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Abstract

In this paper, we propose a unified view of gradient-based algorithms for stochastic con-
vex composite optimization by extending the concept of estimate sequence introduced by
Nesterov. More precisely, we interpret a large class of stochastic optimization methods as
procedures that iteratively minimize a surrogate of the objective, which covers the stochas-
tic gradient descent method and variants of the incremental approaches SAGA, SVRG, and
MISO/Finito/SDCA. This point of view has several advantages: (i) we provide a simple
generic proof of convergence for all of the aforementioned methods; (ii) we naturally ob-
tain new algorithms with the same guarantees; (iii) we derive generic strategies to make
these algorithms robust to stochastic noise, which is useful when data is corrupted by small
random perturbations. Finally, we propose a new accelerated stochastic gradient descent
algorithm and a new accelerated SVRG algorithm that is robust to stochastic noise.

Keywords: convex optimization, variance reduction, stochastic optimization

1. Introduction

We consider convex composite optimization problems of the form

min
x∈Rp

{F (x) := f(x) + ψ(x)} , (1)

where f is convex and L-smooth1, and we call µ its strong convexity modulus with respect
to the Euclidean norm.2 The function ψ is convex lower semi-continuous and is not assumed
to be necessarily differentiable. For instance, ψ may be the `1-norm, which is very popular
in signal processing and machine learning for its sparsity-inducing properties (see Mairal
et al., 2014, and references therein); ψ may also be the extended-valued indicator function
of a convex set C that takes the value +∞ outside of C and 0 inside such that the previous
setting encompasses constrained problems (see Hiriart-Urruty and Lemaréchal, 1996).

More specifically, we focus on stochastic objective functions, which are of utmost im-
portance in machine learning, where f is an expectation or a finite sum of smooth functions

f(x) = Eξ
[
f̃(x, ξ)

]
or f(x) =

1

n

n∑
i=1

fi(x). (2)

1. A function is L-smooth when it is differentiable and its derivative is Lipschitz continuous with constant L.
2. Then, µ = 0 means that the function is convex but not strongly convex.
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On the left, ξ is a random variable representing a data point drawn according to some
distribution and f̃(x, ξ) measures the fit of some model parameter x to the data point ξ.
Whereas the explicit form of the data distribution is unknown, we assume that we can draw
random i.i.d. samples ξ1, ξ2, . . . Either an infinite number of such samples are available and
the problem of interest is to minimize (1) with f(x) = Eξ[f̃(x, ξ)], or one has access to a
finite training set only, leading to the finite-sum setting on the right of (2), called empirical
risk (Vapnik, 2000).

While the finite-sum setting is obviously a particular case of expectation with a discrete
probability distribution, the deterministic nature of the resulting cost function drastically
changes performance guarantees. In particular, when an algorithm is only allowed to access
unbiased measurements of the objective function and gradient—which we assume is the
case when f is an expectation—it may be shown that the worst-case convergence rate in
expected function value cannot be better than O(1/k) in general, where k is the number
of iterations (Nemirovski et al., 2009; Agarwal et al., 2012). Such a sublinear rate of
convergence is notably achieved by stochastic gradient descent (SGD) algorithms or their
variants (see Bottou et al., 2018).

Even though this pessimistic result applies to the general stochastic case, linear conver-
gence rates can be obtained for the finite-sum setting (Schmidt et al., 2017). Specifically, a
large body of work in machine learning has led to many randomized incremental approaches
obtaining linear convergence rates, such as SAG (Schmidt et al., 2017), SAGA (Defazio
et al., 2014a), SVRG (Johnson and Zhang, 2013; Xiao and Zhang, 2014), SDCA (Shalev-
Shwartz and Zhang, 2016), MISO (Mairal, 2015), Katyusha (Allen-Zhu, 2017), MiG (Zhou
et al., 2018), SARAH (Nguyen et al., 2017), directly accelerated SAGA (Zhou, 2019) or
the method of Lan and Zhou (2018a). For non-convex objectives, recent approaches have
also improved known convergence rates for finding first-order stationary points (Fang et al.,
2018; Paquette et al., 2018; Lei et al., 2017), which is however beyond the scope of our
paper. These algorithms have about the same cost per-iteration as the stochastic gradient
descent method, since they access only a single or two gradients ∇fi(x) at each iteration,
and they may achieve lower computational complexity than accelerated gradient descent
methods (Nesterov, 1983, 2004, 2013; Beck and Teboulle, 2009) in expectation. A common
interpretation is to see these algorithms as performing SGD steps with an estimate of the
full gradient that has lower variance (Xiao and Zhang, 2014).

In this paper, we are interested in providing a unified view of stochastic optimization al-
gorithms, but we also want to investigate their robustness to random perturbations. Specif-
ically, we may consider objective functions with an explicit finite-sum structure such as (2)
when only noisy estimates of the gradients ∇fi(x) are available. Such a setting may occur
for various reasons. For instance, perturbations may be injected during training in order
to achieve better generalization on new test data (Srivastava et al., 2014), perform stable
feature selection (Meinshausen and Bühlmann, 2010), improve the model robustness (Zheng
et al., 2016), or for privacy-aware learning (Wainwright et al., 2012).

Each training point indexed by i is corrupted by a random perturbation ρi and the
resulting function f may be written as

f(x) =
1

n

n∑
i=1

fi(x) with fi(x) = Eρi
[
f̃i(x, ρi)

]
, (3)
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with convex terms fi(x) for each index i. Whereas (3) is a finite sum of functions, we now
assume that one has now only access to unbiased estimates of the gradients ∇fi(x) due
to the stochastic nature of fi. Then, all the aforementioned variance-reduction methods
do not apply anymore and the standard approach to address this problem is to ignore the
finite-sum structure and use SGD or one of its variants. At each iteration, an estimate of
the full gradient is obtained by randomly drawing an index ı̂ in {1, . . . , n} along with a
perturbation. Typically, the variance of the gradient estimate then decomposes into two
parts σ2 = σ2

s + σ̃2, where σ2
s is due to the random sampling of the index ı̂ and σ̃2 is due to

the random data perturbation. In such a context, variance reduction consists of building
gradient estimates with variance σ̃2, which is potentially much smaller than σ2. The SAGA
and SVRG methods were adapted for such a purpose by Hofmann et al. (2015), though
the resulting algorithms have non-zero asymptotic error; the MISO method was adapted
by Bietti and Mairal (2017) at the cost of a memory overhead of O(np), whereas other
variants of SAGA and SVRG were proposed by Zheng and Kwok (2018) for linear models
in machine learning.

The framework we adopt is that of estimate sequences introduced by Nesterov (2004),
which consists of building iteratively a quadratic model of the objective. Typically, estimate
sequences may be used to analyze the convergence of existing algorithms, but also to design
new ones, in particular with acceleration. Our construction is however slightly different
than the original one since it is based on stochastic estimates of the gradients, and some
classical properties of estimate sequences are satisfied only approximately. We note that
estimate sequences have been used before for stochastic optimization (Lu and Xiao, 2015;
Devolder, 2011; Lin et al., 2014), but not for the same generic purpose as ours.

Specifically, our paper makes to the following contributions:

• We revisit many stochastic optimization algorithms dealing with composite convex
problems; we consider variants of incremental methods such as SVRG, SAGA, SDCA,
or MISO. We provide a common convergence proof for these methods and show that
they can be modified and become adaptive to the strong convexity constant µ, when
only a lower bound is available.

• We provide improvements to the previous algorithms by making them robust to
stochastic perturbations. We analyze these approaches under a non-uniform sampling
strategy Q = {q1, . . . , qn} where qi is the probability of drawing example i at each
iteration. Typically, when the n gradients ∇fi have different Lipschitz constants Li,
the uniform distribution Q yields complexities that depend on LQ = maxi Li, whereas
a non-uniform Q may yield LQ = 1

n

∑
i Li. For strongly convex problems, we propose

approaches with the following worst-case iteration complexity for minimizing (3)—
that is, the number of iterations to guarantee E[F (xk)−F ∗] ≤ ε—is upper bounded by

O

((
n+

LQ
µ

)
log

(
F (x0)− F ∗

ε

))
+O

(
ρQσ̃

2

µε

)
,

where LQ = maxi Li/(qin) and ρQ = 1/(nmin qi) ≥ 1 (note that ρQ = 1 for uniform
distributions). The term on the left corresponds to the complexity of the variance-
reduction methods for a deterministic objective without perturbation, and O(σ̃2/µε) is
the optimal sublinear rate of convergence for a stochastic optimization problem when
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the gradient estimates have variance σ̃2. In contrast, a variant of stochastic gradient
descent for composite optimization applied to (3) has worst-case complexity O(σ2/µε),
with potentially σ2 � σ̃2. Note that the non-uniform sampling strategy potentially
reduces LQ and improves the left part, whereas it increases ρQ and degrades the
dependency on the noise σ̃2. Whereas non-uniform sampling strategies for incremental
methods are now classical (Xiao and Zhang, 2014; Schmidt et al., 2015), the robustness
to stochastic perturbations has not been studied for all these methods and existing
approaches such as (Hofmann et al., 2015; Bietti and Mairal, 2017; Zheng and Kwok,
2018) have various limitations as discussed earlier.

