes place in the more
general context of distinguishing labelings, where the goal is to label graphs so that some
pairs of their elements are distinguishable relatively to some parameter computed from the
labeling.

In this work, we investigate the consequences of labeling graphs as in the 1-2-3 Conjec-
ture when it is further required to make the maximum resulting color as small as possible.
In some sense, we aim at producing a number of colors that is as close as possible to
the chromatic number of the graph. We first investigate the hardness of determining the
minimum maximum color by a labeling for a given graph, which we show is NP-complete
in the class of bipartite graphs but polynomial-time solvable in the class of graphs with
bounded treewidth. We then provide bounds on the minimum maximum color that can
be generated both in the general context, and for particular classes of graphs. Finally, we
study how using larger labels permits to reduce the maximum color.

Keywords: edge labelings; proper vertex-colorings; 1-2-3 Conjecture; small vertex colors.

1. Introduction

1.1. Distinguishing labelings and the 1-2-3 Conjecture
This work takes place in the context of distinguishing labelings. The general goal is,

given a graph G, to label some elements (vertices, edges, etc.) of G so that certain pairs
of elements (vertices, edges, etc.) can be distinguished through parameters computed from
the labeling. As can be noted, this problem is quite general, and considering its several
parameters leads to many possible labeling variants that could be considered. This topic
has actually been intensively studied in the last decades. This is well illustrated by the
dynamic survey [5] that has been regularly updated by Gallian over the years, where over
2000 references on the topic, covering more than 200 labeling techniques, are reported.

In this work, we focus on the labeling variant where, given a graph G, we aim at
assigning positive integers to the edges so that every two adjacent vertices of G can
be distinguished through their “incident sums of labels”. Namely, given a k-labeling

IThe first and fourth authors were supported by the french Agence Nationale de la Recherche under
contract Digraphs ANR-19-CE48-0013-01. The second author was supported by the National Natural
Science Foundation of China (No. 11701440, 11626181). The third author was supported by the National
Natural Science Foundation of China (No. 11601429).

Preprint submitted to ... September 3, 2020

` : E(G)→ {1, . . . , k} of G, let us define, for every vertex v, the sum c`(v) =
∑

w∈N(v)

`(vw)

of the labels of its incident edges. The value c`(v) is called the color of the vertex v (induced
by the labeling `). A k-labeling is proper if c`(u) 6= c`(v) for every edge uv of G. That
is, ` is a proper labeling of G if c` is a proper vertex-coloring of G. Note that proper la-
belings are sometimes called neighbor-sum-distinguishing edge-weightings in the literature.
Throughout this work, we will most of the time consider proper labelings and then we will
omit the term “proper” unless there is some ambiguity.

Proper labelings have been receiving ingrowing attention since the introduction of the
so-called 1-2-3 Conjecture in 2004 by Karoński, Łuczak and Thomason [7]. Before giving
the exact statement of that conjecture, let us first introduce a few additional details. It is
easy to see that a connected graph G admits proper labelings if and only if G is different
from K2 (the connected graph with a single edge) [7]. Thus, when dealing with proper
labelings, one should focus on graphs with no connected component isomorphic K2; in the
current context, these graphs are called nice. Now, for every nice graph G, it makes sense
to find the minimum k such that G admits proper k-labelings; this parameter k for G is
sometimes denoted by χΣ(G).

The 1-2-3 Conjecture states that for every nice graph G, we should have χΣ(G) ≤ 3. In
other words, for almost every graph, we should be able to represent one of its proper vertex-
colorings by the incident sums inherited from a labeling assigning positive integers with
bounded and very small magnitude. A number of results have been exhibited throughout
the years as support to the 1-2-3 Conjecture. In what follows, we give a special focus to
the such results that connect to our investigations in this paper; for more details, we refer
the interested reader to the survey [9] by Seamone, which, although already outdated now,
provides pointers towards most of the most important and interesting results on this topic.

The most important result towards the 1-2-3 Conjecture is due to Kalkowski, Karoński
and Pfender [6], who proved that χΣ(G) ≤ 5 holds for every nice graph G. It is worth
mentioning that graphs G with χΣ(G) = 3 exist, so the value 3 in the statement of the
conjecture cannot be improved down to 2 in general. Note that the 1-2-3 Conjecture is
satisfied for nice complete graphs [3], and nice 3-colorable graphs [7], i.e., in particular,
for any bipartite graph G, we have χΣ(G) ≤ 3. While the graphs G with χΣ(G) = 1
can easily be described (these graphs are the locally irregular ones, i.e., those without any
edge uv with d(u) = d(v), where d(x) denotes the degree of the vertex x), those G with
χΣ(G) = 2 do not admit a “good” characterization, unless P=NP (as first proved by Dudek
and Wajc [4]). For some time, an important question was about the existence of such
a good characterization for bipartite graphs. It was not until quite recently that a good
characterization of the bipartite graphs G with χΣ(G) = 3 was provided [10]. That result
builds upon several sufficient conditions for a bipartite graph G to satisfy χΣ(G) ≤ 2. In
particular, this inequality was shown to hold when G has one of its two partite sets of even
size [3]. An alternative proof that χΣ(T) ≤ 2 holds for every nice tree T can be found
in [3].

1.2. Proper labelings and maximum color
As described above, the 1-2-3 Conjecture states that for almost every graph G we should

be able to represent one of its proper vertex-colorings c` via the sums of labels incident
to the vertices inherited from a labeling ` assigning positive integers 1, 2 and 3 as labels.
One of the downsides of using labels with low magnitude like this, is that we might lose
control over the number of vertex colors (i.e., |{c`(v) | v ∈ V (G)}|) that are generated by
a (proper) labeling `. A consequence is that the number of distinct colors defined by c`
might be much larger than χ(G), the chromatic number (i.e., the smallest number of colors

2

in a proper vertex-coloring) of G. This is well illustrated by the case of locally irregular
graphs G: as pointed out above, we have χΣ(G) = 1, but the number of distinct colors
obtained by the unique proper 1-labeling of G is the number of distinct degrees over the
vertices (which might be arbitrarily larger than χ(G): consider e.g. the case where G is
bipartite).

In a recent work [1], Baudon, Bensmail, Hocquard, Senhaji and Sopena have investi-
gated the trade-off between using more labels and generating a smaller number of colors
(i.e., as close as the chromatic number as possible) by a proper labeling. More precisely, for
a set of labels L and a graph G, they considered the parameter γL(G), which is the mini-
mum number of distinct colors defined by c` that can be generated by any proper L-labeling
` of G. In particular, they proved that, for every nice graph G, we have γZ(G) = χ(G),
unless in the case of a peculiar class of graphs in which case only γZ(G) = χ(G) + 1 holds.
They also proved that γ{1,2}(T) is of order log2 ∆(T) for any tree T with maximum degree
∆(T). Finally, they established the NP-hardness of computing γ{1,2}(G) for a given graph
G, even when G is bipartite.

Our investigations in this topic are in the line of those in [1], which are mainly motivated
by the fact that, in general, for any graph G the parameter γL(G) is bounded above by the
minimum maximum color that can be achieved over all proper L-labelings of G. In this
paper, we consider sets L = {1, . . . , k} of consecutive positive labels only. Thus, for a given
nice graph G and some k ≥ χΣ(G), we are interested in the parameter mSk(G) (where
“mS” stands for “maximum sum”), which is the smallest maximum color over the vertices
by a proper k-labeling of G. Precisely, given a (proper) labeling ` of G, let mS(G, `) =
max
v∈V (G)

c`(v). Then, mSk(G) = min
`
mS(G, `) where the minimum is taken over all (proper)

k-labelings ` of G.
Several aspects behind the general parameter mSk(G) seem of interest to us, and are

precisely related to some of the questions we investigate in the current work. Many of these
questions are related to the simple observation that, for every graph G and k ≥ χΣ(G), we
have mSk(G) ∈ {∆(G),∆(G) + 1, . . . , k∆(G)} where ∆(G) denotes the maximum degree
of G (see upcoming Claim 2.2). So our general aim, when labeling G, is to be as close as
possible to the lower bound ∆(G). This leads in particular to the following questions:

1. What is the precise value of mSk(G)?

2. Can we always reach the lower bound? That is, is there always a k such that
mSk(G) = ∆(G)?

3. Assuming Question 2 is wrong, how close to the lower bound can we get? That is,
how large can the difference between ∆(G) and min

k≥χΣ(G)
mSk(G) be?

4. Assuming Question 2 is right, can we always reach the lower bound using weights
1, . . . , χΣ(G)? That is, do we always have mSχΣ(G)(G) = ∆(G)?

5. Assuming the lower bound cannot be reached when using labels 1, . . . , k, can we
always get closer to it by using larger labels 1, . . . , k, . . . , k′? That is, if we have
mSk(G) > ∆(G) for some k, is there always a k′ > k such that mSk′(G) < mSk(G)?

6. Can we always achieve the minimum maximum color using a fixed sets of labels
{1, . . . , α}, regardless of G? That is, is there an absolute α such that if we have
mSk(G) > mSk′(G) for some k′ > k, then k′ ≤ α?

3

7. Can using larger weights reduce the minimum maximum color a lot? That is, as-
suming mSk(G) > mSk′(G) for some k < k′, how large can the difference between
mSk(G) and mSk′(G) be?

1.3. Results in this paper
In this work, we investigate some of the aspects and questions above, providing partial

or full answers to some of them. More precisely, this work is organized as follows:

• As a warm up, we start off, in Section 2, by raising general observations on the
parameter mSk, and by providing optimal results for complete graphs and complete
bipartite graphs, two classes of graphs for which the parameter χΣ is well understood.

• We then consider algorithmic aspects in Section 3. We first establish a negative result
in Section 3.1, showing that determining mSk(G) for any fixed k ≥ 2 and bipartite
graph G as input is NP-complete. We then establish a positive result in Section 3.2,
in which we provide a polynomial-time algorithm for determining mSk(G) for any
graph G with bounded treewidth.

• We then investigate bounds on mSk in Section 4. We focus mainly on general bipar-
tite graphs in Section 4.1. We then focus further on trees in Section 4.2. In particular,
we prove that for every nice tree T with maximum degree ∆, the parameter mS2(T)
is one of three possible values: ∆,∆ + 1 or ∆ + 2. In Section 4.3, we investigate,
still in trees, how using larger labels can help decreasing the maximum color by a
labeling. Finally, in Section 4.4, we prove that, in general, using larger labels can
lead to a drastic decrease of the maximum color by a labeling.

• Concluding remarks and perspectives for further work on the topic are gathered in
concluding Section 5.

2. Early observations and warm-up results

In this section, we first introduce some easy claims that will be used throughout this
work. We then provide first insights into the parameter mSk by considering classes of
graphs for which the value of χΣ is fully understood. Namely, we consider complete graphs
and complete bipartite graphs.

2.1. Early observations
We start off by exhibiting general bounds on mSk.

Claim 2.1. For every nice graph G and k ≥ 2, we have mSk(G) ≤ mSk−1(G).

Proof of the claim. This holds since a (k − 1)-labeling is also a k-labeling. �

Claim 2.2. For every nice graph G and k ≥ 1, we have ∆(G) ≤ mSk(G) ≤ k∆(G).

Proof of the claim. Consider any k-labeling ` of G. The color of any vertex v is

c`(v) =
∑

w∈N(v)

`(vw) ≤
∑

w∈N(v)

k = kd(v) ≤ k∆(G).

Moreover, for any vertex v with degree ∆(G), we have

c`(v) =
∑

w∈N(v)

`(vw) ≥
∑

w∈N(v)

1 = ∆(G),

which concludes the proof. �

4

Claim 2.3. For every locally irregular graph G and k ≥ 1, we have mSk(G) = ∆(G).

Proof of the claim. This holds since, by definition of a locally irregular graph, assigning
label 1 to all edges yields a labeling ` with mSk(G, `) = ∆(G), which is best possible by
Claim 2.2. �

Claim 2.4. Let G be a nice graph and ` be a labeling of G. If G contains a path (x, u, v, y)
with d(u) = d(v) = 2, then `(xu) 6= `(vy). Moreover, if ` is a 2-labeling and G contains
a path P = (v1, . . . , v4q) where d(vi) = 2 for all 1 < i < 4q and q > 1, then `(v1v2) 6=
`(v4q−1v4q).

Proof of the claim. The first statement holds because otherwise c`(u) = c`(v). The second
statement follows from the same argument. In particular, every two edges of P being at
distance 2 cannot be assigned the same label by a proper labeling. �

The following situation depicts a context where locally irregular graphs arise.

Claim 2.5. Let G be a nice graph, and ` be a 2-labeling of G. For every edge uv where
d(u) = d(v), the number of edges labeled 1 (and similarly 2) incident to u must be different
from the number of edges labeled 1 incident to v. In particular, when G is regular, then all
edges labeled 1 form a locally irregular graph, and similarly for all edges labeled 2.