• We show that our construction of estimate sequence naturally leads to an accelerated
stochastic gradient method for composite optimization as (Ghadimi and Lan, 2012,
2013; Hu et al., 2009), but simpler as our approach requires to maintain two sequences
of iterates instead of three. The resulting complexity in terms of gradient evaluations
for µ-strongly convex objectives is

O

(√
L

µ
log

(
F (x0)− F ∗

ε

))
+O

(
σ2

µε

)
,

which has also been achieved by Ghadimi and Lan (2013); Aybat et al. (2019); Cohen
et al. (2018). When the objective is convex, but non-strongly convex, we also provide
a sublinear convergence rate for finite horizon. Given a budget of K iterations, the
algorithm returns an iterate xK such that

E[F (xK)− F ∗] ≤ 2L‖x0 − x∗‖2

(K + 1)2
+ σ

√
8‖x0 − x∗‖2
K + 1

, (4)

which is also optimal for stochastic first-order optimization (Ghadimi and Lan, 2012).

• We design a new accelerated algorithm for finite sums based on the SVRG gradient
estimator, with complexity, for µ-strongly convex functions,

O

((
n+

√
n
LQ
µ

)
log

(
F (x0)− F ∗

ε

))
+O

(
ρQσ̃

2

µε

)
, (5)

where the term on the left is the classical optimal complexity for deterministic finite
sums, which has been well studied when σ̃2 = 0 (Arjevani and Shamir, 2016; Allen-
Zhu, 2017; Zhou et al., 2018; Zhou, 2019; Kovalev et al., 2020). To the best of our
knowledge, our algorithm is nevertheless the first to achieve such a complexity when
σ̃2 > 0. Most related to our work, the general case σ̃2 > 0 was indeed considered
recently by Lan and Zhou (2018b) in the context of distributed optimization, with
an approach that was shown to be optimal in terms of communication rounds. Yet,
when applied in the same context as ours (in a non-distributed setting), the complexity
they achieve is suboptimal. Specifically, their dependence in σ̃2 involves an additional
logarithmic factor O(log(1/µε)) and the deterministic part is sublinear in O(1/ε).

4
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When the problem is convex but not strongly convex, given a budget of K greater
than O(n log(n)), the algorithm returns a solution xK such that

E[F (xK)− F ∗] ≤
18nLQ‖x0 − x∗‖2

(K + 1)2
+ 9σ̃‖x0 − x∗‖

√
ρQ

K + 1
, (6)

where the term on the right is potentially better than (4) for large K when σ̃ � σ
(see discussion above on full variance vs. variance due to stochastic perturbations).
When the objective is deterministic (σ̃ = 0), the term (6) yields the complexity
O(
√
nLQ/

√
ε), which is potentially better than the O(n

√
L/
√
ε) complexity of accel-

erated gradient descent, unless L is significantly smaller than LQ.

This paper is organized as follows. Section 2 introduces the proposed framework based on
stochastic estimate sequences; Section 3 is devoted to the convergence analysis and Section 4
introduces accelerated stochastic optimization algorithms; Section 5 presents various exper-
iments to compare the effectiveness of the proposed approaches, and Section 6 concludes
the paper.

We note that a short version of this paper was presented by (Kulunchakov and Mairal,
2019a) at the International Conference on Machine Learning (ICML) in 2019. This paper
extends this previous work by (i) providing complexity results for convex but not strongly
convex objectives (µ = 0), (ii) extending the framework to variants of MISO/Finito/SDCA
algorithms, in the context of non-accelerated incremental methods, (iii) providing more
experiments with additional baselines and objective functions.

2. Proposed Framework Based on Stochastic Estimate Sequences

In this section, we present two generic stochastic optimization algorithms to address the
composite problem (1). Then, we show their relation to variance-reduction methods.

2.1 A Classical Iteration Revisited

Consider an algorithm that performs the following updates:

xk ← Proxηkψ [xk–1 − ηkgk] with E[gk|Fk–1] = ∇f(xk–1), (A)

where Fk–1 is the filtration representing all information up to iteration k–1, gk is an unbiased
estimate of the gradient ∇f(xk–1), ηk > 0 is a step size, and Proxηψ[.] is the proximal
operator (Moreau, 1962) defined for any scalar η > 0 as the unique solution of

Proxηψ[u] := argmin
x∈Rp

{
ηψ(x) +

1

2
‖x− u‖2

}
. (7)

The iteration (A) is generic and encompasses many existing algorithms, which we review
later. Key to our analysis, we are interested in a simple interpretation corresponding to the
iterative minimization of strongly convex surrogate functions.

5
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Interpretation with stochastic estimate sequence. Consider now the function

d0(x) = d∗0 +
γ0

2
‖x− x0‖2, (8)

with γ0 ≥ µ and d∗0 is a scalar value that is left unspecified at the moment. Then, it is easy
to show that xk in (A) minimizes the following quadratic function dk defined for k ≥ 1 as

dk(x) = (1− δk)dk–1(x)

+ δk

(
f(xk–1) + g>k (x− xk–1) +

µ

2
‖x− xk–1‖2 + ψ(xk) + ψ′(xk)

>(x− xk)
)
, (9)

where δk, γk satisfy the system of equations

δk = ηkγk and γk = (1− δk)γk–1 + µδk, (10)

and

ψ′(xk) =
1

ηk
(xk–1 − xk)− gk.

We note that ψ′(xk) is a subgradient in ∂ψ(xk). By simply using the definition of the
proximal operator (7) and considering first-order optimality conditions, we indeed have
that 0 ∈ xk−xk–1 +ηkgk+ηk∂ψ(xk) and xk coincides with the minimizer of dk. This allows
us to write dk in the generic form

dk(x) = d∗k +
γk
2
‖x− xk‖2 for all k ≥ 0.

The construction (9) is akin to that of estimate sequences introduced by Nesterov (2004),
which are typically used for designing accelerated gradient-based optimization algorithms.
In this section, we are however not interested in acceleration, but instead in stochastic
optimization and variance reduction. One of the main property of estimate sequences that
we will use is their ability do behave asymptotically as a lower bound of the objective
function near the optimum. Indeed, we have

E[dk(x
∗)] ≤ (1− δk)E[dk–1(x∗)] + δkF

∗ ≤ Γkd0(x∗) + (1− Γk)F
∗, (11)

where Γk =
∏k
t=1(1 − δt) and F ∗ = F (x∗). The first inequality comes from a strong

convexity inequality since E[g>k (x∗ − xk–1)|Fk–1] = ∇f(xk–1)>(x∗ − xk–1), and the second
inequality is obtained by unrolling the relation obtained between E[dk(x

∗)] and E[dk–1(x∗)].
When Γk converges to zero, the contribution of the initial surrogate d0 disappears and
E[dk(x

∗)] behaves as a lower bound of F ∗.

Relation with existing algorithms. The iteration (A) encompasses many approaches
such as ISTA (proximal gradient descent), which uses the exact gradient gk = ∇f(xk–1) lead-
ing to deterministic iterates (xk)k≥0 (Beck and Teboulle, 2009; Nesterov, 2013) or proximal
variants of the stochastic gradient descent method to deal with a composite objective (see
Lan, 2012, for instance). Of interest for us, the variance-reduced stochastic optimization
approaches SVRG (Xiao and Zhang, 2014) and SAGA (Defazio et al., 2014a) also follow

6
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the iteration (A) but with an unbiased gradient estimator whose variance reduces over time.
Specifically, the basic form of these estimators is

gk = ∇fik(xk–1)− zikk–1 + z̄k–1 with z̄k–1 =
1

n

n∑
i=1

zik–1, (12)

where ik is an index chosen uniformly in {1, . . . , n} at random, and each auxiliary variable zik
is equal to the gradient ∇fi(x̃ik), where x̃ik is one of the previous iterates. The motivation
is that given two random variables X and Y , it is possible to define a new variable Z =
X − Y + E[Y ] which has the same expectation as X but potentially a lower variance if Y
is positively correlated with X. SVRG and SAGA are two different approaches to build
such positively correlated variables. SVRG uses the same anchor point x̃ik = x̃k for all i,
where x̃k is updated every m iterations. Typically, the memory cost of SVRG is that of
storing the variable x̃k and the gradient z̄k = ∇f(x̃k), which is thus O(p). On the other
hand, SAGA updates only zikk = ∇fik(xk–1) at iteration k, such that zik = zik–1 if i 6= ik.
Thus, SAGA requires storing n gradients. While in general the overhead cost in memory
is of order O(np), it may be reduced to O(n) when dealing with linear models in machine
learning (see Defazio et al., 2014a). Note that variants with non-uniform sampling of the
indices ik have been proposed by Xiao and Zhang (2014); Schmidt et al. (2015).

In order to make our proofs consistent for all considered incremental methods, we analyze
a variant of SVRG with a randomized gradient updating schedule (Hofmann et al., 2015).
Remarkably, this variant was recently used in a concurrent work (Kovalev et al., 2020) to
get the accelerated rate when σ̃2 = 0.