Proof of the claim. The first part of the statement is because otherwise u and v would have
the same color. Indeed, for some x + 2y to be equal to some x′ + 2y′ for x + y = x′ + y′,
we must have x = x′ and y = y′. The second part of the statement is because every edge
uv of G falls into the conditions of the first part of the statement when G is regular. �

2.2. First classes of graphs
Let us first consider complete graphs Kn with n ≥ 3, which all verify χΣ(Kn) = 3.

First of all, let us recall that we cannot have χΣ(Kn) ≤ 2, because a 2-labeling of Kn

would make the vertex colors to be exactly the distinct values in {n − 1, . . . , 2(n − 1)},
which is impossible since color n− 1 can only be attained by a vertex incident to 1’s only,
while color 2(n− 1) can only be attained by a vertex incident to 2’s only [3].

Now, an easy inductive proof of the fact that χΣ(Kn) = 3 is as follows. Start with a
K3 where all edges receive distinct labels (in {1, 2, 3}), then add a vertex v4 adjacent to
all other ones via edges labeled 3. Then, for 5 ≤ q ≤ n, add a vertex vq adjacent to all
other ones via edges labeled 1 if q is odd, or via edges labeled 3 otherwise. It can easily be
checked that a 3-labeling of Kn results whatever is n [3].

In every resulting labeling ` above, we note that mS(Kn, `) = 3(n− 1) if n is even and
n ≥ 4, while mS(Kn, `) = 3(n − 2) + 1 for n ≥ 5 otherwise. In the next result, we prove
that these values are actually far from mS3(Kn); in particular, we establish the precise
value of this parameter.

Theorem 2.6. For any n ≥ 3 and any k ≥ χΣ(Kn) = 3, we have mSk(Kn) = 2(n− 1) =
2∆(Kn) if n ≡ 0 mod 4 or n ≡ 1 mod 4, and mSk(Kn) = 2n−1 = 2∆(Kn)+1 otherwise.

Proof. Let us first prove the lower bounds. In any labeling of Kn, any vertex has color
at least ∆(Kn) = n − 1 (recall Claim 2.2). Moreover, all vertices must have different
colors. Hence, the maximum color must be at least 2(n − 1) = 2∆(Kn). Let us assume
that there exists a labeling achieving this lower bound; then the colors of the vertices are

{n−1, n−2, . . . , 2(n−1)}. Therefore, the sum of their colors must be S(n) =
n−1∑
i=0

(n−1+i) =

5

v1 vh = v6 v∗q = v9
v10

(a) n ≡ 2 mod 4

v1 vh = v5 v∗q = vn = v9

(b) n ≡ 1 mod 4

Figure 1: Examples of optimal labelings of Kn. Full edges are labeled with 2, dotted edges with 3, and
all edges that are not represented are labeled with 1.

3n(n−1)
2 . Moreover, in any graph, the sum of the colors must be even, since every assigned

label contributes to the color of exactly two vertices. Since S(n) is even if and only if n ≡ 0
mod 4 or n ≡ 1 mod 4, we get mSk(Kn) ≥ 2(n− 1) if n ≡ 0 mod 4 or n ≡ 1 mod 4 and
mSk(Kn) ≥ 2n− 1 otherwise. Below, we design optimal labelings in order to establish the
equality (see Figure 1 for examples).

In the following, we label all edges in three steps to achieve the lower bounds above. Let
V (Kn) = {v1, . . . , vn}. First, we assign label 1 to every edge. Then all vertices are colored
n − 1. Secondly, we change the labels of the edges in {vivj | 1 ≤ i, j ≤ n, i + j ≥ n + 2}
to 2. Then v1 is incident to no edge labeled 2, vertex v2 is incident to one edge labeled 2,
vertex vi for 3 ≤ i ≤ b(n − 1)/2c + 1 is incident to i − 1 edges labeled with 2, and vi for
b(n−1)/2c+2 ≤ i ≤ n is incident to i−2 edges labeled with 2. Let j = b(n−1)/2c+1. Note
that for every i ∈ {2, 3, . . . , j, j + 2, . . . , n}, vi is adjacent to one more edge labeled with 2
than vi−1; and that vj and vj+1 are both adjacent to j− 1 edges labeled with 2 (and n− j
edges labeled with 1). So cl(v1) < cl(v2) < · · · < cl(vj) = cl(vj+1) < cl(vj+2) < · · · < cl(vn)
and cl(vi+1) ≤ cl(vi) + 1 for 1 ≤ i ≤ n, i.e., all vertices have different colors except vj
and vj+1. Finally, to avoid the conflict between vj and vj+1, let us increase the label
of vj+1vj+2 from 2 to 3. This change induces a new conflict between vj+2 and vj+3.
Then we need to increase the label of vj+3vj+4 from 2 to 3 to get rid of this conflict,
which creates a new conflict, and so on. Formally, we change the labels of the edges in
{vj+1vj+2, vj+3vj+4, . . . , vn−1vn} to 3 if n−j is even, i.e., if n ≡ 0 mod 4 or n ≡ 1 mod 4.
Otherwise, if n− j is odd and n ≡ 2 mod 4 or n ≡ 3 mod 4, then we change the labels of
the edges in {vj+1vj+2, vj+3vj+4, . . . , vn−4vn−3, vn−2vn, vn−1vn} to 3. One can check that
the resulting labeling is proper, that mSk(Kn, `) = c`(vn) for any k ≥ 3, and that c`(vn)

6

matches the lower bound in all cases.

In particular, Theorem 2.6 implies that, in complete graphs, it is never necessary to
assign a label with value more than χΣ(Kn) = 3 in order to minimize the maximum color
of a vertex. We will see later that it is not always the case.

We now prove a similar result for complete bipartite graphs Kn,m. We recall that
χΣ(Kn,m) is also well understood, since this parameter is 1 if n 6= m, and 2 otherwise.
In the first situation, this is because Kn,m is locally irregular. In the second situation, a
2-labeling of Kn,n can be obtained by considering any vertex v, assigning label 2 to all
edges incident to v, and assigning label 1 to all other edges [3].

By the previous labeling scheme, we get a 2-labeling ` ofKn,n where we havemS(Kn,n, `) =
2n = 2∆(Kn,n). In the next result, we provide 2-labelings with smaller maximum color.
Our result is actually optimal.

Theorem 2.7. For any 1 ≤ n < m and k ≥ 1, we have mSk(Kn,m) = m. If n, k ≥ 2,
then we have mSk(Kn,n) = n + 2 = ∆(Kn,n) + 2 if n is even, and mSk(Kn,n) = n + 3 =
∆(Kn,n) + 3 otherwise.

Proof. If m > n, then the result follows from the fact that Kn,m is locally irregular and so
it admits a 1-labeling (so achieving the lower bound of Claim 2.2).

Now let us assume that n, k > 1. Note that Kn,n is regular, so it does not admit a 1-
labeling. In what follows, we prove that the claimed bounds can be achieved by 2-labelings.
Recall that in every 2-labeling of a regular graph, the subgraph induced by the edges
labeled 1 (and similarly 2) must be locally irregular (Claim 2.5). In particular, the subgraph
induced by the edges labeled with 2 cannot contain an isolated edge uv, which implies that
this subgraph must have vertices with degree 2 and, therefore, mS2(Kn,n) > n+ 1.

Let A = {a1, . . . , an} and B = {b1, . . . , bn} be the two maximal independent sets of
Kn,n. If n is even, then let us consider the following 2-labeling `. For any 1 ≤ i ≤ bn/2c, set
`(aib2i−1) = `(aib2i) = 2, and set `(e) = 1 for every other edge e. Then,mS(Kn,n, `) = n+2
which is optimal by the previous paragraph. If n is odd, then consider the same labeling
as in the previous case, in addition setting `(abn/2cbn) = 2. Then, mS(Kn,n, `) = n + 3.
To show that it is optimal, consider any 2-labeling `′ with mS(Kn,n, `

′) = n+ 2. Let G′ be
the subgraph induced by the edges with label 2 in `′. Because mS(Kn,n, `

′) = n + 2, the
maximum degree of G′ must be 2. Then, G′ must be the union of vertex-disjoint paths of
length 2 with their vertices of degree 2 being, in G′, in a same partite set of Kn,n, say A.
This is because, otherwise, there would be two adjacent vertices, one in A and the other
in B, incident to exactly two edges labeled 2 and so G′ would not be locally irregular, a
contradiction. Hence, A has at least dn/2e vertices with color n (not adjacent to any edge
labeled 2) and B has at least one vertex with color n, contradicting that `′ is proper.

3. Algorithmic complexity

In this section, we investigate the hardness of determining mSk(G) for a fixed k ≥ 2
and a graph G given as input. On the negative side, we first prove, in Section 3.1, that this
problem is NP-complete for any fixed k ≥ 2, even when G is a bipartite graph. On the pos-
itive side, we then provide, in Section 3.2, a dynamic-programming algorithm establishing
that mSk(G) can be computed in polynomial time when G has bounded treewidth.

7

3.1. Negative result
Before proceeding with the proof of our main result in this section, Theorem 3.2, we

first introduce a few gadgets that will be used for describing the hardness reduction. In
that reduction, a key point is that the graph G we will produce has bounded maximum
degree ∆(G) = 9. This is why we make some seemingly arbitrary assumptions on some
degrees in what follows.

We now introduce k-gadgets, for k ∈ {6, . . . , 9}. The 9-gadget is nothing but a star
with nine leaves, thus with a center of degree 9, and rooted in one arbitrary leaf r, while
the unique edge incident to r is called the root edge. Now, for every k ∈ {6, . . . , 8} such
that the (k+1)-gadget has been defined, the k-gadget is obtained by starting from an edge
ur, and identifying u and the root of each of k− 1 copies of the (k+ 1)-gadget. The vertex
r of the resulting graph is again the root of the gadget, while the unique edge incident to
the root is the root edge. Furthermore, the resulting vertex of degree k is called the center.

For a given k-gadget H and a graph G with a vertex v, by attaching H at v, we mean
adding H to G and identifying v and the root of H.

These gadgets have the following properties:

Observation 3.1. Let k ∈ {6, . . . , 9}. Let G be a graph with maximum degree ∆(G) = 9
obtained from a previous graph by attaching a k-gadget H at one vertex v. Then, in every
2-labeling ` of G with mS(G, `) = ∆(G) = 9, all edges of H, thus including those incident
to v, must be assigned label 1. Furthermore, c`(v) 6= k.

Proof. By construction, every 6-gadget is made of five 7-gadgets, every 7-gadget is made of
six 8-gadgets and every 8-gadget is made of seven 9-gadgets. Let us consider a 2-labeling
` of G with mS(G, `) = 9. Let k ∈ {6, . . . , 9} and let H be any k-gadget pending at some
vertex v in G. Assume first k = 9. Since the center c of any 9-gadget in H has degree 9,
all its incident edges must be labeled with 1 so that c`(c) ≤ 9. Actually, c`(c) = 9. Now,
let us assume that k < 9. By construction, the center c of any 8-gadget in H has degree 8,
and seven of its incident edges go to the center of a 9-gadget, and are thus labeled 1 (by
the previous paragraph). Furthermore, c is incident to the center of a 9-gadget, so, by the
previous paragraph, we must have c`(c) < 9. Note that if the remaining edge incident to c
is labeled 2, then c would have color 9, a conflict. So it must be labeled 1, in which case
c`(c) = 8. These arguments generalize as follows. Assume we have shown that all edges of
all (k + 1)-gadgets in H must be labeled 1, and that this forces the color of their center
to be k + 1. Now consider the center c of a k-gadget in H. By construction, k − 1 of its
incident edges go to the center of a (k + 1)-gadget, and are thus labeled 1. Furthermore,
c is adjacent to a vertex with color k + 1. Now, if the remaining edge incident to c was
labeled 2, then the color of c would be k + 1, a conflict. So it must be labeled 1, and
c`(c) = k.

Now, v is adjacent, in G, to the center of a k-gadget, and the root edge of that gadget
must be labeled 1. Furthermore, the center of that gadget has color k. Therefore, c`(v) 6=
k.

We are now ready for the proof of the main theorem of this section.

Theorem 3.2. Let k ≥ 2. The problem that takes a bipartite graph G with maximum
degree 9 as input and asks whether mSk(G) = 9 is NP-complete.

Proof. Since the NPness of the problem is obvious, we focus on proving its NP-hardness.
The proof is done by reduction from Cubic Monotone 1-in-3 SAT, which is NP-hard,
see [8]. In this problem, we are given a 3CNF formula F with positive variables only, each

8

of which appears in exactly three clauses, and each clause contains exactly three distinct
variables. The question is whether F can be 1-in-3 satisfied, meaning whether there is
a 1-in-3 truth assignment of F , i.e., a truth assignment to the variables such that every
clause has exactly one true variable.

Let us first consider the case k = 2. We construct a bipartite graph G with maximum
degree ∆(G) = 9, such that F can be 1-in-3 satisfied if and only if mS2(G) = ∆(G). The
construction is as follows. Start from G being the bipartite graph with bipartition V ∪ C
modelling the structure of F . That is, for every variable xi of F there is a variable vertex
vi in V , for every clause Cj of F there is a clause vertex cj in C, and for every variable xi
belonging to clause Cj of F we have the formula edge vicj in G. Since in every clause of
F all variables are distinct, and every variable appears in exactly three clauses, the graph
G is actually cubic.

We achieve the construction of G by attaching a 6-gadget and a 7-gadget at every
variable vertex vi, and attaching a 6-gadget, 8-gadget and 9-gadget at every clause vertex
cj . Clearly, the construction of G is achieved in polynomial time. Note that all variable
vertices of G have degree 5, while all clause vertices have degree 6. Then, the maximum
degree of G is 9, due to the 9-gadgets, and Observation 3.1 applies to G and its k-gadgets.

Therefore, in every 2-labeling ` of G with mS(G, `) = 9, all edges of the k-gadgets are
labeled 1, which implies that the variable vertices have color at least 5 and at most 8 (since
they have degree 5 and at least two of their incident edges must be labeled 1) different
from 6 and 7, and the clause vertices have sum at least 6 (and at most 9) different from 6,
8 and 9. This in turn implies that the three formula edges incident to a variable vertex vi
cannot be labeled so that the sum of their labels is 4 (the color of vi would be 6) or 5 (the
color of vi would be 7). So the sum of these three edge labels must be either 3 (all formula
edges incident to vi are labeled with 1), in which case vi has color 5, or 6 (all formula edges
incident to vi are labeled with 2), in which case vi has color 8. Regarding a clause vertex
cj , its three incident formula edges cannot have labels summing up to 3 (the color of cj
would be 6), 5 (the color of cj would be 8) or 6 (the color of cj would be 9). Thus, the
sum of these three edge labels must be 4, in which case cj has color 7. This implies that a
variable vertex and a clause vertex cannot be involved in a conflict. Also, for every clause
vertex, exactly one of its incident formula edges must be labeled 2, while the other two
must be labeled 1.

The equivalence between finding a 1-in-3 truth assignment φ to the variables of F and a
2-labeling ` of G with mS(G, `) = 9 now follows from the following arguments. We regard
the fact that a formula edge vicj of G is assigned label 2 (resp. 1) by ` as having variable
xi of F bringing truth value true (resp. false) to clause Cj by φ. The fact that, in G, all
three formula edges incident to a variable vertex vi must all be labeled 1 or all be labeled 2
by ` depicts the fact that, by φ, every variable xi brings the same truth value to the three
clauses containing it. The fact that, in G, for every clause vertex cj , one of its incident
formula edges must be labeled 2 by ` while the other two must be labeled 1 depicts the
fact that, here, a clause Cj is regarded satisfied by φ only when it has exactly one true
variable.

Now, we extend the above result to any k ≥ 2. We remark that with slight modifications
of our k-gadgets with k ∈ {6, 7}, the proof of Theorem 3.2 would go the same way when
considering k-labelings with any k ≥ 2. That is, in the construction of the 7-gadget, replace
one of the 8-gadgets attached to the center by a 9-gadget. In the construction of the 6-
gadget, replace one of the 7-gadgets attached to the center by an 8-gadget, and another of
the 7-gadgets by a 9-gadget. This way, it can be noted that Observation 3.1 remains true

9

for 6-gadgets, 7-gadgets, 8-gadgets and 9-gadgets even when considering k-labelings with
k ≥ 2.

Now, consider the reduction above with some k > 2 and these modified gadgets. Again,
the color of a clause vertex cj is at least 6 by a k-labeling, due to its degree. Furthermore,
cj cannot have color 6, 8 or 9 due to the centers of some gadgets attached to it. We note
then that if a formula edge incident to cj was labeled at least 3, then cj would have color
at least 8, which would thus either raise a conflict or make cj have color more than 9.
Thus, no edge of G should be assigned a label more than 2 if we want to get a k-labeling
` of G with mS(G, `) ≤ 9. In other words, mS2(G) = ∆(G) = 9 if and only if F is 1-in-3
satisfiable, in which case we have mSk(G) = mS2(G) for every k ≥ 2.

It is worth emphasizing that the hardness of the problem established in Theorem 3.2
is not a consequence of the low maximum degree assumption. Indeed, it can be noted
that the reduction in the proof can easily be modified to produce bipartite graphs with
arbitrarily large maximum degree ∆. In particular, for any fixed ∆, we can quite similarly
come up with slightly modified k-gadgets for any k ∈ {∆,∆− 1, . . . , 2}, which can then be
used in the reduction the exact same way, to get reduced graphs with maximum degree ∆.

3.2. Positive result
In this section, we show that, for any fixed k, the parameter mSk(G) (and χΣ(G)) can

be computed in polynomial time in the class of graphs with bounded treewidth.
Let G = (V,E) be any undirected connected simple graph (not reduced to one vertex).

A tree-decomposition (T,X) of G consists of a tree T = (V (T), E(T)) and a set X =
(Xt)t∈V (T) of subsets of V (i.e., Xt ⊆ V for every t ∈ V (T)) satisfying the following two
properties:

• for every edge uv ∈ E(G), there exists t ∈ V (T) such that {u, v} ⊆ Xt, and

• for every v ∈ V , {t ∈ V (T) | v ∈ Xt} induces a subtree of T .

The width of (T,X) equals maxt∈V (T) |Xt| − 1 and the treewidth tw(G) of G is the
minimum width among all tree-decompositions of G. Abusing notations, we will often
identify a vertex t ∈ V (T) with the corresponding set Xt ∈ X . The sets in X are also
called bags.

A tree-decomposition (T,X) is nice [2] if T is rooted and every node t ∈ V (T) is of one
of the following four types:

Leaf node: t is a leaf of T and |Xt| = 1;

Introduce node: t has a unique child t′ and there exists v ∈ V such that Xt = Xt′ ∪{v};

Forget node: t has a unique child t′ and there exists v ∈ V such that Xt′ = Xt ∪ {v};

Join node: t has exactly two children t′, t′′ and Xt = Xt′ = Xt′′ .

It is well known that any graph G admits a nice tree-decomposition (T,X) rooted
insome r ∈ V (T) with width tw(G) and |V (T)| = O(|V |), and the root bag Xr verifies
Xr = ∅ [2].

Given a rooted tree-decomposition (T,X) and t ∈ V (T), let Tt denote the subtree of T
induced by t and its descendants, and let Gt be the subgraph of G induced by

⋃
t′∈V (Tt)

Xt′ .
A partial k-labeling for Gt consists of two functions (` : E(Gt)→ {1, . . . , k}, c : V (Gt)→ N)
such that c is a proper coloring of Gt, we have c(v) =

∑
e∈E(Gt),v∈e

`(e) for every vertex

10

v ∈ V (Gt)\Xt, and c(v) ≥
∑

e∈E(Gt),v∈e
`(e) for every vertex v ∈ Xt. Since by the properties

of tree-decomposition, Xt separates Gt−Xt from G−V (Gt), i.e., any path from Gt−Xt to
G−V (Gt) intersects Xt (in particular there are no edges between a vertex in Gt−Xt and a
vertex in G−V (Gt)), every k-labeling ` of G induces a partial k-labeling (`|E(Gt), c` |V (Gt))
for Gt (where f|X means the function f : Y → Z restricted to the set X ⊆ Y).

Remark that if the root r of T is such that Xr = ∅, then any partial k-labeling of
Gr = G is a k-labeling of G.

Theorem 3.3. Let k ≥ 2 and tw ≥ 1 be two fixed integers. Given an n-node graph G
and an integer s as inputs, the problem of deciding whether mSk(G) ≤ s can be solved in
polynomial time in the class of graphs G with treewidth at most tw (and in linear time if
the maximum degree is bounded).

Proof. Let (T,X) be a nice tree-decomposition of an n-node graph G with width tw(G) and
|V (T)| = O(n), and the root r of T is such that Xr = ∅. Let ∆ be the maximum degree of
G. Let t ∈ V (T), Xt = {v1, . . . , vw} (w ≤ tw(G)+1) and {e1, . . . , eq} be the set of the edges
induced by Xt in G (q = O(tw2)). Let L = {l1, . . . , lq} ⊂ {1, . . . , k}q, FC = {f1, . . . , fw} ⊂
{1, . . . , k∆}w (FC stands for “final colors”) and CB = {b1, . . . , bw} ⊂ {0, 1, . . . , k∆}w (CB
stands for “colors from below”). Let us set αt(L,FC,CB) = min

(`,c)
max

v∈V (Gt)
c(v) where the

minimum is taken over all partial k-labeling (`, c) of Gt such that, for any 1 ≤ i ≤ q,
we have `(ei) = li (` agrees with L on the edges in Xt), for any 1 ≤ i ≤ w, we have
c(vi) = fi (c agrees with FC on the vertices in Xt), and, for any 1 ≤ i ≤ w, we have
bi =

∑
x∈N(vi)∩(V (Gt)\Xt)

`(vix) (bi represents the contribution to the color of vi from the

edges “below” Xt, i.e., between vi and vertices in Gt − Xt). Note that if such a partial
labeling exists, then we must have, for every 1 ≤ i ≤ w,∑

e∈E(Gt),vi∈e

`(e) = bi +
∑

1≤j≤q,vi∈ej

lj ≤ c(vi) = fi.

Moreover, let us set αt(L,FC,CB) =∞ if no such partial k-labeling exists. Finally, let us
set

Table(t) = ((L,FC,CB,αt(L,FC,CB)))L⊂{1,...,k}q ,FC⊂{1,...,k∆}w,CB⊂{0,1,...,k∆}w .

Note that
|Table(t)| = O(k(tw(G)+1)2

(k∆ + 1)2tw(G)+2)

since q ≤
(
tw(G)+1

2

)
= O((tw(G) + 1)2) and w ≤ tw(G) + 1.

We now present a dynamic-programming algorithm that computes Table(t) for all
t ∈ V (T), bottom-up, from the leaves to the root r of T . By the remark preceding
the theorem, we get that if the root r of T is such that Xr = ∅, then we get the result
since Table(r) contains the unique value ((∅, ∅, ∅),mSk(G)) (which may be ∞ if and only
if χΣ(G) < k). There are four cases depending on the type of t.

• For every leaf node t ∈ V (T) of T , Table(t) is defined by setting αt(L,FC,CB) = i
if (L,FC,CB) = (∅, {i}, {0}), and αt(L,FC,CB) =∞ otherwise.

• Let t ∈ V (T) be an introduce node, t′ be its (unique) child, and let Xt \Xt′ = {v}.
Moreover, let |Xt′ | = w, Xt′ = {v1, . . . , vw}, {e1, . . . , eq} be the set of edges induced
by Xt′ , and let {eq+1, . . . , eq+h} be the set of edges between v and the vertices in Xt

11

(w.l.o.g., we may assume that ej+q = vvj for all 1 ≤ j ≤ h). Note thatN(v)∩V (Gt) ⊆
Xt by the properties of tree-decompositions.

For every L = {l1, . . . , lq+h} ⊂ {1, . . . , k}q+h, FC = {f1, . . . , fw+1} ⊂ {1, . . . , k∆}w+1,
CB = {b1, . . . , bw+1} ⊂ {0, 1, . . . , k∆}w+1, let
α′ = αt′({l1, . . . , lq}, {f1, . . . , fw}, {b1, . . . , bw}) (by induction, this value has been
computed and can be found in Table(t′)).

Now, set αt(L,FC,CB) = max{fw+1, α
′} if and only if all the following conditions

(which will ensure that a partial labeling exists) are satisfied and set αt(L,FC,CB) =
∞ otherwise.

– {f1, . . . , fw+1} induces a proper coloring of Xt (in particular, fj 6= fw+1 for all
1 ≤ j ≤ h).

– bw+1 = 0 (since there are no edges between v and Gt −Xt, v cannot have some
contribution to its color coming from “below”).

–
∑

q+1≤j≤q+h
lj ≤ fw+1 (the current color of v, obtained from the labels of the

edges eq+1, . . . , eq+h (in Xt), cannot exceed its final color fw+1).
– for every 1 ≤ j ≤ h, bj +

∑
1≤i≤q+h,vj∈ei

li ≤ fj (adding an edge vvj = eq+j with

label lq+j does not make the vertex vj to have a color larger than its final color
fj).

• Let t ∈ V (T) be a forget node, t′ be its (unique) child, and let Xt′ \ Xt = {v}.
Moreover, let |Xt| = w, Xt = {v1, . . . , vw}, {e1, . . . , eq} be the set of edges induced
by Xt, and let {eq+1, . . . , eq+h} be the set of edges between v and the vertices in Xt

(w.l.o.g., we may assume that ej+q = vvj for all 1 ≤ j ≤ h). Note that N [v] ⊆ V (Gt′)
by the properties of a tree-decomposition.