2.2 A Less Classical Iteration with a Different Estimate Sequence

In the previous section, we have interpreted the classical iteration (A) as the iterative mini-
mization of the stochastic surrogate (9). Here, we show that a slightly different construction
leads to a new algorithm. To obtain a lower bound, we have indeed used basic properties of
the proximal operator to obtain a subgradient ψ′(xk) and we have exploited the following
convexity inequality ψ(x) ≥ ψ(xk) + ψ′(xk)

>(x − xk). Another natural choice to build a
lower bound consists then of using directly ψ(x) instead of ψ(xk)+ψ′(xk)

>(x−xk), leading
to the construction

dk(x) = (1− δk)dk–1(x) + δk

(
f(xk–1) + g>k (x− xk–1) +

µ

2
‖x− xk–1‖2 + ψ(x)

)
, (13)

where xk–1 is assumed to be the minimizer of the composite function dk–1, δk is defined as
in Section 2.1, and xk is a minimizer of dk. To initialize the recursion, we define then d0 as

d0(x) = c0 +
γ0

2
‖x− x̄0‖2 + ψ(x) ≥ d∗0 +

γ0

2
‖x− x0‖2,

with x0 = Proxψ/γ0 [x̄0] is the minimizer of d0 and d∗0 = d0(x0) = c0 + γ0
2 ‖x0 − x̄0‖2 +ψ(x0)

is the minimum value of d0; c0 is left unspecified since it does not affect the algorithm.
Typically, one may choose x̄0 to be a minimizer of ψ such that x0 = x̄0. Unlike in the
previous section, the surrogates dk are not quadratic, but they remain γk-strongly convex.
It is also easy to check that the relation (11) still holds.

7
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The corresponding algorithm. It is also relatively easy to show that the iterative
minimization of the stochastic lower bounds (13) leads to the following iterations

x̄k ← (1−µηk)x̄k–1+µηkxk–1−ηkgk and xk = Prox ψ
γk

[x̄k] with E[gk|Fk–1] = ∇f(xk–1).

(B)

As we will see, the convergence analysis for algorithm (A) also holds for algorithm (B)
such that both variants enjoy similar theoretical properties. In one case, the function ψ(x)
appears explicitly, whereas a lower bound ψ(xk)+ψ′(xk)

>(x−xk) is used in the other case.
The introduction of the variable x̄k allows us to write the surrogates dk in the canonical
form

dk(x) = ck +
γk
2
‖x− x̄k‖2 + ψ(x) ≥ d∗k +

γk
2
‖x− xk‖2,

where ck is constant and the inequality on the right is due to the strong convexity of dk.

Relation to existing approaches. The approach (B) is related to several optimization
methods. When the objective is a deterministic finite sum, it is possible to relate the
update (B) to the MISO (Mairal, 2015), and Finito (Defazio et al., 2014b) algorithms,
even though they were derived from a significantly different point of view. This is also
the case of a primal variant of SDCA (Shalev-Shwartz, 2016) For instance, SDCA is a
dual coordinate ascent approach, whereas MISO and Finito are explicitly derived from the
iterative surrogate minimization we adopt in this paper. As the links between (B) and these
previous approaches are not obvious at first sight, we detail them in Appendix B.

2.3 Gradient Estimators and Algorithms

In this paper, we consider the iterations (A) and (B) with the following gradient estimators.

• exact gradient with gk = ∇f(xk–1), when the problem is deterministic and we have
an access to the full gradient;

• stochastic gradient, when we just assume that gk has bounded variance. When
f(x) = Eξ[f̃(x, ξ)], a data point ξk is drawn at iteration k and gk = ∇f̃(x, ξk).

• random-SVRG: for finite sums, we consider a variant of the SVRG gradient esti-
mator with non-uniform sampling and a random update of the anchor point x̃k–1,
proposed originally by Hofmann et al. (2015). Specifically, gk is also an unbiased
estimator of ∇f(xk–1), defined as

gk =
1

qikn

(
∇̃fik(xk–1)− zikk–1

)
+ z̄k–1, (14)

where ik is sampled from a distribution Q = {q1, . . . , qn} and ∇̃ denotes that the
gradient is perturbed by a zero-mean noise variable with variance σ̃2. More precisely,
if fi(x) = Eρ[f̃i(x, ρ)] for all i, where ρ is a stochastic perturbation, instead of accessing
∇fik(xk–1), we draw a perturbation ρk and observe

∇̃fik(xk–1) = ∇f̃ik(xk–1, ρk) = ∇fik(xk–1) +∇f̃ik(xk–1, ρk)−∇fik(xk–1)︸ ︷︷ ︸
ζk

,

8
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where the perturbation ζk has zero mean given Fk–1 and its variance is bounded by σ̃2.
When there is no perturbation, we simply have ∇̃ = ∇ and ζk = 0.

Then, the variables zik and z̄k also involve noisy estimates of the gradients:

zik = ∇̃fi(x̃k) and z̄k =
1

n

n∑
i=1

zik,

where x̃k is an anchor point that is updated on average every n iterations. Whereas
the classical SVRG approach (Xiao and Zhang, 2014) updates x̃k on a fixed schedule,
we perform random updates: with probability 1/n, we choose x̃k = xk and recom-
pute z̄k = ∇̃f(x̃k); otherwise x̃k is kept unchanged. In comparison with the fixed
schedule, the analysis with the random one is simplified and can be unified with that
of SAGA/SDCA or MISO. The use of this estimator with iteration (A) is illustrated
in Algorithm 1. It is then easy to modify it to use variant (B) instead.

In terms of memory, the random-SVRG gradient estimator requires to store an anchor
point x̃k–1 and the average gradients z̄k–1. The variables zik do not need to be stored;
only the n random seeds to produce the perturbations are kept into memory, which
allows us to compute zikk–1 = ∇̃fik(x̃k–1) at iteration k, with the same perturbation
for index ik that was used to compute z̄k–1 = 1

n

∑n
i=1 z

i
k–1 when the anchor point was

last updated. The overall cost is thus O(n+ p).

Algorithm 1 Variant (A) with random-SVRG estimator

1: Input: x0 in Rp; K (number of iterations); (ηk)k≥0 (step sizes); γ0 ≥ µ (if averaging);
2: Initialization: x̃0 = x̂0 = x0; z̄0 = 1

n

∑n
i=1 ∇̃fi(x̃0);

3: for k = 1, . . . ,K do
4: Sample ik according to the distribution Q = {q1, . . . , qn};
5: Compute the gradient estimator, possibly corrupted by random perturbations:

gk =
1

qikn

(
∇̃fik(xk–1)− ∇̃fik(x̃k–1)

)
+ z̄k–1;

6: Obtain the new iterate xk ← Proxηkψ [xk–1 − ηkgk] ;
7: With probability 1/n,

x̃k = xk and z̄k =
1

n

n∑
i=1

∇̃fi(x̃k);

8: Otherwise, with probability 1− 1/n, keep x̃k = x̃k–1 and z̄k = z̄k–1;
9: Optional: Use the online averaging strategy using δk obtained from (10):

x̂k = (1− τk)x̂k–1 + τkxk with τk = min

(
δk,

1

5n

)
;

10: end for
11: Output: xK or x̂K if averaging.

9
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• SAGA: The estimator has a form similar to (14) but with a different choice of vari-
ables zik. Unlike SVRG that stores an anchor point x̃k, the SAGA estimator requires
storing and incrementally updating the n auxiliary variables zik for i = 1, . . . , n, while
maintaining the relation z̄k = 1

n

∑n
i=1 z

i
k. We consider variants such that each time

a gradient ∇fi(x) is computed, it is corrupted by a zero-mean random perturbation
with variance σ̃2. The procedure is described in Algorithm 2 for variant (A) when us-
ing uniform sampling. When β = 0, we recover the original SAGA algorithm, whereas
the choice β > 0 corresponds to a more general estimator that we will discuss next.

The case with non-uniform sampling is slightly different and is described in Algo-
rithm 3; it requires an additional index jk for updating a variable zjkk . The reason
for that is to remove a difficulty in the convergence proof, a strategy also adopted
by Schmidt et al. (2015) for a variant of SAGA with non-uniform sampling.

• SDCA/MISO: To put SAGA, MISO and SDCA under the same umbrella, we in-
troduce a lower bound β on the strong convexity constant µ, and a correcting term
involving β that appears only when the sampling distribution Q is not uniform:

gk =
1

qikn

(
∇̃fik(xk–1)− zikk–1

)
+ z̄k–1 + β

(
1− 1

qikn

)
xk–1. (15)

It is then possible to show that when Q is uniform and under the big data condition
L/µ ≤ n (used for instanced by Mairal 2015; Defazio et al. 2014b; Schmidt et al.
2017) and with β = µ, variant (B) combined with the estimator (15) yields the MISO
algorithm, which performs similar updates as a primal variant of SDCA (Shalev-
Shwartz, 2016). These links are highlighted in Appendix B.

The motivation for introducing the parameter β in [0, µ] comes from empirical risk
minimization problems, where the functions fi may have the form fi(x) = φ(a>i x) +
β
2 ‖x‖

2, where ai in Rp is a data point; then, β is a lower bound on the strong convexity
modulus µ, and ∇fi(x) − βx is proportional to ai and can be stored with a single
additional scalar value, assuming ai is already in memory.

Summary of the new features. As we combine different types of iterations and gradient
estimators, we recover both known and new algorithms. Specifically, we obtain the following
new features:

• robustness to noise: we introduce mechanisms to deal with stochastic perturbations
and make all these previous approaches robust to noise.

• adaptivity to the strong convexity when σ̃ = 0: Algorithms 1, 2, and 3 without
averaging do not require knowing the strong convexity constant µ (it may only need
a lower-bound β, which is often trivial to obtain).