For every L = {l1, . . . , lq} ⊂ {1, . . . , k}q, FC = {f1, . . . , fw} ⊂ {1, . . . , k∆}w, CB =
{b1, . . . , bw} ⊂ {0, 1, . . . , k∆}w, a tuple (L′, FC ′, CB′) is called a valid extension of
(L,FC,CB) if and only if

extension: L′ = {l1, . . . , lq+h} ⊂ {1, . . . , k}q+h, FC ′ = {f1, . . . , fw+1} ⊂ {1, . . . , k∆}w+1,
CB′ = {b1, . . . , bw+1} ⊂ {0, 1, . . . , k∆}w+1 (i.e., L′ coincides with L on its first
q values, FC ′ coincides with FC on its first w values, and CB′ coincides with
CB on its first w values)

valid: fw+1 = bw+1 +
∑

1≤j≤h
lq+j (since v is "forgotten”, it will never receive more

contribution to its color, so we must ensure that its current color, received from
the edges “below” and from the edges in the bag, equals its final color).

Set αt(L,FC,CB) = min
(L′,FC′,CB′) valid extension of (L,FC,CB)

αt′(L
′, FC ′, CB′) and

set αt(L,FC,CB) =∞ if no such valid extension exists.

• Let t ∈ V (T) be a join node, t′ and t′′ be its two children, Xt = Xt′ = Xt′′ =
{v1, . . . , vw}, and let {e1, . . . , eq} be the set of edges induced by Xt.

Let L = {l1, . . . , lq} ⊂ {1, . . . , k}q, FC = {f1, . . . , fw} ⊂ {1, . . . , k∆}w, CB =
{b1, . . . , bw} ⊂ {0, 1, . . . , k∆}w.
If (and only if), for all 1 ≤ i ≤ w, we have fi ≥ bi +

∑
1≤j≤q,vi∈ej

lj (we consider first

all tuples (L,FC,CB) that ensure that the current color of every vertex is not larger

12

than its final color), then let K be the set of tuples (k1, . . . , kw) such that 0 ≤ ki ≤ bi
for all 1 ≤ i ≤ w. For any P ∈ K, let CB − P = (b1 − k1, . . . , bw − kw). Then, let
us set α(L,FC,CB) = min

P∈K
max{αt′(L,FC, P);αt′′(L,FC,CB − P)}. Intuitively,

for every 1 ≤ i ≤ w and given P = (k1, . . . , kw) ∈ K, the value ki (resp., bi − ki)
represents the contribution of the edges below Xt′ (resp., below Xt′′) to the color of
vi.

For every other tuple (L,FC,CB), set αt(L,FC,CB) =∞.

The correctness of the algorithm (i.e., showing that, for every t ∈ V (T) and every tuple
(L,FC,BW), the tuple ((L,FC,CB), αt(L,FC,CB)) computed by the algorithm satisfies
the definition given at the beginning of the proof) can be seen true by inductive arguments.

The biggest time complexity occurs in the case of a join node, where O(k(tw(G)+1)2
(k∆+

1)2tw(G)+2) tuples (L,FC,CB) must be considered and, for each of them, O((k∆+1)tw(G)+1)
tuples (k1, . . . , kw) must be checked. Since |V (T)| = O(n), the overall complexity is
O(nk(tw(G)+1)2

(k∆ + 1)3tw(G)+3).
Note that an optimal labeling (i.e., achieving mSk(G)) can also be obtained in polyno-

mial time by a second bottom-up traversal of the tree-decomposition.

A nice consequence of Theorem 3.3 is that it also provides a polynomial-time algorithm
for deciding whether χΣ(G) ≤ k holds for a given graph G with bounded treewidth. This
is, in particular, a consequence of the fact that χΣ(G) ≤ 5 holds for every nice graph G [6].
We are not aware of any such result in the literature.

Corollary 3.4. The problem of deciding χΣ(G) can be solved in polynomial time in the
class of graphs G with bounded treewidth.

4. Bounds on mSk for some graph classes

In this section, we establish bounds on mSk(G) for particular classes of graphs. More
precisely, we first focus on general bipartite graphs, in Section 4.1, before narrowing down
our concern to trees, in Section 4.2. In the rest of the section, we then investigate the
effects on our bounds of using larger edge labels. More precisely, we focus on the following
questions:

1. Assuming mSk(G) = x for some k and graph G, what is the smallest k′ > k (if any)
such that mSk′(G) < x? In particular, are there situations where we need much
larger labels in order to decrease the maximum color?

2. Assuming mSk(G) < mSk′(G) for some k < k′, how large can the difference be-
tween mSk(G) and mSk′(G) be? In particular, can using larger labels decrease the
maximum color a lot?

Regarding the first question, we exhibit, in Section 4.3, trees T for which the smallest k′

such that mSk′(T) < mSk(T) is arbitrarily larger than k. Regarding the second question,
we exhibit, in Section 4.4, graphs G for which mS2(G) = 2∆(G) and mS3(G) = ∆(G).
Hence, using larger labels can make the maximum color drop from the largest possible
color to the smallest possible color (recall the bounds in Claim 2.2).

13

4.1. Bipartite graphs
Since all nice bipartite graphs verify the 1-2-3 Conjecture [7], they can be classified into

three classes B1,B2,B3, where, for i = 1, 2, 3, class Bi contains the bipartite graphs G with
χΣ(G) = i. Recall that the graphs of B1 are exactly the bipartite graphs G that are locally
irregular, which verify χΣ(G) = 1, and we thus have mSk(G) = ∆(G) for every k ≥ 1 (due
to Claim 2.1), which is best possible by Claim 2.3. Throughout this section, we investigate
bounds on the parameter mSk for the graphs of B2 and B3. Recall that [10] provides a full
characterization of the graphs of B3 (see Section 4.1.2).

4.1.1. Graphs of B2

The graphs of B2 are those nice bipartite graphs that are neither locally irregular (B1)
nor odd multi-cacti (B3, see Section 4.1.2 for more details). Since the graphs of B1 and
B3 are easy to recognize, so are those of B2. But the structure of the graphs in B2 is
rather general, which makes it difficult to come up with general properties of mS2 for these
graphs. For instance, recall that B2 includes all non-locally irregular bipartite graphs with
one partite set of even size (see [3]).

Recall that, for a graph G of B2 with maximum degree ∆, we have ∆ ≤ mS2(G) ≤ 2∆
by Claim 2.2. However, Theorem 3.2 shows that determining mS2(G) for a bipartite graph
G ∈ B2 is NP-complete (to see that the graphs we construct in the reduction indeed are in
B2, note that they have minimum degree 1, which is a sufficient condition for being neither
in B1 nor in B3, see upcoming Section 4.1.2). Still, in the next two results, we exhibit
families of arbitrarily large graphs of B2 with “large” value of mS2. For small values of ∆,
we even provide families of arbitrarily large graphs for which mS2 attains the upper bound
2∆.

Proposition 4.1. For any n0 ≥ 6 and ∆ ∈ {2, 3}, there exist n ≥ n0 and a ∆-regular
bipartite n-node graph G ∈ B2 such that mS2(G) = 2∆.

Proof. First, let ∆ = 2. For any n ≥ 4, the n-node cycle Cn must have, by any 2-labeling,
some vertex incident to two edges labeled with 2. Indeed, all edges can clearly not be
labeled all with 1. So, let uv be an edge labeled with 2; since the colors of u and v must
differ, exactly one of them must have its two incident edges labeled with 2. Hence, for any
n ≥ 4, we have mS2(Cn) ≥ 4 = 2∆ = ∆ + 2 (the equality comes from Claim 2.2). Since
some bipartite cycles are indeed in B2 (see the definition of B3 in Section 4.1.2), this proves
the claim for ∆ = 2.

Now, let ∆ = 3 and n = 4k+2 for some k ∈ N∗. Let G be obtained from the cycle Cn of
size n by adding edges between opposite vertices. That is, start from the cycle (v1, . . . , vn)
and, for all 1 ≤ i ≤ 2k + 1, add the edge vivi+2k+1. Since G 6∈ B3 (in particular because
G has minimum degree 3, see next Section 4.1.2) and is not locally irregular, χΣ(G) = 2
(as proved in [10]). Since G is 3-regular, mS2(G) ≤ 6 = 2∆ = ∆ + 3 (by Claim 2.2). Let
us prove it is an equality. For purpose of contradiction, let us assume that there exists a
2-labeling ` of G such that mS(G, `) < 6.

We first claim that there are no edges uv such that c`(u) = 3 and c`(v) = 5. Indeed,
let v be a vertex with c`(v) = 5 (if any). Let a, b, c be its neighbors. Since c`(v) = 5,
we must have `(va) = 1, `(vb) = 2 and `(vc) = 2. Hence, c`(b) = c`(c) = 4 (these colors
are at least 4 because they have an incident edge labeled 2 and must be different from
c`(v), and at most 5 by the hypothesis on `). For purpose of contradiction, let us assume
that c`(a) = 3. Let x be the common neighbor of c and a. Then, c`(x) 6= c`(a) = 3 and
c`(x) 6= c`(c) = 4. Hence, c`(x) = 5 and x must be incident to exactly two edges labeled

14

with 2. But `(ax) = 1 since c`(a) = 3. Hence, `(cx) = 2, contradicting the fact that
c`(c) = 4.

Let (A,B) be the bipartition of G. Let v be any vertex such that c`(v) ∈ {3, 5} (there
clearly must exist such a vertex) and, w.l.o.g., say v ∈ A. By doing a BFS from v and using
the fact that there are no edges uv with c`(u) = 3 and c`(v) = 5 (and that two adjacent
vertices cannot have the same color), we deduce that, for all w ∈ V (G), c`(w) = 4 if and
only if w ∈ B.

Therefore,
∑

w∈B c`(w) = 4|B| = 4(2k + 1) is even. Moreover, let x be the number of
vertices colored 5. Then

∑
w∈A c`(w) = 5x+3(|A|−x). Since |A| is odd, then

∑
w∈A c`(w)

is odd. However,
∑

w∈B c`(w) =
∑

w∈A c`(w) =
∑

e∈E(G) `(e), which contradicts the exis-
tence of `.

Proposition 4.2. For every ∆ ≥ 2 and k ≥ 2, there exists a bipartite graph G ∈ B2 with
maximum degree ∆ such that mSk(G) ≥ d3∆

2 e.

Proof. To obtain the graph G, let us start with the cycle (u2, u1, v1, v2) and, for 3 ≤ i ≤ ∆,
add the edges uivi, u1ui and v1vi (where ui and vi are new vertices). It is easy to see
that G belongs to B2. By Claim 2.1, for every 2 ≤ i ≤ ∆, we have `(u1ui) 6= `(v1vi) for
any k-labeling `. Therefore, in any labeling, u1 or v1 must be incident to at least b∆−1

2 c
edges not labeled with 1 (otherwise, we would have `(u1ui) = `(v1vi) for some 2 ≤ i ≤ ∆).
This implies that the following 2-labeling is optimal. Each edge uivi for every 1 ≤ i ≤ ∆
is labeled with 1 by `. Then, for 2 ≤ i ≤ d(∆ − 1)/2e + 1, `(u1ui) = 1 and `(v1vi) = 2,
and for every d(∆ − 1)/2e + 2 ≤ i ≤ ∆, we have `(u1vi) = 2 and `(v1vi) = 1. If ∆ − 1 is
odd, then mS(G, `) = c`(v1) = 2d(∆− 1)/2e+ b(∆− 1)/2c+ 1 = 3d(∆− 1)/2e = d3∆/2e
(while c`(u1) = c`(v1)− 1). If ∆− 1 is even, then, to avoid c`(u1) = c`(v1), let us relabel
u1u2 and v1v2 so that `(u1u2) = 2 and `(v1v2) = 1. In this case, mS(G, `) = c`(u1) =
2((∆− 1)/2 + 1) + (∆− 1)/2 = 3b(∆− 1)/2c+ 2 = d3∆/2e.

4.1.2. Graphs of B3

In [10], the authors proved that the graphs of B3, i.e., the bipartite graphs G with
χΣ(G) = 3, are precisely the so-called odd multi-cacti.

In what follows, let us give a constructive definition of odd multi-cacti together with
the notations that will be used further in this section. The odd multi-cacti are exactly the
graphs that can be obtained by the following recursive construction (see Figure 2 for an
illustration), which actually produces graphs whose edges are colored either red or green.
This (not necessarily proper) edge-coloring is then used by the process itself.

• Any cycle of length n ≡ 2 mod 4, n ≥ 6, together with a proper red-green coloring of
its edges (this is actually the only point of the construction where the edge-coloring
is proper) is an odd multi-cactus. Let C0 be the root cycle of the odd multi-cactus.
Let also uv be one green edge of C0 that is called the starting edge.

• Given an odd multi-cactus G′, with its root cycle C0, its starting edge uv and its
red-green (not necessarily proper) edge-coloring, it can be extended to a larger odd
multi-cactus G as follows. Let xy be any green edge of G′ with the extra constraint
that if xy ∈ E(C0), then xy = uv. Then, G is obtained by attaching a new path
P with length at least 5 congruent to 1 modulo 4 to xy. By “attaching”, we mean
identifying x and an end-vertex of P , and identifying y and the second end-vertex
of P . Moreover, the edges of the path P are alternatively colored red and green, in
such a way that the two end edges (i.e., those incident to x or y) are colored red. Let
C(P) be the cycle of G induced by the edges of P together with xy and let xy be

15

(a) (b)

2

1

22

3

3

1

1 1

2

2

1

1

1

2

2

(c)

2

3

23

1

1

(d)

Figure 2: Constructing an odd multi-cactus through several steps, from the red-green C6 (a). Red-green
paths with length at least 5 congruent to 1modulo 4 are being repeatedly attached onto green edges through
steps (b) to (d). Figure (a) gives an example of the labeling of C0 following the pattern 23113(2211)z2
(note that this is the labeling before labeling the next paths, i.e., before switching the label of edge uv
to 1). Figure (c) gives an example of the labeling of C0 in the particular case when C0 has length 6 and
|P1| = 2. Wiggly edges are green edges.

called the parent edge of P (and of C(P)). Moreover, if xy = uv, then let C0 be the
parent cycle of C(P). Otherwise (if xy /∈ E(C0)), let P ′ be the first attached path
containing xy during the construction of G′; then let C(P ′) be the parent cycle of
C(P). Finally, the cycle C0 remains the root cycle of G and uv remains its starting
edge.

First, let us point out a trivial but important property of odd multi-cacti.

Claim 4.3. Let G be any odd multi-cactus with its red-green edge-coloring. For any green
edge xy ∈ E(G), we have d(x) = d(y).

The recursive definition of odd multi-cacti provides the following natural tree-like struc-
ture of their induced cycles. Let G be any odd multi-cactus with root cycle C0. The
“parent cycle” relation allows to define the tree T (G) whose nodes are the induced cycles
of G, rooted in C0, and such that CC ′ ∈ E(T (G)) if C is the parent cycle of C ′ or vice
versa (abusing the notations, let us identify the induced cycles of G (and corresponding
attached paths) and the nodes of T (G)). We make use of the tree T (G) only to formally
define a suitable ordered partition of the paths recursively attached to obtained G from
C0. Precisely, for any non-leaf node C of T (G), let PC be the set of paths P such that the
induced cycle C is the parent cycle of C(P) in G (note that, if G 6= C0, then PC 6= ∅ if and
only if C is not a leaf-node of T (G) or C = C0). A valid path-partition of G is then defined

16

as P(G) = (PC0 ,PC1 , . . . ,PCf
), where (C0, . . . , Cf) is any BFS ordering of the non-leaf

nodes of T (G) rooted in C0.

Our main result in this section is that, for an odd multi-cactus G, the parameter
mS3(G) is always one of two possible values.

Theorem 4.4. For every odd multi-cactus G with maximum degree ∆ ≥ 3, we have ∆+1 ≤
mS3(G) ≤ ∆ + 2.

Proof. The lower bound follows from the fact that, by construction, for every green edge
uv we have d(u) = d(v). Moreover, the maximum degree is attained at some green edge,
say xy, i.e., d(x) = d(y) = ∆. Thus, in any labeling ` of G, assuming c`(x) < c`(y), we
must have ∆ ≤ c`(x), which implies that ∆ + 1 ≤ c`(y).

We now focus on proving the upper bound, i.e., on proving that G admits a 3-labeling
` where the maximum color c`(v) over all vertices v is at most ∆ + 2.

Let G be any odd multi-cactus with maximum degree ∆ ≥ 3 (in particular, T (G) is
not reduced to a single vertex) with its red-green edge-coloring. Let C0 be its root cycle,
let uv be its starting edge, and let (P1, . . . ,Pq) be some valid path-partition of G.

We deduce a 3-labeling ` with maximum color ∆ + 2 of G by starting from one of C0,
then extending it to the edges of the paths in P1, then to the edges of the paths in P2,
and so on. So we must show that, at every step, an extension does exist, and that, in
particular, there is one for which the maximum color does not exceed ∆ + 2.

Let y be the size of C0. Let us first label the edges of C0 as follows. Let (e1 = vu, e2 =
uv1, e3 = v1v2, . . . , ey = vy−2v) be the edges of C0 in order with the starting edge as first
edge (i.e., e2 is incident to u, ey is incident to v, and y ≡ 2 mod 4 and y ≥ 6). We
label them by applying the pattern 23113(2211)z2 (where xs denotes the concatenation
of s copies of the string x, and z = (y − 6)/4; see Figure 2 (d) for an example). That
is, `(e1) = 2, `(e2) = 3, `(e3) = 1, `(e4) = 1, `(e5) = 3, . . . , `(ey) = 2. Note that, so far,
c`(u) = 5, c`(v) = 4, c`(v1) = 4, c`(vy−2) = 3 (or c`(vy−2) = 5 if y = 6) and c`(x) ≤ 5 for
all x ∈ V (C0) (which is at most ∆ + 2 since ∆ ≥ 3). We now sequentially extend this
labeling to all edges of G in such a way that the labels of the edges in E(C0) \ {e1} are
never modified (except in one particular case if |E(C0)| = 6 and |P1| = 2). Also, the only
other edges that will be labeled 3 are green edges whose two ends have both degree 2. This
way, the only possible red edge with label 3 will be one of the root cycle.

The second phase of the labeling consists in extending our current labeling ` to all paths
in P1 (i.e., all paths that have been attached to the starting edge uv). First, switch the
label of uv from 2 to 1. Then, for every path P ∈ P1 (recall that P has length lP at least
5 and congruent to 1 modulo 4 and has been attached to the starting edge uv), let us label
its edges in order from u to v by applying the pattern (1122)zP 1 (where zP = (lP − 1)/4).
Note that the resulting labeling ` ensures that, for any P ∈ P1 and any internal vertex x
of P , the color of x is at most 4 and distinct from the color of its neighbors. Similarly, u
and v have distinct colors (c`(u) = 4 + |P1| and c`(v) = 3 + |P1|) that are distinct from the
colors of their respective neighbors but in one particular case: when |P1| = 2 and y = 6, in
which case c`(v) = 5 = c`(vy−2). Except in the latter case, the resulting labeling ` is proper
and the maximum color is c`(u) = 4 + |P1| ≤ ∆ + 2. In the pathological case, i.e., when
|P1| = 2 and y = 6, we relabel the edges (e1, . . . , e6) of C0 by applying the pattern 213322
in order (see Figure 2c for an example). As a result we get c`(u) = 5, c`(v) = 6, c`(v1) = 4
and c`(vy−2) = 4, and ` is thus proper. Furthermore, the maximum color is 6 ≤ ∆ + 2
since ∆ ≥ 4 (because |P1| = 2).

17

Recall that we are given a path-partition (P1, . . . ,Pq) of G. For every 1 ≤ i ≤ q, let
Gi be the subgraph of G induced by the vertices of C0 and of all paths in Pj for every
1 ≤ j ≤ i. A pending path of Gi is any path P of

⋃
1≤j≤i Pj such that C(P) has exactly

two vertices of degree more than 2 in Gi. Note that, for any pending path P of Gi, either
C(P) is a leaf of T (G) or there exists i < j ≤ q such that Pj is exactly the set of paths
attached to some green edges (different from its parent edge) of C(P).

If q = 1, then the labeling obtained so far satisfies the statement for G = G1 and we
are done. Otherwise, let 1 ≤ i < q and assume by induction on i that we have a labeling `
of Gi such that:

• ` is a 3-labeling where the only red edges assigned label 3 belong to the root cycle;
any green edge labeled with 3 has both its ends of degree 2; ` is proper and there is
thus no conflict; c`(v) ≤ ∆ + 2 for every v ∈ V (Gi); and

• for every pending path P of Gi with parent edge xy, the edges of P are labeled (from
y to x or from x to y) following the pattern (1122)zP 1 or (2211)zP 2 (where P has
length 4zP + 1 ≥ 5), and |c`(x) − c`(y)| = 1. In particular, every two “consecutive”
red edges of P are assigned distinct labels in {1, 2}.

These properties are clearly satisfied by the labeling ` defined for G1. Let us assume
that these properties hold for a labeling ` obtained for Gi−1 (for some 1 < i ≤ q) and let
us show how to extend it to a labeling (with these properties) of Gi (such a labeling for
Gq = G will clearly satisfy the statement of the theorem).

By definition, the paths of Pi are the ones that correspond to the induced cycles with
a common parent cycle C 6= C0, i.e., let C be the induced cycle of Gi−1 such that
Pi = PC . Hence, the paths of Pi have been attached to some green edges (different
from the parent edge) of some pending path P of Gi−1 (such that C(P) = C). Let P =
(y, x1, y1, x2, y2, . . . , xk, yk, x) (where P has length 2k+1 ≥ 5). That is, {xjyj | 1 ≤ j ≤ k}
is the set of green edges of P different from x0y0 = xy, where both yx1 and ykx are joined
by a red edge, and each yjxj+1 is also a red edge (for j ∈ {1, . . . , k − 1}). For each green
edge xjyj (j ∈ {1, . . . , k}) of P , let us denote by nj ≥ 0 the number of paths of Pi that are
attached to xjyj . Note that dG(xj) = dG(yj) = 2 + nj for every 1 ≤ j ≤ k (where dG(b)
denotes the degree of b in G).

Let us consider the green edges x1y1, x2y2, . . . , xk−1yk−1 in order for j = 1 to k−1. For
each xjyj of them, we label the edges of the attached paths following one of the following
two extension schemes:

• Scheme A: We set the label of xjyj to 1. Then, we label the edges of all paths
attached to xjyj following the pattern (1122)zP 1 from xj to yj or vice versa, so that
no inner vertex is involved in a conflict.

• Scheme B : We apply Scheme A, but change the label of xjyj to 2.

Note that Schemes A and B can be applied whatever the degree of xj and yj is (i.e.,
whatever nj is). It is easy to see that for each of the two extension schemes, labeling the
edges of the paths either as going from xj to yj or vice versa indeed raises no conflict,
unless xj and yj have the same color, a contradiction. Whenever applying one of the two
schemes in what follows, it is thus understood that this is done so that no conflict involving
an inner vertex of a path occurs. Also, it is important to note that every extension scheme
alters the colors of xj and yj the same way.

18

The extension of ` to the successive xjyj (j = 1, . . . , k − 1) goes as follows. Assume
we are currently dealing with xjyj . Let us first apply extension Scheme A. At most two
conflicts may occur: along the edge yj−1xj and/or along the edge yjxj+1. We first deal
only with the conflict between yj−1 and xj . If c`(yj−1) = c`(xj), then let us apply extension
Scheme B instead. It is easy to check that the resulting partial labeling satisfies all desired
properties (in particular, the maximum color is at most ∆ + 2) but, possibly, there is a
conflict between yj and xj+1; this conflict will be dealt with later, when dealing with the
next green edge xj+1yj+1.

We are thus left with extending the labeling to the nk paths attached to xkyk. Here,
we might need to use a third extension scheme for a green edge xjyj :

• Scheme C : We set the label of xjyj to 2. Then, we label the edges of all paths
attached to xjyj following the pattern (1122)zP 1 but an arbitrary one P ∗ of them
that is labeled following the pattern (2211)zP 2 (all paths being labeled either from
xj to yj or vice versa, so that no inner vertex is involved in a conflict).

Note that Scheme C requires nj > 0 to be different from Scheme B. When nj = 0, i.e.,
xj , yj have degree 2, we consider the following scheme instead:

• Scheme C’ : We set the label of xjyj to 3.

An important point to raise is that, when applying Scheme C’ under all conditions
maintained so far (in particular, without loss of generality the edge incident to xj different
from xjyj is labeled 1 while the edge incident to yj different from xjyj is labeled 2), the
colors of xj and yj do not exceed 5, which is at most ∆ + 2 since ∆ ≥ 3.

Now consider xkyk. If dG(xk) = dG(yk) < ∆, then we are done, because by applying
one of Schemes A, B, C (or C’) above, we can extend the labeling to all paths without
creating conflicts, and with having at most three edges labeled 2 incident to one of xk and
yk, implying that their colors are at most ∆+2 and differ by 1 (unless the degree of xk and
yk is 2, in which case Scheme C’ might have introduced a 3, a situation we have discussed
above).

So let us assume that dG(xk) = dG(yk) = ∆. We can actually assume that there is
no j ∈ {1, . . . , k} such that dG(xj) = dG(yj) < ∆, as otherwise we could first extend
the labeling to the paths attached to x1y1, x2y2, . . . , xj−1yj−1 following this order, then
to those attached to xkyk, xk−1yk−1, . . . , xj+1yj+1 following this order, and then to those
attached xjyj via one of Schemes A, B, C (or C’), resulting in xj and yj verifying the same
conditions as above.