• new variants: Whereas SVRG/SAGA were developed with the iterations (A) and
MISO in the context of (B), we show that these gradient estimators are both compat-
ible with (A) and (B), leading to new algorithms with similar guarantees.

10
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Algorithm 2 Variant (A) with SAGA/SDCA/MISO estimator and uniform sampling

1: Input: x0 in Rp; K (num. iterations); (ηk)k≥0 (step sizes); β in [0, µ]; γ0 ≥ µ (optional).
2: Initialization: zi0 = ∇̃fi(x0)− βx0 for all i = 1, . . . , n and z̄0 = 1

n

∑n
i=1 z

i
0.

3: for k = 1, . . . ,K do
4: Sample ik in {1, . . . , n} according to the uniform distribution;
5: Compute the gradient estimator, possibly corrupted by random perturbations:

gk = ∇̃fik(xk–1)− zikk–1 + z̄k–1;

6: Obtain the new iterate xk ← Proxηkψ [xk–1 − ηkgk] ;
7: Update the auxiliary variables

zikk = ∇̃fik(xk–1)− βxk–1 and zik = zik–1 for all i 6= ik;

8: Update the average variable z̄k = z̄k–1 + 1
n(zjkk − z

jk
k–1).

9: Optional: Use the same averaging strategy as in Algorithm 1.
10: end for
11: Output: xK or x̂K (if averaging).

Algorithm 3 Variant (A) with SAGA/SDCA/MISO estimator and non-uniform sampling

1: Input: x0 in Rp; K (num. iterations); (ηk)k≥0 (step sizes); β in [0, µ]; γ0 ≥ µ (optional).
2: Initialization: zi0 = ∇̃fi(x0)− βx0 for all i = 1, . . . , n and z̄0 = 1

n

∑n
i=1 z

i
0.

3: for k = 1, . . . ,K do
4: Sample ik according to the distribution Q = {q1, . . . , qn};
5: Compute the gradient estimator, possibly corrupted by random perturbations:

gk =
1

qikn

(
∇̃fik(xk–1)− zikk–1

)
+ z̄k–1 + β

(
1− 1

qikn

)
xk–1;

6: Obtain the new iterate xk ← Proxηkψ [xk–1 − ηkgk] ;
7: Draw jk from the uniform distribution in {1, . . . , n};
8: Update the auxiliary variables

zjkk = ∇̃fjk(xk)− βxk and zjk = zjk–1 for all j 6= jk;

9: Update the average variable z̄k = z̄k–1 + 1
n(zjkk − z

jk
k–1).

10: Optional: Use the same averaging strategy as in Algorithm 1.
11: end for
12: Output: xK or x̂K (if averaging).

3. Convergence Analysis and Robustness

We now present the convergence analysis for iterations (A) or (B). In Section 3.1, we present
a generic convergence result. Then, in Section 3.2, we present specific results for the

11
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variance-reduction approaches in including strategies to make them robust to stochastic
noise. Acceleration is discussed in the next section.

3.1 Generic Convergence Result Without Variance Reduction

Key to our complexity results, the following proposition gives a first relation between the
quantity F (xk), the surrogate dk, dk–1 and the variance of the gradient estimates.

Proposition 1 (Key relation) For either variant (A) or (B), when using the construction
of dk from Sections 2.1 or 2.2, respectively, and assuming ηk ≤ 1/L, we have for all k ≥ 1,

δk(E[F (xk)]− F ∗) + E[dk(x
∗)− d∗k] ≤ (1− δk)E[dk–1(x∗)− d∗k–1] + ηkδkω

2
k, (16)

where F ∗ is the minimum of F , x∗ is one of its minimizers, and ω2
k = E[‖gk−∇f(xk–1)‖2].

Proof We first consider the variant (A) and later show how to modify the convergence
proofs to accommodate the variant (B).

d∗k = dk(xk) = (1− δk)dk–1(xk) + δk

(
f(xk–1) + g>k (xk − xk–1) +

µ

2
‖xk − xk–1‖2 + ψ(xk)

)
≥ (1− δk)d∗k–1 +

γk
2
‖xk − xk–1‖2 + δk

(
f(xk–1) + g>k (xk − xk–1) + ψ(xk)

)
≥ (1− δk)d∗k–1 + δk

(
f(xk–1) + g>k (xk − xk–1) +

L

2
‖xk − xk–1‖2 + ψ(xk)

)
≥ (1− δk)d∗k–1 + δkF (xk) + δk(gk −∇f(xk–1))>(xk − xk–1),

where the first inequality comes from Lemma 24—it is in fact an equality when considering
Algorithm (A)—and the second inequality simply uses the assumption ηk ≤ 1/L, which
yields δk = γkηk ≤ γk/L. Finally, the last inequality uses a classical upper-bound for
L-smooth functions presented in Lemma 22. Then, after taking expectations,

E[d∗k] ≥ (1− δk)E[d∗k–1] + δkE[F (xk)] + δkE[(gk −∇f(xk–1))>(xk − xk–1)]

= (1− δk)E[d∗k–1] + δkE[F (xk)] + δkE[(gk −∇f(xk–1))>xk]

= (1− δk)E[d∗k–1] + δkE[F (xk)] + δkE
[
(gk −∇f(xk–1))> (xk − wk–1)

]
,

where we have defined the following quantity

wk–1 = Proxηkψ [xk–1 − ηk∇f(xk–1)] .

In the previous relations, we have used twice the fact that E[(gk −∇f(xk–1))>y|Fk–1] = 0,
for all deterministic variable y given xk–1, such as y = xk–1 or y = wk–1. We may now
use the non-expansiveness property of the proximal operator (Moreau, 1965) to control the
quantity ‖xk − wk–1‖, which gives us

E[d∗k] ≥ (1− δk)E[d∗k–1] + δkE[F (xk)]− δkE [‖gk −∇f(xk–1)‖‖xk − wk–1‖]
≥ (1− δk)E[d∗k–1] + δkE[F (xk)]− δkηkE

[
‖gk −∇f(xk–1)‖2

]
= (1− δk)E[d∗k–1] + δkE[F (xk)]− δkηkω2

k.

12
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This relation can now be combined with (11) when z = x∗, and we obtain (16). It is also
easy to see that the proof also works with variant (B). The convergence analysis is identical,
except that we take wk–1 to be

wk–1 = Prox ψ
γk

[(1− µηk)x̄k–1 + µηkxk–1 − ηk∇f(xk–1)] ,

and the same result follows.

Then, without making further assumption on ωk, we have the following general convergence
result, which is a direct consequence of the averaging Lemma 30, inspired by Ghadimi and
Lan (2012), and presented in Appendix A.3:

Theorem 2 (General convergence result) Under the same assumptions as in Propo-
sition 1, we have for all k ≥ 1, and either variant (A) or (B),

E[δk (F (xk)− F ∗) + dk(x
∗)− d∗k] ≤ Γk

(
d0(x∗)− d∗0 +

k∑
t=1

δtηtω
2
t

Γt

)
, (17)

where Γk =
∏k
t=1(1 − δt). Then, by using the averaging strategy x̂k = (1 − δk)x̂k–1 + δkxk

of Lemma 30, for any point x̂0 (possibly equal to x0), we have

E [F (x̂k)− F ∗ + dk(x
∗)− d∗k] ≤ Γk

(
F (x̂0)− F ∗ + d0(x∗)− d∗0 +

k∑
t=1

δtηtω
2
t

Γt

)
. (18)

Theorem 2 allows us to recover convergence rates for various algorithms. Note that the
effect of the averaging strategy is to remove the factor δk in front of F (xk)−F ∗ on the left
part of (17), thus improving the convergence rate by a factor 1/δk. Regarding the quantity
d0(x∗)− d∗0, we have the following relations

• For variant (A), d0(x∗)− d∗0 = γ0
2 ‖x

∗ − x0‖2;

• For variant (B), this quantity may be larger and we may simply say that d0(x∗)−d∗0 =
γ0
2 ‖x

∗ − x0‖2 + ψ(x∗) − ψ(x0) − ψ′(x0)>(x0 − x∗) for variant (B), where ψ′(x0) =
γ0(x0− x̄0) is a subgradient in ∂ψ(x0). Note that if x̄0 is chosen to be a minimizer of
ψ, then d0(x∗)− d∗ = γ0

2 ‖x
∗ − x0‖2 + ψ(x∗)− ψ(x0).

In the next section, we will focus on variance reduction mechanisms, which are able
to improve the previous convergence rates by better exploiting the structure of the objec-
tive. By controlling the variance ωk of the corresponding gradient estimators, we will apply
Theorem 2 to obtain convergence rates. Before that, we remark that it is relatively straight-
forward to use this theorem to recover complexity results for proximal SGD, both for the
usual variant (A) or the new one (B). Since these results are classical, we present them in
Appendix C. As a sanity check, we note that we recover the optimal noise-dependency (see
Nemirovski et al., 2009), both for strongly convex cases, or when µ = 0.
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3.2 Faster Convergence with Variance Reduction

Stochastic variance-reduced gradient descent algorithms rely on gradient estimates whose
variance decreases as fast as the objective function value. Here, we provide a unified proof
of convergence for our variants of SVRG, SAGA, and MISO, and we show how to make
them robust to stochastic perturbations. Specifically, we consider the minimization of a
finite sum of functions as in (3), but, as explained in Section 2, each observation of the
gradient ∇fi(x) is corrupted by a random noise variable. The next proposition extends a
proof for SVRG (Xiao and Zhang, 2014) to stochastic perturbations, and characterizes the
variance of gk.