So let us assume that dG(xj) = dG(yj) = ∆ for every j ∈ {1, . . . , k}, and assume that
only the labeling of the nk paths attached to xkyk remain to be corrected. Note that, so
far, every red edge of P has kept the same label as in Gi−1. This implies that, for every j,
the red edge incident to xj on P must be labeled differently than the red edge incident to
yj on P . Moreover, the way we have modified the labeling of Gi−1 so far also ensures that
the colors of xj and yj differ by 1.

Let us assume that the red edge incident to yk on P (that is the edge ykx0) is labeled 2,
while the red edge incident to xk on P (that is the edge yk−1xk) is labeled 1. Propagating
this assumption along P from x = x0 to y = y0, the labels of the red edges of P must
alternate, and, due to its length, y0x1 is labeled 2 as well. As a first extension attempt, let
us apply Scheme A to xkyk. The color of xk then becomes ∆ while the color of yk becomes
∆ + 1. If no conflict arises, then we are done. Otherwise, there are two possible sources
for conflict:

19

• The color of x0 is also ∆ + 1. Then we apply Scheme B at xkyk instead. Now xk
has color ∆ + 1 while yk has color ∆ + 2. If no further conflict arises, then we are
done. Otherwise, then it must be because yk−1 has color ∆ + 1. Because yk−1xk
is labeled 1, it means that xk−1yk−2 is labeled 2, and due to how we have been
extending the labeling, we deduce that xk−1 has color ∆ + 2.

Now come back to the moment where we have extended the labeling to the nk−1

paths attached to xk−1yk−1. By the color assumptions we have, we deduce that we
have here applied Scheme B. If applying Scheme A instead does not raise a conflict,
then we are done because the color of yk−1 would become ∆ (while that of xk−1

would become ∆ + 1), a favorable case for extending the labeling to the nk paths
attached to xkyk. Otherwise, then it must be because yk−2 has color ∆ + 1. Again,
since xk−1yk−2 is labeled 2, then xk−2yk−3 must be labeled 1, and xk−2 must have
color ∆, since the colors of xk−2 and yk−2 differ by 1.

Going on considering green edges like this as going along P from xkyk to x1y1, we
either find a green edge for which a different pair (c`(xk), c`(yk)) of colors at most
∆ + 2 can be reached (by employing a different extension scheme), which would lead
to a favorable case for extending the labeling to all attached paths, or we successively
deduce that (c`(xk−1), c`(yk−1)) = (∆ + 2,∆ + 1), (c`(xk−2), c`(yk−2)) = (∆,∆ + 1),
(c`(xk−3), c`(yk−3)) = (∆ + 2,∆ + 1), (c`(xk−4), c`(yk−4)) = (∆,∆ + 1), and so on.
Due to the length of P , we eventually deduce that (c`(x1), c`(y1)) = (∆ + 2,∆ + 1),
and that y0 has color ∆ + 1. Then both x0 and y0 have color ∆ + 1, which is a
contradiction.

• The color of yk−1 is also ∆. Then we apply Scheme B to xkyk instead. Now xk
has color ∆ + 1 while yk has color ∆ + 2. Now, if another conflict arises, then it
is because x0 has color ∆ + 2. By arguments as in the previous case, we can get
a favorable case by altering the colors of a previous green edge (employing exten-
sion Scheme A instead of Scheme B, and vice versa), unless (c`(xk−1), c`(yk−1)) =
(∆ + 1,∆), (c`(xk−2), c`(yk−2)) = (∆ + 2,∆ + 1), (c`(xk−3), c`(yk−3)) = (∆ + 1,∆),
(c`(xk−4), c`(yk−4)) = (∆ + 2,∆ + 1), and so on. Due to the length of P , we even-
tually deduce that (c`(x1), c`(y1)) = (∆ + 1,∆), and that y0 has color ∆ + 2. Then
both x0 and y0 have color ∆ + 2, a contradiction.

The same type of arguments also apply when the first edge and the last edge of P are
labeled 1. In all cases, we can extend the labeling to all paths attached to P , in such a
way that no color exceeds ∆ + 2. This concludes the proof.

In the line of Theorem 4.4, the next natural step would be to investigate, given an odd
multi-cactusG, whether determiningmS3(G) is hard or not. A consequence of Theorem 3.3
is that this value can be determined in polynomial time.

Corollary 4.5. The problem of deciding mSk(G) can be solved in polynomial time in the
class of odd multi-cacti G (i.e., when G ∈ B3).

Proof. This comes from the fact that tw(G) = 2 for any odd multi-cactus G ∈ B3. Indeed,
G is nothing but a collection of induced cycles every two of which share at most one edge.
The fact that such a graph has treewidth 2 can easily be proved by induction on the number
of induced cycles. Theorem 3.3 then applies to G, proving the claim.

20

4.2. Trees
In this section, we focus on trees T (recall that χΣ(T) ≤ 2 for any nice tree T [3]). The

main result of this section is that mS2(T) is always one of three possible values, each of
which can be reached.

Theorem 4.6. For any k ≥ 2 and any nice tree T with maximum degree ∆, then mSk(T) ∈
{∆,∆ + 1,∆ + 2}. Moreover, all these values are reached.

Proof. The lower bound ∆ holds by Claim 2.2. To prove the upper bound, let us design a
labeling process that will achieve a 2-labeling ` with mS(T, `) ≤ ∆ + 2. Let us root T in
any arbitrary node r. The process will consider all vertices one by one in a BFS ordering
(i.e., a vertex at distance d from the root is considered once all vertices at distance less than
d from the root have been considered). Moreover, once a vertex v has been considered, all
its incident edges are labeled (and their labels will never be modified anymore), it is not
in conflict with its parent (if v 6= r), and its color c`(v) is at most ∆ + 2.

Start by labeling all edges incident to r with 1 (so c`(r) = d(r) ≤ ∆). Now, let v 6= r
be any vertex such that its parent u has already be considered. Hence, all edges incident
to u have received a label (in {1, 2}), and so, c`(u) is well defined. Let d be the number of
children of v.

• If d > 0, then there are two cases to be considered. If d + `(uv) = c`(u) then label
all edges between u and its children with 1 but one such edge that is labeled 2 (i.e.,
c`(v) = d+ `(uv) + 1). Otherwise, label all edges between u and its children with 1
(i.e., c`(v) = d + `(uv)). In both cases, c`(v) 6= c`(u). Moreover, v is incident to at
most two edges labeled 2 (possibly its parent edge and one other incident edge) and
so c`(v) ≤ d(v) + 2 ≤ ∆ + 2.

• If d = 0 (i.e., v is a leaf with color `(uv)), then note that u has degree at least 2 since
T is nice and so c`(v) 6= c`(u).

We conclude with the last part of the statement. Let ∆ > 1. It is easy to see that any
star S∆ with maximum degree ∆ is locally irregular, and thus mSk(S∆) = ∆ for every
k ≥ 1. The fact that there are trees T with maximum degree ∆ such that mSk(T) = ∆+1
or mSk(T) = ∆ + 2 follows from Corollary 4.8 and Proposition 4.9 below.

Following Theorem 4.6, we say that a tree with maximum degree ∆ is of type x for
x ∈ {∆,∆ + 1,∆ + 2} if mS2(T) = x. The next natural step in the line of Theorem 4.6
would be to provide a full characterization of the trees of type ∆, ∆ + 1 or ∆ + 2. A
consequence of the polynomial-time algorithm given in Section 3.2 is that an algorithmic
characterization exists. But we wonder whether a more natural characterization exists, such
as a characterization in terms of particular subtrees. Towards such a characterization, we
provide, in the rest of this section, sufficient conditions for a tree to be of type ∆, ∆ + 1
or ∆ + 2.

We start off by providing an easy condition in which a tree cannot be of type ∆.

Observation 4.7. Let ∆ ≥ 2 and T be any tree with maximum degree ∆ having two
adjacent vertices of degree ∆. Then, mSk(T) ≥ ∆ + 1 for any k ≥ 2.

Proof. The two adjacent vertices with degree ∆ must have different colors whatever be the
labeling. Hence, at least one of them must have an incident edge labeled with at least 2.
Hence, its color is at least ∆ + 1.

21

Corollary 4.8. For every ∆ ≥ 2, there are trees with maximum degree ∆ of type ∆ + 1.

Proof. Consider a bistar with two adjacent vertices of degree ∆, i.e., a tree obtained from
two adjacent vertices by making each of them adjacent to ∆− 1 leaves.

In what follows, we introduce a family of trees of type ∆ + 2. Let us introduce some
notations. Let ∆ ≥ 3. Let F∆ be the rooted tree such that its root has degree ∆− 1 and
each neighbor of the root has ∆ neighbors each of which (except the root) is a leaf. Let
H∆ be the tree obtained from two copies of F∆ by making their roots adjacent.

Proposition 4.9. For every ∆ ≥ 3, every tree T , with maximum degree ∆, containing
H∆ as a subtree is of type ∆ + 2.

Proof. Let u and v be the roots of the two copies of F∆. Note that they have degree ∆
in T . In any k-labeling, since they must have different colors, at least one of them, say u,
must have at least one incident edge (not uv) labeled 2 (if one edge is labeled with more
than 2, then the maximum color is already at least ∆ + 2). Let us assume that u has
exactly one incident edge labeled with 2 and all others are labeled with 1 (since otherwise,
the color of u would already be at least ∆ + 2) so that the color of u is ∆ + 1. Let ux be
the edge labeled with 2. Now, x has degree ∆, it has at least one incident edge labeled
2 (so its color is at least ∆ + 1) and cannot have color ∆ + 1. Hence its color is at least
∆ + 2 and mSk(T) ≥ ∆ + 2. The equality comes from Theorem 4.6.

4.3. Using larger labels in trees
In the previous section, we have studied 2-labelings of nice trees T , showing in Theo-

rem 4.6 that mS2(T) is essentially one of three possible values (function of the maximum
degree). A natural question to ask is whether the use of larger labels can lead to a decrease
of the maximum color. This question makes more particularly sense for the trees of type
∆ + 2, since their value of mS2 is the worst one for a tree with maximum degree ∆.

The next result shows several things. First, that, for trees, using larger labels can
indeed allow to decrease the maximum color. Second, and more importantly, that there
are graphs (and even trees) for which, in order to make the maximum color decrease, we
have to employ arbitrarily large labels.

Theorem 4.10. For every k ≥ 2, there exists a tree Tk such that mSk+1(Tk) = mSk(Tk)−
1.

Proof. For k = 2, the tree T2 depicted in Figure 3 satisfies mS2(T2) = 6 and mS3(T2) = 5.
Indeed, in any 2-labeling `, by Claim 2.4, one of w1x1 or w2x2 must be labeled with 2,
w.l.o.g., say `(w1x1) = 2. Then, one of v′1w1 or v1w1, say v1w1, must be labeled with 1 (as
otherwise w1 would have color 6). If c`(w1) = 4, then v1 cannot have color 4 and one edge
incident to v1 (but w1v1), say u1v1, must be labeled 2. Now v1 has color 5, and u1 has color
at least 5, so mS(T2, `) ≥ 6. If c`(w1) = 5, then w.l.o.g., `(v′1, w1) = 2, and v′1 has color
at least 5. Again mS(T2, `) ≥ 6. It is easy to see that mS2(T2) ≤ 6. Moreover, labeling
the edges w1x1, x1x2, x2w2 with 3, 1, 1 in order can easily been extended to a 3-labeling `′

(using label 3 only once) with mS(T2, `
′) = 5, hence mS3(T2) ≤ 5 (the equality holds since

there are two adjacent vertices with degree 4).

For any k ≥ 3, let us build a tree Tk with maximum degree ∆ > 2k such that
mSk+1(Tk) = ∆ and mSk(Tk) = ∆ + 1. We use some gadgets similar with (but more
general than) the ones used in Theorem 3.2.

22

f1

f2

f3
u1

f4

f5

f6
u2

f7

f8

f9
u3

v1

f ′1

f ′2

f ′3 u′1

f ′4

f ′5

f ′6 u′2

f ′7

f ′8

f ′9 u′3

v′1

w1

x1 x2
w2

Figure 3: The tree T2 with mS2(T2) = 6 and mS3(T2) = 5.

Let us first define the gadget H(d) (that depends on k and ∆ > 2k that are fixed)
for d ∈ {∆,∆− 1, . . . ,∆− k}. H(∆) is a star with ∆ leaves, rooted at one of the leaves,
denoted as r and with center of degree ∆. For every ∆ > d ≥ ∆− k, let us define H(d) as
follows. Start with one copy of H(d′) for every d′ ∈ {∆,∆− 1, . . . , d+ 1}; then identify all
their roots, denoting the obtained vertex c as the center of H(d) (which is then adjacent to
all centers of the H(d′)’s). Finally, let us add another d− (∆− d) = 2d−∆ > 0 (because
∆ > 2k and d ≥ ∆− k) leaves adjacent to c to make sure that c has degree d. The root r
of H(d) is any leaf adjacent to c.