As we now consider finite sums, we introduce the quantity σ̃2, which is an upper-bound
on the noise variance due to stochastic perturbations for all x in Rp and for i in {1, . . . , n}:

E
[∥∥∥∇̃fi(x)−∇fi(x)

∥∥∥2
]
≤ σ̃2

i with a related quantity σ̃2 =
1

n

n∑
i=1

1

qin
σ̃2
i , (19)

where the expectation is with respect to the gradient perturbation, and Q = {q1, . . . , qn}
is the sampling distribution. As having the variance to be bounded across the domain of x
may be a strong assumption, even though classical, we also introduce the quantity

σ̃2
i,∗ = E

[∥∥∥∇̃fi(x∗)−∇fi(x∗)∥∥∥2
]

with a related quantity σ̃2
∗ =

1

n

n∑
i=1

1

qin
σ̃2
i,∗, (20)

where x∗ is a solution of the optimization problem. As we will show, in this section, our
complexity results for unaccelerated methods when µ > 0 under the bounded variance
assumption σ̃2 < +∞ will also hold when simply assuming σ̃2

∗ < +∞ at the cost of slightly
degrading the complexity by constant factors. The next proposition provides an upper-
bound on the variance of gradient estimators gk, which we have introduced earlier, as a first
step to use Theorem 2.

Proposition 3 (Generic variance reduction with non-uniform sampling)
Consider problem (1) when f is a finite sum of functions f = 1

n

∑n
i=1 fi where each fi is

convex and Li-smooth with Li ≥ µ. Then, the gradient estimates gk of the random-SVRG
and MISO/SAGA/SDCA strategies defined in Section 2.3 satisfy

E[‖gk −∇f(xk–1)‖2] ≤ 4LQE[F (xk–1)− F ∗] +
2

n
E

[
n∑
i=1

1

nqi
‖uik–1 − ui∗‖2

]
+ 3ρQσ̃

2, (21)

where LQ = maxi Li/(qin), ρQ = 1/(nmini qi), and for all i and k, uik is equal to zik without
noise—that is

uik = ∇fi(x̃k) for random-SVRG

ujkk = ∇fjk(xk)− βxk and ujk = ujk–1 if j 6= jk for SAGA/MISO/SDCA,

and ui∗ = ∇fi(x∗)− βx∗ (with β = 0 for random-SVRG).
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If we additionally assume that each function fi may be written as fi(x) = Eξ
[
f̃i(x, ξ)

]
where f̃i(., ξ) is Li-smooth with Li ≥ µ for all ξ, then

E[‖gk −∇f(xk–1)‖2] ≤ 16LQE[F (xk–1)− F ∗] +
2

n
E

[
n∑
i=1

1

nqi
‖uik–1 − ui∗‖2

]
+ 6ρQσ̃

2
∗. (22)

In particular, choosing the uniform distribution qi = 1/n gives LQ = maxi Li; choosing
qi = Li/

∑
j Lj gives LQ = 1

n

∑
i Li, which may be significantly smaller than the maxi-

mum Lipschitz constant. We note that non-uniform sampling can significantly improve the
dependency of the bound to the Lipschitz constants since the average 1

n

∑
i Li may be sig-

nificantly smaller than the maximum maxi Li, but it may worsen the dependency with the
variance σ̃2 since ρQ > 1 unless Q is the uniform distribution. The proof of the proposition
is given in Appendix D.1.

For simplicity, we will present our complexity results in terms of σ̃2. However, when the
conditions for (22) are satisfied, it is easy to adapt all results of this section to replace σ̃2

by σ̃2
∗, by paying a small price in terms of constant factors. Note that this substitution will

not work for accelerated algorithms in the next section. The general convergence result is
given next; it applies to both variants (A) and (B).

Proposition 4 (Lyapunov function for variance-reduced algorithms) Consider the
same setting as Proposition 3. For either variant (A) or (B) with the random-SVRG or
SAGA/SDCA/MISO gradient estimators defined in Section 2.3, when using the construc-
tion of dk from Sections 2.1 or 2.2, respectively, and assuming γ0 ≥ µ and (ηk)k≥0 is
non-increasing with ηk ≤ 1

12LQ
, we have for all k ≥ 1,

δk
6
E[F (xk)− F ∗] + Tk ≤ (1− τk)Tk–1 + 3ρQηkδkσ̃

2 with τk = min

(
δk,

1

5n

)
, (23)

where

Tk = 5LQηkδkE[F (xk)− F ∗] + E[dk(x
∗)− d∗k] +

5ηkδk
2

E

[
1

n

n∑
i=1

1

qin
‖uik − ui∗‖2

]
.

The proof of the previous proposition is given in Appendix D.2. From the Lyapunov func-
tion, we obtain a general convergence result for the variance-reduced stochastic algorithms.

Theorem 5 (Convergence of variance-reduced algorithms) Consider the same set-
ting as Proposition 4, which applies to both variants (A) and (B). Then, by using the aver-
aging strategy of Lemma 30 with any point x̂0,

E
[
F (x̂k)− F ∗ +

6τk
δk
Tk

]
≤ Θk

(
F (x̂0)− F ∗ +

6τk
δk
T0 +

18ρQτkσ̃
2

δk

k∑
t=1

ηtδt
Θt

)
, (24)

where Θk =
∏k
t=1(1− τt). Note that we also have

T0 ≤ 10LQη0δ0(F (x0)− F ∗) + d0(x∗)− d∗0. (25)
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The proof is given in Appendix D.3. From this generic convergence theorem, we now study
particular cases. The first corollary studies the strongly-convex case with constant step size.

Corollary 6 (Variance-reduction, µ > 0, constant step size independent of µ)
Consider the same setting as in Theorem 5, where f is µ-strongly convex, γ0 = µ, and
ηk = 1

12LQ
. Then, for any point x̂0,

E [F (x̂k)− F ∗ + αTk] ≤ Θk (F (x̂0)− F ∗ + αT0) +
3ρQσ̃

2

2LQ
(26)

with τ = min
(

µ
12LQ

, 1
5n

)
, Θk = (1 − τ)k, and α = 6 min

(
1,

12LQ
5µn

)
. Note that Tk ≥

µ
2‖xk − x

∗‖2 and for Algorithm (A), we also have T0 ≤ (13/12)(F (x0)− F ∗).

The proof is given in Appendix D.4. This corollary shows that the algorithm achieves
a linear convergence rate to a noise-dominated region and produces converging iterates
(xk)k≥0 that do not require to know the strong convexity constant µ. It shows that all
estimators we consider can become adaptive to µ. Note that the non-uniform strategy
slightly degrades the dependency in σ̃2: indeed, LQ/ρQ = maxi=1 Li if Q is uniform, but if
qi = maxi Li/

∑
j Lj , we have instead LQ/ρQ = mini=1 Li. The next corollary shows that a

slightly better noise dependency can be achieved when the step sizes rely on µ.

Corollary 7 (Variance-reduction, µ > 0, constant step size depending on µ)
Consider the same setting as Theorem 5, where f is µ-strongly convex, γ0 = µ, and ηk =

η = min
(

1
12LQ

, 1
5µn

)
. Then, for all x̂0,

E [F (x̂k)− F ∗ + 6Tk] ≤ Θk (F (x̂0)− F ∗ + 6T0) + 18ρQησ̃
2. (27)

The proof follows similar steps as the proof of Corollary 6, after noting that we have δk = τk
for all k for this particular choice of step size. We are now in shape to study a converging
algorithm.

Corollary 8 (Variance-reduction, µ > 0, decreasing step sizes) Consider the same
setting as Theorem 5, where f is µ-strongly convex and target an accuracy ε ≤ 24ρQησ̃

2,

with η = min
(

1
12LQ

, 1
5µn

)
. Then, we use the constant step-size strategy of Corollary 7 with

x̂0 = x0, and stop the optimization when we find points x̂k and xk such that E[F (x̂k)−F ∗+
6Tk] ≤ 24ρQησ̃

2. Then, we restart the optimization procedure with decreasing step-sizes

ηk = min
(

1
12LQ

, 1
5µn ,

2
µ(k+2)

)
and generate a new sequence (x̂′k)k≥0. The resulting number

of gradient evaluations to achieve E[F (x̂′k)− F ∗] ≤ ε is upper bounded by

O

((
n+

LQ
µ

)
log

(
F (x0)− F ∗ + d0(x∗)− d∗0

ε

))
+O

(
ρQσ̃

2

µε

)
.

Note that d0(x∗)− d∗0 ≤ F (x0)− F ∗ for variant (A).
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The proof is given in Appendix D.5 and shows that variance-reduction algorithms may
exhibit an optimal dependency on the noise level σ̃2 when the objective is strongly convex.
Next, we analyze the complexity of variant (A) when µ = 0. Note that it is possible to
conduct a similar analysis for variant (B), which exhibits a slightly worse complexity (as
the corresponding quantity d0(x∗)− d∗0 is larger).

Corollary 9 (Variance-reduced algorithms with constant step-size, µ = 0)
Consider the same setting as Theorem 5, where f is convex and proceed in two steps. First,
run one iteration of (A) with step-size 1

12LQ
with the gradient estimator (1/n)

∑n
i=1 ∇̃fi(x0).

Second, use the resulting point to initialize the variant (A) with the random-SVRG or
SAGA/SDCA/MISO gradient estimators, with a constant step size η ≤ 1

12LQ
, γ0 = 1/η, for

a total of K ≥ 5n log(5n) iterations. Then,

E [F (x̂K)− F ∗] ≤ 9n

η(K + 1)
‖x0 − x∗‖2 + 36ησ̃2ρQ.

If in addition we choose η = min

(
1

12LQ
, ‖x0−x

∗‖
2σ̃

√
n

ρQ(K+1)

)
.

E [F (x̂K)− F ∗] ≤
108nLQ
(K + 1)

‖x0 − x∗‖2 + 36σ̃‖x0 − x∗‖
√

ρQn

K + 1
. (28)

The proof is provided in Appendix D.6. The second part of the corollary is not a practical
result since the optimal step size depends on unknown quantities such as σ̃2, but it allows
us to highlight the best possible dependence between the budget of iterations K, the initial
point x0, and the noise σ̃2. We will show in the next section that acceleration is useful to
improve the previous complexity.

4. Accelerated Stochastic Algorithms

We now consider the following iteration, involving an extrapolation sequence (yk)k≥1, which
is a classical mechanism from accelerated first-order algorithms (Beck and Teboulle, 2009;
Nesterov, 2013). Given a sequence of step-sizes (ηk)k≥0 with ηk ≤ 1/L for all k ≥ 0, and
some parameter γ0 ≥ µ, we consider the sequences (δk)k≥0 and (γk)k≥0 that satisfy

δk =
√
ηkγk for all k ≥ 0

γk = (1− δk)γk–1 + δkµ for all k ≥ 1.

Then, for k ≥ 1, we consider the iteration

xk = Proxηkψ [yk–1 − ηkgk] with E[gk|Fk–1] = ∇f(yk–1)

yk = xk + βk(xk − xk–1) with βk =
δk(1− δk)ηk+1

ηkδk+1 + ηk+1δ
2
k

,
(C)

where with constant step size ηk = 1/L, we recover a classical extrapolation parameter of
accelerated gradient based methods (Nesterov, 2004). Traditionally, estimate sequences are
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used to analyze the convergence of accelerated algorithms. We show in this section how to
proceed for stochastic composite optimization and later, we show how to directly accelerate
the random-SVRG approach we have introduced. Note that Algorithm (C) resembles the
approaches introduced by Hu et al. (2009); Ghadimi and Lan (2012) but is simpler since
our approach involves a single extrapolation step.

4.1 Convergence Analysis Without Variance Reduction

Consider then the stochastic estimate sequence for k ≥ 1

dk(x) = (1− δk)dk–1(x) + δklk(x),

with d0 defined as in (8) and

lk(x) = f(yk–1) + g>k (x− yk–1) +
µ

2
‖x− yk–1‖2 + ψ(xk) + ψ′(xk)

>(x− xk), (29)

and ψ′(xk) = 1
ηk

(yk–1 − xk)− gk is in ∂ψ(xk) by definition of the proximal operator. As in
Section 2, dk(x

∗) asymptotically becomes a lower bound on F ∗ since (11) remains satisfied.
This time, the iterate xk does not minimize dk, and we denote by vk instead its minimizer,
allowing us to write dk in the canonical form

dk(x) = d∗k +
γk
2
‖x− vk‖2.

The first lemma highlights classical relations between the iterates (xk)k≥0, (yk)k≥0 and the
minimizers of the estimate sequences dk, which also appears in (Nesterov, 2004, p. 78) for
constant step sizes ηk. The proof is given in Appendix D.5.

Lemma 10 (Relations between yk, xk and dk) The sequences (xk)k≥0 and (yk)k≥0 pro-
duced by Algorithm (C) satisfy for all k ≥ 0, with v0 = y0 = x0,

yk = (1− θk)xk + θkvk with θk =
δkγk

γk + δk+1µ
.

Then, the next lemma is key to prove the convergence of Algorithm (C). Its proof is
given in Appendix D.8.

Lemma 11 (Key lemma for stochastic estimate sequences with acceleration)
Assuming (xk)k≥0 and (yk)k≥0 are given by Algorithm (C). Then, for all k ≥ 1,

E[F (xk)] ≤ E [lk(yk–1)] +

(
Lη2

k

2
− ηk

)
E
[
‖g̃k‖2

]
+ ηkω

2
k,

with ω2
k = E[‖∇f(yk–1)− gk‖2] and g̃k = gk + ψ′(xk).

Finally, we obtain the following convergence result.

Theorem 12 (Accelerated stochastic optimization algorithm) Under the assump-
tions of Lemma 10, we have for all k ≥ 1,

E
[
F (xk)− F ∗ +

γk
2
‖vk − x∗‖2

]
≤ Γk

(
F (x0)− F ∗ +

γ0

2
‖x0 − x∗‖2 +

k∑
t=1

ηtω
2
t

Γt

)
, (30)

where, as before, Γt =
∑t

i=1(1− δi).
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Proof First, the minimizer vk of the quadratic surrogate dk may be written as

vk =
(1− δk)γk–1

γk
vk–1 +

µδk
γk

yk–1 −
δk
γk
g̃k = yk–1 +

(1− δk)γk–1

γk
(vk–1 − yk–1)− δk

γk
g̃k.

Then, we characterize the quantity d∗k:

d∗k = dk(yk–1)− γk
2
‖vk − yk–1‖2

= (1− δk)dk–1(yk–1) + δklk(yk–1)− γk
2
‖vk − yk–1‖2

= (1− δk)
(
d∗k–1 +

γk–1

2
‖yk–1 − vk–1‖2

)
+ δklk(yk–1)− γk

2
‖vk − yk–1‖2

= (1− δk)d∗k–1 +

(
γk–1(1− δk)(γk − (1− δk)γk–1)

2γk

)
‖yk–1 − vk–1‖2 + δklk(yk–1)

−
δ2
k

2γk
‖g̃k‖2 +

δk(1− δk)γk–1

γk
g̃>k (vk–1 − yk–1)

≥ (1− δk)d∗k–1 + δklk(yk–1)−
δ2
k

2γk
‖g̃k‖2 +

δk(1− δk)γk–1

γk
g̃>k (vk–1 − yk–1).

Assuming by induction that E[d∗k–1] ≥ E[F (xk–1)] − ξk–1 for some ξk–1 ≥ 0, we have after
taking expectation

E[d∗k] ≥ (1− δk)(E[F (xk–1)]− ξk–1)+

δkE[lk(yk–1)]−
δ2
k

2γk
E‖g̃k‖2 +

δk(1− δk)γk–1

γk
E[g̃>k (vk–1 − yk–1)].

Then, note that E[F (xk–1)] ≥ E[lk(xk–1)] ≥ E[lk(yk–1)] + E[g̃>k (xk–1 − yk–1)], and

E[d∗k] ≥ E[lk(yk–1)]− (1− δk)ξk–1 −
δ2
k

2γk
E‖g̃k‖2

+ (1− δk)E
[
g̃>k

(
δkγk–1

γk
(vk–1 − yk–1) + (xk–1 − yk–1)

)]
.

By Lemma 10, we can show that the last term is equal to zero, and we are left with

E[d∗k] ≥ E[lk(yk–1)]− (1− δk)ξk–1 −
δ2
k

2γk
E‖g̃k‖2.

We may then use Lemma 11, which gives us

E[d∗k] ≥ E[F (xk)]− (1− δk)ξk–1 − ηkω2
k +

(
ηk −

Lη2
k

2
−

δ2
k

2γk

)
E‖g̃k‖2

≥ E[F (xk)]− ξk with ξk = (1− δk)ξk–1 + ηkω
2
k,

where we used the fact that ηk ≤ 1/L and δk =
√
γkηk.

It remains to choose d∗0 = F (x0) and ξ0 = 0 to initialize the induction at k = 0 and we
conclude that

E
[
F (xk)− F ∗ +

γk
2
‖vk − x∗‖2

]
≤ E[dk(x

∗)− F ∗] + ξk ≤ Γk(d0(x∗)− F ∗) + ξk,
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which gives us (30) when noticing that ξk = Γk
∑k

t=1
ηtω2

t
Γt

.

Next, we specialize the theorem to various practical cases. For the corollaries below, we
assume the variances

(
ω2
k

)
k≥1

to be upper bounded by σ2.

Corollary 13 (Proximal accelerated SGD with constant step-size, µ > 0) Assume
that f is µ-strongly convex, and choose γ0 = µ and ηk = 1/L with Algorithm (C). Then,

E [F (xk)− F ∗] ≤
(

1−
√
µ

L

)k (
F (x0)− F ∗ +

µ

2
‖x0 − x∗‖2

)
+

σ2

√
µL

. (31)

We now show that with decreasing step sizes, we obtain an algorithm with optimal com-
plexity similar to (Ghadimi and Lan, 2013).

Corollary 14 (Proximal accelerated SGD with decreasing step-sizes and µ > 0)
Assume that f is µ-strongly convex and that we target an accuracy ε smaller than 2σ2/

√
µL.