Claim 4.11. Let d ∈ {∆,∆− 1, . . . ,∆− k}. Then, for any k-labeling ` of H(d), we have
mS(H(d), `) = ∆ if and only if `(e) = 1 for any e ∈ E(H(d)). Particularly, the label of
the edge between the root r and the center c of H(d) satisfies `(rc) = 1 and the color of the
center c is d.

Proof of the claim. It is obviously true for d = ∆. By induction on d, let us assume that
the statement holds for every d′ with d < d′ ≤ ∆.

If each edge of H(d) is labeled with 1, then, for every d′ ∈ {∆,∆ − 1, . . . , d + 1}, the
maximum color of the vertices in the H(d′)’s contained in H(d) is at most ∆. Moreover,
their centers are colored d′ for d′ ∈ {∆,∆− 1, . . . , d+ 1} and, by the induction hypothesis,
there are no conflicts in the H(d′)’s. Note that the center c of H(d) has degree d. So it is
colored d and no conflict occurs with its neighbors.

If mS(H(d), `) = ∆ for some k-labeling `, then the maximum color of every H(d′) for
each d′ ∈ {∆,∆− 1, . . . , d+ 1} contained in H(d) is also ∆. By the induction hypothesis,
for each d′ ∈ {∆,∆ − 1, . . . , d + 1}, every edge in the copy of H(d′) is labeled with 1.
Moreover, for every d′ ∈ {∆,∆ − 1, . . . , d + 1}, the center of H(d′) is colored with d′.
So the center c of H(d) (which has degree d) has to be colored d, as otherwise it would
get a color more than ∆ to avoid conflicts with its neighbors. Hence, the only way that
mS(H(d), `) = ∆ is that all the edges incident to c are also labeled 1. �

Now, let Dk be the tree built as follows (note that it also depends implicitely on ∆).

23

Dk is obtained from one copy of H(d) for every d ∈ {∆ − k,∆ − k + 1, . . . ,∆ − 2} and
from ∆− 2k extra copies of H(∆− 2) by identifying all their roots into one single vertex
c, called the center of Dk. Finally, add one leaf adjacent to c (so that c has now degree
∆− k), this leaf being the root of Dk.

Claim 4.12. Let Dk be rooted at r and centered at c. Then mSk(Dk) = mSk+1(Dk) = ∆.
Moreover, the unique k-labeling ` with mS(Dk, `) = ∆ is such that `(rc) = k and `(e) = 1
for every edge e in E(Dk) \ {rc}, and any (k + 1)-labeling ` with mS(Dk, `) = ∆ is such
that `(rc) ∈ {k, k + 1} and `(e) = 1 for every edge e in E(Dk) \ {rc}

Proof of the claim. Since any labeling ` of Dk such that mS(Dk, `) = ∆ induces a labeling
with maximum color ∆ for each of the copies of H(d) (d ∈ {∆ − k,∆ − k + 1, . . . ,∆ −
3,∆ − 2}), by the previous claim all edges e ∈ E(Dk) \ {rc} must be labeled with 1.
Moreover, the center of a copy of H(d) for d ∈ {∆ − k + 1,∆ − k + 2, . . . ,∆ − 3,∆ − 2}
must have color d. Since the center c of Dk is adjacent to the centers of the copies of the
H(d)’s and c has degree ∆ − k and is adjacent to ∆ − (k + 1) edges labeled with 1 (the
edges incident to the centers of the copies of the H(d)’s), the last edge rc can only be
labeled with k or k + 1 to ensure that c`(c) ≤ ∆ and c`(c) is different from any value in
{∆− k,∆− k + 1, . . . ,∆− 3,∆− 2}. �

Now we are ready to define the tree Tk and prove that mSk+1(Tk) = ∆ < mSk(Tk) =
∆ + 1. Let Tk be obtained from two copies of Dk by adding one edge incident to both
roots of the copies of Dk. Let ci, ri, i ∈ {1, 2} be respectively the center and the root of
the two copies of Dk (so Tk is obtained by adding the edge r1r2). By the previous claim,
any labeling ` of Tk such that mS(Tk, `) = ∆ must be such that `(rici) ∈ {k, k + 1} for
each i ∈ {1, 2}. If ` is a k-labeling, then no edge can be labeled with k + 1 and we must
have `(r1c1) = `(r2c2) = k but this would imply that c`(r1) = c`(r2). Hence, mSk(Tk) > ∆
(and it is easy to see that mSk(Tk) ≤ ∆ + 1). On the other hand, if ` is a (k+ 1)-labeling,
then setting `(r1c1) = k+ 1 and `(r2c2) = k leads to a labeling of Tk with maximum color
∆.

4.4. Using larger labels in general graphs
In this section, we construct graphsG verifyingmS2(G) = 2∆(G) andmS3(G) = ∆(G),

see final Theorem 4.18. We obtain these graphs by connecting several smaller graphs in
some fashion. These smaller graphs are depicted in figures all along this section. Whenever
dealing with their vertices and edges later, we implicitly do so using the terminology used
in the corresponding figure. Most of our graphs will contain inputs and outputs, which are
pending edges which will serve for the connections.

Let T2 be the graph with 11 vertices and 15 edges depicted in Figure 4, obtained from
five edge-disjoint triangles (u1, u2, u3), (u2, a1, a2), (u2, b1, b2), (u3, c1, c2) and (u3, d1, d2).
Let u1 be the root vertex of T2. It has the following labeling properties.

Lemma 4.13. In every 2-labeling ` of T2, we have:

1. {`(u1u2), `(u1u3)} = {1, 2},

2. 9 ∈ {c`(u2), c`(u3)},

3. the one of c`(u2) and c`(u3) different from 9 can be any of 8 and 10.

Proof. Let ` be a 2-labeling of T2. So that c`(a1) 6= c`(a2), we must have, say, `(a1u2) = 1
and `(a2u2) = 2. Note that whatever the label of a1a2 is, no conflict involving a1, a2 and
u2 can arise, due to the larger degree of u2. These arguments also apply around the bi’s,

24

2

a1

3

a2

2

b1

3

b2

9u2

1 1

1 2 1 2

2

c1

3

c2

2

d1

3

d2

8 u3

1 1

1 2 1 2

u1

2 1

1

(a) {c`1(u2), c`1(u3)} = {8, 9}

2

a1

3

a2

2

b1

3

b2

9u2

1 1

1 2 1 2

2

c1

3

c2

2

d1

3

d2

10 u3

1 1

1 2 1 2

u1

1 2

2

(b) {c`2(u2), c`2(u3)} = {9, 10}

Figure 4: The two main 2-labelings `1 and `2 of T2. An integer in a circle representing a vertex is the color
of this vertex for the depicted 2-labeling.

1

u1

4

u2

5

u3

6

u4

10

u5

10

u6

11

u7

4

u8

3

u9

1

u10

4

u11

3

u12

1

u13

1

1

2

2

2

2

2

2

2

2 1

2

2 1

T2

T2

T2

T2

T2

(a) Input is labeled 1

2

u1

5

u2

3

u3

4

u4

8

u5

8

u6

7

u7

3

u8

4

u9

2

u10

3

u11

4

u12

2

u13

2

1

2

1

1

1

1

1

1

2 2

1

2 2

T2

T2

T2

T2

T2

(b) Input is labeled 2

Figure 5: 2-labelings of the spreading gadget Gf. A triangle with “T2” marked in indicates that a copy of
the gadget T2 is attached via its root vertex. That is, u5 (resp., u6) is identified to the roots of two copies
of T2, while u7 is identified to the root of one copy of T2. An integer in a circle representing a vertex is the
color of this vertex for the depicted 2-labeling.

ci’s and di’s. In particular, the labels of the four edges joining u2 and the ai’s and bi’s
bring 6 to the color of u2, and similarly the labels of the four edges joining u3 and the ci’s
and di’s bring 6 to the color of u3.

Now, so that c`(u2) 6= c`(u3), we must have, say, `(u1u2) = 1 and `(u1u3) = 2. Then
no conflict involving u2 and u3 can arise, no matter whether u2u3 is labeled 1 or 2. In
the first case, we get (c`(u2), c`(u3)) = (8, 9), while we get (c`(u2), c`(u3)) = (9, 10) in the
second case.

We now introduce the spreading gadget Gf, depicted in Figure 5. The edge i(Gf) =
u1u2 of Gf is its input, while its edges o1(Gf) = u9u10 and o2(Gf) = u12u13 are its
outputs. Some properties of Gf are the following.

25

Lemma 4.14. In every 2-labeling ` of Gf, the input and the two outputs are assigned the
same label, i.e., `(u1u2) = `(u9u10) = `(u12u13). This label can be either of 1 and 2.

Proof. Assume ` is a 2-labeling of Gf. Note that we must have `(u3u5) = `(u4u6). Indeed,
suppose w.l.o.g. that `(u3u5) = 1 and `(u4u6) = 2. Since there are two copies of T2

attached to u5, by Lemma 4.13, the color of u5 is 7 + `(u5u7) and it is adjacent to a vertex
with color 9 (in T2). Similarly, because of the two copies of T2 attached to u6, the color of
u6 is 8 + `(u6u7) and it is adjacent to a vertex with color 9 (in T2). Then we must have
`(u5u7) = 1 and `(u6u7) = 2, so that c`(u5) = 8 and c`(u6) = 10. We also know that a
neighbor of u7 from the graph T2 attached to it has color 9, and that this graph T2 provides
3 to the color of u7 by Lemma 4.13. Then, u7 has color 6 + `(u7u8) + `(u7u11), and the
two edges u7u8 and u7u11 must be labeled (with 1 or 2) in such a way that the color of u7

does not meet any value in {8, 9, 10}, which is impossible.
On the contrary, there exists a 2-labeling ` such that `(u3u5) = `(u4u6) = 1. Because

of the arguments above, we have `(u5u7) = `(u6u7) = 1 and c`(u5) = c`(u6) = 8. Recall
that we may assume that the labeling of the graph T2 attached to u7 is such that the
two vertices that are adjacent with u7 have color 9 and 8 (Lemma 4.13). Besides, the
labeling of this graph T2 provides 3 to the color of u7. Thus, the color of u7 is at least 5,
and the edges u7u8 and u7u11 are labeled in such a way that the color of u7 is not 9 or
8. The only possibility is to have `(u7u8) = `(u7u11) = 1 since, in this situation, we get
c`(u7) = 7. It can be checked that, by similar arguments, there exists a 2-labeling ` such
that `(u3u5) = `(u4u6) = 2.

Now suppose `(u1u2) = 1, and consider the edges u2u3 and u2u4 (see Figure 5 (a)
for an illustration). First, if `(u2u3) = `(u2u4), then note that ` is not a proper labeling
according to the arguments above since we would necessarily have `(u3u5) 6= `(u4u6) so
that c`(u3) 6= c`(u4). Thus, `(u2u3) = 1 and `(u2u4) = 2 without loss of generality,
and c`(u2) = 4. Note that, if `(u3u4) = 1, then we necessarily get that c`(u3) or c`(u4)
is equal to c`(u2) since we need `(u3u5) = `(u4u6). Thus `(u3u4) = 2. We then have
`(u3u5) = 2 so that c`(u3) 6= c`(u2), and also `(u4u6) = 2 so that c`(u4) 6= c`(u3) (and
because `(u4u6) = `(u3u5) by arguments above).

According to the arguments above, we have `(u3u5) = `(u4u6) = 2 and `(u7u8) =
`(u7u11) = 2 under the assumption `(u1u2) = 1. Then `(u9u10) = `(u12u13) = 1 to avoid
conflicts. Thus, assuming the input of Gf is labeled 1, also its two outputs are labeled 1.

A similar case analysis yields an analogous conclusion when `(u1u2) = 2, see Figure 5
(b). Let us point out that, in both cases, the label of the edges u8u9 and u11u12 could be
any of 1 and 2 at this point.

In what follows, we will combine copies of Gf via their inputs and outputs. Let us first
prove that this preserves the labeling properties of Lemma 4.14.

Lemma 4.15. Let G1 and G2 be two copies of Gf, and let G be the graph obtained by
identifying o1(G1) and i(G2). Then, in every 2-labeling of G, all of i(G1), o1(G1) = i(G2),
o2(G1), o1(G2) and o2(G2) are assigned the same label. This label can be either of 1 and 2.