First, use a constant step-size ηk = 1/L with γ0 = µ within Algorithm (C), leading to the
convergence rate (31), until E[F (xk) − F ∗] ≤ 2σ2/

√
µL. Then, we restart the optimiza-

tion procedure with decreasing step-sizes ηk = min
(

1
L ,

4
µ(k+2)2

)
and generate a new se-

quence (x̂k)k≥0. The resulting number of gradient evaluations to achieve E[F (xk)−F ∗] ≤ ε
is upper bounded by

O

(√
L

µ
log

(
F (x0)− F ∗

ε

))
+O

(
σ2

µε

)
.

The proof is provided in Appendix D.9. We note that despite the “optimal” theoretical
complexity, we have observed that Algorithm (C) with the parameters of Corollaries 13
and 14 could be relatively unstable, as shown in Section 5, due to the large radius σ2/

√
µL

of the noise region. When µ is small, such a quantity may be indeed arbitrarily larger than
F (x0)− F ∗. Instead, we have found a minibatch strategy to be more effective in practice.
When using a minibatch of size b = dL/µe, the theoretical complexity becomes the same as
SGD, given in Corollary 32, but the algorithm enjoys the benefits of easy parallelization.

Corollary 15 (Proximal accelerated SGD with with µ = 0) Assume that f is con-
vex. Consider a step-size η ≤ 1/L and run one iteration of Algorithm (A) with a stochastic
gradient estimate. Use the resulting point to initialize Algorithm (C) still with constant step
size η, and choose γ0 = 1/η. Then,

E[F (xk)− F ∗] ≤
2‖x0 − x∗‖2

(1 +K)2η
+ σ2η(K + 1)

If in addition we choose η = min

(
1
L ,
√

2‖x0−x∗‖2
σ2

1
(K+1)3/2

)
, then

E[F (xk)− F ∗] ≤
2L‖x0 − x∗‖2

(1 +K)2
+ 2‖x0 − x∗‖σ

√
2

1 +K
. (32)

The proof is given in Appendix D.10. These convergence results are relatively similar to
those obtained in (Ghadimi and Lan, 2013) for a different algorithm and is optimal for
convex functions.
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Algorithm 4 Accelerated algorithm with random-SVRG estimator

1: Input: x0 in Rp (initial point); K (number of iterations); (ηk)k≥0 (step sizes); γ0 ≥ µ;
2: Initialization: x̃0 = v0 = x0; z̄0 = ∇̃f(x0);
3: for k = 1, . . . ,K do
4: Find (δk, γk) such that

γk = (1− δk)γk–1 + δkµ and δk =

√
5ηkγk

3n
;

5: Choose

yk–1 = θkvk–1 + (1− θk)x̃k–1 with θk =
3nδk − 5µηk

3− 5µηk
;

6: Sample ik according to the distribution Q = {q1, . . . , qn};
7: Compute the gradient estimator, possibly corrupted by stochastic perturbations:

gk =
1

qikn

(
∇̃fik(yk–1)− ∇̃fik(x̃k–1)

)
+ z̄k–1;

8: Obtain the new iterate xk ← Proxηkψ [yk–1 − ηkgk] ;
9: Find the minimizer vk of the estimate sequence dk:

vk =

(
1− µδk

γk

)
vk–1 +

µδk
γk

yk–1 +
δk
γkηk

(xk − yk–1);

10: With probability 1/n, update the anchor point

x̃k = xk and z̄k = ∇̃f(x̃k);

11: Otherwise, keep the anchor point unchanged x̃k = x̃k–1 and z̄k = z̄k–1;
12: end for
13: Output: xK .

4.2 An Accelerated Algorithm with Variance Reduction

In this section, we show how to combine the previous methodology with variance reduc-
tion, and introduce Algorithm 4 based on random-SVRG. Then, we present the conver-
gence analysis, which requires controlling the variance of the estimator in a similar manner
to (Allen-Zhu, 2017), as stated in the next proposition. Note that the estimator does not
require storing the seed of the random perturbations, unlike in the previous section.

Proposition 16 (Variance reduction for random-SVRG estimator) Consider prob-
lem (1) when f is a finite sum of functions f = 1

n

∑n
i=1 fi where each fi is Li-smooth with

Li ≥ µ and f is µ-strongly convex. Then, the variance of gk defined in Algorithm 4 satisfies

ω2
k ≤ 2LQ

[
f(x̃k–1)− f(yk–1)− g>k (x̃k–1 − yk–1)

]
+ 3ρQσ̃

2.

The proof is given in Appendix D.11. Then, we extend Lemma 11 that was used in the
previous analysis to the variance-reduction setting.
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Lemma 17 (Lemma for accelerated variance-reduced stochastic optimization)
Consider the iterates provided by Algorithm 4 and call ak = 2LQηk. Then,

E[F (xk)] ≤ E [akF (x̃k–1) + (1− ak)lk(yk–1)]

+ E
[
akg̃
>
k (yk–1 − x̃k–1) +

(
Lη2

k

2
− ηk

)
‖g̃k‖2

]
+ 3ρQηkσ̃

2.

The proof of this lemma is given in Appendix D.12. With this lemma in hand, we may now
state our main convergence result.

Theorem 18 (Convergence of the accelerated SVRG algorithm) Consider the it-

erates provided by Algorithm 4 and assume that the step sizes satisfy ηk ≤ min
(

1
3LQ

, 1
15γkn

)
for all k ≥ 1. Then,

E
[
F (xk)− F ∗ +

γk
2
‖vk − x∗‖2

]
≤ Γk

(
F (x0)− F ∗ +

γ0

2
‖x0 − x∗‖2 +

3ρQσ̃
2

n

k∑
t=1

ηt
Γt

)
.

(33)

Proof Following similar steps as in the proof of Theorem 12, we have

d∗k ≥ (1− δk)d∗k–1 + δklk(yk–1)−
δ2
k

2γk
‖g̃k‖2 +

δk(1− δk)γk–1

γk
g̃>k (vk–1 − yk–1).

Assume now by induction that E[d∗k–1] ≥ E[F (x̃k–1)]− ξk–1 for some ξk–1 ≥ 0 and note that

δk ≤ 1−ak
n since ak = 2LQηk ≤ 2

3 and δk =
√

5ηkγk
3n ≤ 1

3n ≤
1−ak
n . Then,

E[d∗k] ≥ (1− δk)(E[F (x̃k–1)]− ξk–1) + δkE[lk(yk–1)]−
δ2
k

2γk
E[‖g̃k‖2]

+ E
[
g̃>k

(
δk(1− δk)γk–1

γk
(vk–1 − yk–1)

)]
≥
(

1− 1− ak
n

)
E[F (x̃k–1)] +

(
1− ak
n
− δk

)
E[F (x̃k–1)] + δkE[lk(yk–1)]−

δ2
k

2γk
E‖g̃k‖2

+ E
[
g̃>k

(
δk(1− δk)γk–1

γk
(vk–1 − yk–1)

)]
− (1− δk)ξk–1.

Note that
E[F (x̃k–1)] ≥ E[lk(x̃k–1)] ≥ E[lk(yk–1)] + E[g̃>k (x̃k–1 − yk–1)].

Then,

E[d∗k] ≥
(

1− 1− ak
n

)
E[F (x̃k–1)] +

1− ak
n

E[lk(yk–1)]−
δ2
k

2γk
E[‖g̃k‖2]

+ E
[
g̃>k

(
δk(1− δk)γk–1

γk
(vk–1 − yk–1) +

(
1− ak
n
− δk

)
(x̃k–1 − yk–1)

)]
− (1− δk)ξk–1.

We may now use Lemma 17, which gives us

22



Estimate Sequences for Stochastic Composite Optimization

E[d∗k] ≥
(

1− 1

n

)
E[F (x̃k–1)] +

1

n
E[F (xk)] +

(
1

n

(
ηk −

Lη2
k

2

)
−

δ2
k

2γk

)
E[‖g̃k‖2]

+ E
[
g̃>k

(
δk(1− δk)γk–1

γk
(vk–1 − yk–1) +

(
1

n
− δk

)
(x̃k–1 − yk–1)

)]
− ξk, (34)

with ξk = (1− δk)ξk–1 +
3ρQηkσ̃

2

n . Then, since δk =
√

5ηkγk
3n and ηk ≤ 1

3LQ
≤ 1

3L ,

1

n

(
ηk −

Lη2
k

2

)
−

δ2
k

2γk
≥ 5ηk

6n
−

δ2
k

2γk
= 0,

and the term in (34) involving ‖g̃k‖2 may disappear. Similarly, we have

δk(1− δk)γk–1

δk(1− δk)γk–1 + γk/n− δkγk
=
δkγk − δ2

kµ

γk/n− δ2
kµ

=
3nδ3

k/5ηk − δ2
kµ

3δ2
k/5ηk − δ2

kµ
=

3n− 5µηk
3− 5µηk

= θk,

and the term in (34) that is linear in g̃k may disappear as well. Then, we are left with
E[d∗k] ≥ E[F (x̃k)]− ξk. Initializing the induction requires choosing ξ0 = 0 and d∗0 = F (x0).
Ultimately, we note that E[dk(x

∗)− F ∗] ≤ (1− δk)E[dk–1(x∗)− F ∗] for all k ≥ 1, and

E
[
F (x̃k)− F ∗+

γk
2
‖x∗ − vk‖2

]
≤ E[dk(x

∗)−F ∗]+ξk ≤ Γk

(
F (x0)− F ∗+ γ0

2
‖x∗−x0‖2

)
+ξk,

and we obtain (33).