Proof. Let ` be a 2-labeling of G. Because i(Gf) and o1(Gf) are pendant edges of Gf, in
G the combination of G1 and G2 does not grant new labeling possibilities (Indeed, note
that in proofs of Lemmas 4.13 and 4.14, we never considered the color of vertex u1 nor
the ones of vertices u10 and u13, so changing their degree will not impact the properties of
any labeling Gf). In other words, `, when restricted to G1 and G2, is a 2-labeling, which
thus verifies the properties in Lemma 4.14. From this, and because the input of G2 and

26

7/8u1

8/9u2

8/9v

8/9 u3

9/10 u4

e

1/2

f

a1 a5

b1 b5

c1 c6

d1 d6

1

1 1

1 1

1 1

1 1

1

2

1/2

1

2

1/2

1/2

(a) All inputs are labeled 1

12/13u1

13/14u2

9/10v

14/15 u3

15/16 u4

e

1/2

f

a1 a5

b1 b5

c1 c6

d1 d6

2

2 2

2 2

2 2

2 2

1

2

1/2

1

2

1/2

1/2

(b) All inputs are labeled 2

Figure 6: The two main 2-labelings of the 2-forcing graph F . An integer in a circle representing a vertex
is the color of this vertex for the depicted 2-labeling.

an output of G1 coincide, we directly get that all of i(G1), o1(G1) = i(G2), o2(G1), o1(G2)
and o2(G2) must receive the same label by `. It just remains to show that ` can indeed be
adjusted so that no conflict arises around the “connection points”. That is, we must make
sure that the colors of vertices u9 and u10 in G1 (which correspond to u1 and u2 in G2)
are not equal.

Assume first the label assigned by ` to the input and outputs of G is 1. If we just
consider as ` the edge-labeling described in the proof of Lemma 4.14 (depicted in Figure 5
(a)), then, in G1, we have u9u10 = 1 and u8u9 can be freely chosen to be labeled 2, as
pointed out in the proof. This leads vertex u9 of G1 to have color 3. Now, by how `
propagates in G2 (assuming its input edge is labeled 1), its vertex u2, which is u10 of G1,
gets color 4. So there is no conflict involving vertices u9 and u10 of G1, around the edge
where the identification was performed.

Through similar arguments, it can be checked that when the input and outputs of G
are assigned label 2 by `, then ` can flow through G1 and G2 so that, in G1, we have
`(u7u8) = `(u7u11) = 1 and `(u8u9) = `(u11u12) = `(u9u10) = `(u12u13) = 2 (see Figure 5
(b)). That way, the color of u9 in G1 is 4 while the color of u10 (which is u2 in G2) is 5,
and there is no conflict.

According to Lemma 4.15, starting from copies of Gf and concatenating them through
their input and outputs, we can now obtain a generator graph G1/2 having one input
i(G1/2) and arbitrarily many outputs o1(G1/2), o2(G1/2), . . . such that any 2-labeling of
G1/2 is such that the input can be labeled any of 1 and 2, but all outputs have the same
label as the input. In what follows, we introduce some more structure to the generator
graph to force its input to be labeled 2 by any 2-labeling.

The 2-forcing graph F is the graph depicted in Figure 6. It has twenty-three inputs
ev, a1u1, . . . , a5u1, b1u2, . . . , b5u2, c1u3, . . . , c6u3 and d1u4, . . . , d6u4 (and no output). Its
main labeling properties are the following:

Lemma 4.16. Assume ` is a 2-labeling of the 2-forcing gadget F where all inputs are
assigned the same label. Then all inputs must be labeled 2.

Proof. Assume the twenty-three inputs of F are labeled 1 (see Figure 6 (a)). This brings 5
to both the color of u1 and u2. So that c`(u1) 6= c`(u2), we must thus have, say, `(u1v) = 1
and `(u2v) = 2, which implies that, regardless of `(u1u2), we must have 8 ∈ {c`(u1), c`(u2)}.
The same arguments for u3, u4 and the twelve inputs connected to them imply that we

27

must have, say, `(u3v) = 1, `(u4v) = 2, and 9 ∈ {c`(u3), c`(u4)}. Now, since `(ev) = 1
by assumption, we note that we must have c`(v) = 8 or c`(v) = 9, depending on whether
`(vf) = 1 or `(vf) = 2. Vertex v is then involved in a conflict, a contradiction.

On the other hand, there exist 2-labelings of F where all inputs are labeled 2. An
example is given in Figure 6 (b).

Now take the generator graph G1/2, choose twenty-three of its outputs (as mentioned
earlier, we can assume G1/2 has arbitrarily many outputs), and identify these with the
twenty-three inputs of a copy of the 2-forcing gadget F . We call the resulting graph the
2-generator graph G2. The input of G2 is the input of G1/2, and the outputs of G2 are the
outputs of G1/2 that are different from the twenty-three outputs used for the connection
to the copy of F . Since G1/2 can have arbitrarily many outputs, so does G2.

Lemma 4.17. Assume ` is a 2-labeling of the 2-generator graph G2. Then the input and
all outputs of G2 must be labeled 2.

Proof. As described earlier, the input and all outputs of the generator graph G1/2 used to
construct G2 must be assigned the same label by a 2-labeling ` of G2 (in particular, this
is not impacted by the connection to the 2-forcing gadget F). This label cannot be 1, as
otherwise ` could not be propagated through the 2-forcing gadget F in G2, by Lemma 4.16.
Thus, this label must be 2.

Furthermore, there do exist 2-labelings of G2 where the input and all outputs are
labeled 2. First of all, recall that both the generator gadget G1/2 in G2 (by Lemma 4.15)
and the 2-forcing gadget F in G2 (by Lemma 4.16) admit such. Now we just need to show
that 2-labelings of G1/2 and F where the inputs and outputs are labeled 2 can indeed be
combined to one of G2 in such a way that no conflict arises. For that, we just need to make
sure that a vertex u9 (or u12) being part of a copy of Gf in G1/2 is not in conflict with a
resulting neighbor in the used copy of F . Since u9 in Gf has degree 2 and the outputs are
assigned label 2, the color of that u9 is either 3 or 4. In a copy of F , such a vertex u9 of
Gf is adjacent to either of vertices u1, u2, v, u3 or u4 in the copy of F . We note that each
of these vertices has degree at least 6, and thus its color is at least 6. So no conflict can
arise when combining 2-labelings of G1/2 and F in G2.

We are now ready for our conclusion.

Theorem 4.18. For every ∆ ≥ 16, there exists a graph G with maximum degree ∆ veri-
fying mS2(G) = 2∆ and mS3(G) = ∆.

Proof. Let ∆ ≥ 16 be fixed, and consider the 2-generator G2 with ∆ outputs. Then let G
be the graph obtained from G2 by identifying the vertices with degree 1 of these ∆ outputs
to a single vertex v∗. Note that ∆(G2) = 8 (the largest degree being attained for vertices
u2 and u3 of the forcing gadget F), so we have ∆(G) = d(v∗) = ∆.

Now consider a 2-labeling of G. Graph G contains G2, and, by Lemma 4.17, all input
and outputs must be labeled 2. In particular, all edges incident to v∗ must be labeled 2,
which means that c`(v∗) = 2∆. We note that there actually exist such 2-labelings of G,
since G2 admits some (as pointed out in the proof of Lemma 4.17), and the only conflicts
that can arise are between v∗ and its neighbors. These neighbors are actually vertices u9

or u12 of copies of Gf in G2, and are thus of degree 2 while v∗ has degree at least 16. So
these vertices cannot be in conflict.

We now claim that we can produce a 3-labeling of G where the maximum color is ∆.
To see this holds, start with just using 1, 2 as above, getting an initial labeling `. Since
v∗ results from the identification of outputs of G2, thus of outputs of Gf, the neighbors of

28

v∗ are all some vertices either u9 or u12 from some copies of Gf, each such vertex being
adjacent to some vertex u8 or u11 from the same copy of Gf, each such vertex being also
adjacent to some vertex u7 in that copy. We modify ` by considering every output incident
to v∗, and modifying the label of the associated edges u7u8 and u7u11 (in the corresponding
copy of Gf) to 3, and the label of the associated edges u8u9, u11u12, u9v

∗ and u12v
∗ to 1.

This raises no conflict, as, in every incident copy of Gf, the corresponding u7 gets color 11,
vertices u8 and u11 get color 4, and vertices u9 and u12 get color 2. Once this modification
has been applied to every output incident to v∗, all its incident edges are assigned label 1,
so c`(v∗) = ∆ (which is so large that it cannot be the color of a neighbor of v∗, since all
neighbors of v∗ have degree 2). Furthermore, this is the largest color, since:

• only vertices u7, u8 and u11 from some copy of Gf are incident to edges labeled 3,
and, in their case, their color is less than ∆ (as pointed out above); and

• all other vertices of G different from v∗ have degree at most 8 and are not incident
to edges labeled 3; so the color of these vertices is at most ∆ ≥ 16.

So mS3(G) = ∆, while mS2(G) = 2∆.

5. Conclusions and perspectives

In this work, we have investigated the minimum maximum color mSk(G) that one can
generate by a k-labeling of a given graph G. This parameter is related to the well-known
1-2-3 Conjecture, and we have thus mainly focused on classes of graphs for which the
parameter χΣ is relatively well understood (complete graphs, complete bipartite graphs,
trees, bipartite graphs). We have provided bounds on mSk for such graphs, some of which
are tight. An interesting aspect to us was the algorithmic complexity of determining the
value of mSk(G) for a given graph G. We have shown that the complexity of this problem
is highly dependent of the input graph. As a consequence, that problem is sometimes hard
(NP-complete) or easy (polynomial-time solvable). The proof we have provided that this
problem is easy for some graph classes is a consequence of a more general polynomial-time
algorithm we have designed for graphs with bounded treewidth, which has more general
side consequences on algorithmic aspects related to the 1-2-3 Conjecture. Finally, we have
also investigated the trade-off between using larger labels and aiming at generating smaller
colors.

We leave open a number of questions, however, and we think that they could lead to
further work on the topic. In particular:

• Claim 2.2 states that for every nice graph G with maximum degree ∆, the value of
mS2(G) lies in between ∆ and 2∆. In Section 4.1.1, we have shown that there exist
bipartite graphs G with maximum degree ∆ ∈ {2, 3} for which mS2(G) reaches the
upper bound 2∆. We do not know whether this upper bound is also correct for larger
value of ∆. So we ask: For every ∆ ≥ 4, are there bipartite graphs G with maximum
degree ∆ such that mS2(G) = 2∆?

• In Section 4.2, we have essentially shown that, for a nice tree T with maximum
degree ∆, the value of mS2(T) is one of ∆,∆ + 1,∆ + 2. Furthermore, our algorithm
from Section 3.2 attests that mS2(T) can be determined in polynomial time. We are
not sure, however, about a nice characterization, for instance in terms of particular
subtrees, of the trees T with mS2(T) being ∆, ∆ + 1 or ∆ + 2.

29

• A similar concern applies to odd multi-cacti. We have essentially shown, in Sec-
tion 4.1.2, that for an odd multi-cactus G with maximum degree ∆ ≥ 3 the value
of mS3(G) is either ∆ + 1 or ∆ + 2. Is there a nice characterization of the odd
multi-cacti for which mS3 is either of these two values?

References

[1] O. Baudon, J. Bensmail, H. Hocquard, M. Senhaji, É. Sopena. Edge Weights and
Vertex Colours: Minimizing Sum Count. Discrete Applied Mathematics, 270:13-24,
2019.

[2] H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1-2):1–45, 1998.

[3] G.J. Chang, C. Lu, J. Wu, Q. Yu. Vertex-coloring edge-weightings of graphs. Tai-
wanese Journal of Mathematics, 15(4):1807-1813, 2011.

[4] A. Dudek, D. Wajc. On the complexity of vertex-coloring edge-weightings. Discrete
Mathematics Theoretical Computer Science, 13(3):45-50, 2011.

[5] J.A. Gallian. A Dynamic Survey of Graph Labeling. Electronic Journal of Combina-
torics, DS6, 1997.

[6] M. Kalkowski, M. Karoński, F. Pfender. Vertex-coloring edge-weightings: towards the
1-2-3 Conjecture. Journal of Combinatorial Theory, Series B, 100:347-349, 2010.

[7] M. Karoński, T. Łuczak, A. Thomason. Edge weights and vertex colours. Journal of
Combinatorial Theory, Series B, 91:151–157, 2004.

[8] C. Moore, J.M. Robson. Hard Tiling Problems with Simple Tiles. Discrete and Com-
putational Geometry, 26(4):573-590, 2001.

[9] B. Seamone. The 1-2-3 Conjecture and related problems: a survey. Technical report,
available online at http://arxiv.org/abs/1211.5122, 2012.

[10] C. Thomassen, Y. Wu, C.-Q. Zhang. The 3-flow conjecture, factors modulo k, and the
1-2-3-conjecture. Journal of Combinatorial Theory, Series B, 121:308-325, 2016.

30

http://arxiv.org/abs/1211.5122

	Introduction
	Distinguishing labelings and the 1-2-3 Conjecture
	Proper labelings and maximum color
	Results in this paper

	Early observations and warm-up results
	Early observations
	First classes of graphs

	Algorithmic complexity
	Negative result
	Positive result

	Bounds on mSk for some graph classes
	Bipartite graphs
	Graphs of B2
	Graphs of B3

	Trees
	Using larger labels in trees
	Using larger labels in general graphs

	Conclusions and perspectives