We may now derive convergence rates of our accelerated SVRG algorithm under various
settings. The proofs of the following corollaries, when not straightforward, are given in the
appendix. The first corollary simply uses Lemma 27.

Corollary 19 (Accelerated proximal SVRG - constant step size - µ > 0)

With ηk = min
(

1
3LQ

, 1
15µn

)
and γ0 = µ, the iterates produced by Algorithm 4 satisfy

• if 1
3LQ
≤ 1

15µn ,

E [F (xk)− F ∗] ≤

(
1−

√
5µ

9LQn

)k (
F (x0)− F ∗ +

µ

2
‖x0 − x∗‖2

)
+

3ρQσ̃
2√

5µLQn
;

• otherwise,

E [F (xk)− F ∗] ≤
(

1− 1

3n

)k (
F (x0)− F ∗ +

µ

2
‖x0 − x∗‖2

)
+

3ρQσ̃
2

5µn
.

The corollary uses the fact that Γk
∑k

t=1 η/Γt ≤ η/δ =
√

3nη/5µ and thus the algorithm

converges linearly to an area of radius 3ρQσ̃
2
√

3η/5µn = O

(
ρQσ̃

2 min

(
1√
nµLQ

, 1
µn

))
,

where as before, ρQ = 1 if the distribution Q is uniform. When σ̃2 = 0, the corresponding
algorithm achieves the optimal complexity for finite sums (Arjevani and Shamir, 2016).
Interestingly, we see that here non-uniform sampling may hurt the convergence guarantees
in some situations. Whenever 1

maxi Li
> 1

5µn , the optimal sampling strategy is indeed the
uniform one. Next, we show how to obtain a converging algorithm in the next corollary.
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Corollary 20 (Accelerated proximal SVRG - diminishing step sizes - µ > 0)
Assume that f is µ-strongly convex and that we target an accuracy ε smaller than B =
3ρQσ̃

2
√
η/µ with the same step size η as in the previous corollary. First, use such a constant

step-size strategy ηk = η with γ0 = µ within Algorithm 4, leading to the convergence rate of
the previous corollary, until E[F (xk)−F ∗] ≤ B. Then, we restart the optimization procedure

with decreasing step-sizes ηk = min
(
η, 12n

5µ(k+2)2

)
and generate a new sequence (x̂k)k≥0. The

resulting number of gradient evaluations to achieve E[F (xk)− F ∗] ≤ ε is upper bounded by

O

((
n+

√
nLQ
µ

)
log

(
F (x0)− F ∗

ε

))
+O

(
ρQσ

2

µε

)
.

The proof is given in Appendix D.13. Next, we study the case when µ = 0.

Corollary 21 (Accelerated proximal SVRG - µ = 0) Consider the same setting as in
Theorem 18, where f is convex and proceed in two steps. First, run one iteration of (A) with
step-size η ≤ 1

3LQ
with the gradient estimator (1/n)

∑n
i=1 ∇̃fi(x0). Second, use the resulting

point to initialize Algorithm 4 and use step size ηt = min
(

1
3LQ

, 1
15γtn

)
, with γ0 = 1/η, for

a total of K ≥ 6n log(15n) + 1 iterations. Then

E [F (xK)− F ∗] ≤ 6n‖x0 − x∗‖2

η(K + 1)2
+

3ηρQσ̃
2(K + 1)

n
.

If in addition we choose η = min
(

1
3LQ

,
√

2n‖x0−x∗‖
σ̃
√
ρQ(K+1)3/2

)
,

E [F (xK)− F ∗] ≤
18LQn‖x0 − x∗‖2

(K + 1)2
+

6σ̃‖x0 − x∗‖
√

2ρQ√
K + 1

. (35)

The proof is provided in Appendix D.14. When σ̃2 = 0 (deterministic setting), the first
part of the corollary with η = 1/3LQ gives us the same complexity as Katyusha (Allen-Zhu,
2017), and in the stochastic case, we obtain a significantly better complexity than the same
algorithm without acceleration, which was analyzed in Corollary 9.

5. Experiments

In this section, we evaluate numerically the approaches introduced in the previous sections.

5.1 Datasets, Formulations, and Methods

Following classical benchmarks in optimization methods for machine learning (see, e.g.
Schmidt et al., 2017), we consider empirical risk minimization formulations. Given training
data (ai, bi)i=1,...,n, with ai in Rp and bi in {−1,+1}, we consider the optimization problem

min
x∈Rp

1

n

n∑
i=1

φ(bia
>
i x) +

λ

2
‖x‖2,
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where φ is either the logistic loss φ(u) = log(1 + e−u), or the squared hinge loss φ(u) =
max(0, 1− u)2. Both functions are L-smooth; when the vectors ai have unit norm, we may
indeed choose L = 0.25 for the logistic loss and L = 1 for the squared hinge loss. Studying
the squared hinge loss is interesting: whereas the logistic loss has bounded gradients on Rp,
this is not the case for the squared hinge loss. With unbounded optimization domain, the
gradient norms may be indeed large in some regions of the solution space, which may lead in
turn to large variance σ2 of the gradient estimates obtained by SGD, causing instabilities.

The scalar λ is a regularization parameter that acts as a lower bound on the strong
convexity constant of the problem. We consider the parameters µ = λ = 1/10n in our
problems, which is of the order of the smallest values that one would try when doing a
parameter search, e.g., by cross-validation. For instance, this is empirically observed for
the dataset cifar-ckn described below, where a test set is available, allowing us to check that
the “optimal” regularization parameter leading to the lowest generalization error is indeed
of this order. We also report an experiment with λ = 1/100n in order to study the effect of
the problem conditioning on the method’s performance.

Following Bietti and Mairal (2017); Zheng and Kwok (2018), we consider DropOut
perturbations (Srivastava et al., 2014) to illustrate the robustness to noise of the algorithms.
DropOut consists of randomly setting to zero each entry of a data point with probability δ,
leading to the optimization problem

min
x∈Rp

1

n

n∑
i=1

Eρ
[
φ(bi(ρ ◦ ai)>x)

]
+
λ

2
‖x‖2, (36)

where ρ is a binary vector in {0, 1}p with i.i.d. Bernoulli entries, and ◦ denotes the ele-
mentwise multiplication between two vectors. We consider two DropOut regimes, with δ in
{0.01, 0.1}, representing small and medium perturbations, respectively.

We consider the following three datasets coming from different scientific fields

• alpha is from the Pascal Large Scale Learning Challenge website3 and contains n =
250 000 points in dimension p = 500.

• gene consists of gene expression data and the binary labels bi characterize two different
types of breast cancer. This is a small dataset with n = 295 and p = 8 141.

• ckn-cifar is an image classification task where each image from the CIFAR-10 dataset4

is represented by using a two-layer unsupervised convolutional neural network (Mairal,
2016). Since CIFAR-10 originally contains 10 different classes, we consider the binary
classification task consisting of predicting the class 1 vs. other classes. The dataset
contains n = 50 000 images and the dimension of the representation is p = 9 216.

For simplicity, we normalize the features of all datasets and thus we use a uniform sampling
strategy Q in all algorithms. Then, we consider several methods with their theoretical step
sizes, described in Table 1. Note that we also evaluate the strategy random-SVRG with step
size 1/3L, even though our analysis requires 1/12L, in order to get a fair comparison with the

3. http://largescale.ml.tu-berlin.de/

4. https://www.cs.toronto.edu/~kriz/cifar.html
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Algorithm step size ηk Theory Complexity O(.) Bias O(.)

SGD 1
L Cor. 31 L

µ log
(
C0
ε

)
σ2

L

SGD-d min
(

1
L ,

2
µ(k+2)

)
Cor. 32 L

µ log
(
C0
ε

)
+ σ2

µε 0

acc-SGD 1
L Cor. 13

√
L
µ log

(
C0
ε

)
σ2
√
µL

acc-SGD-d min
(

1
L ,

4
µ(k+2)2

)
Cor. 14

√
L
µ log

(
C0
ε

)
+ σ2

µε 0

acc-mb-SGD-d min
(

1
L ,

4
µ(k+2)2

)
Cor. 14 L

µ log
(
C0
ε

)
+ σ2

µε 0

rand-SVRG 1
3L Cor. 6

(
n+ L

µ

)
log
(
C0
ε

)
σ̃2

L

rand-SVRG-d min
(

1
12LQ

, 1
5µn ,

2
µ(k+2)

)
Cor. 8

(
n+ L

µ

)
log
(
C0
ε

)
+ σ̃2

µε 0

acc-SVRG min
(

1
3LQ

, 1
15µn

)
Cor. 19

(
n+

√
nL
µ

)
log
(
C0
ε

)
σ̃2

√
nµL+nµ

acc-SVRG-d min
(

1
3LQ

, 1
15µn ,

12n
5µ(k+2)2

)
Cor. 20

(
n+

√
nL
µ

)
log
(
C0
ε

)
+ σ̃2

µε 0

Table 1: List of algorithms used in the experiments, along with the step size used and
the pointer to the corresponding convergence guarantees, with C0 = F (x0) − F ∗. In the
experiments, we also use the method rand-SVRG with step size η = 1/3L, even though our
analysis requires η ≤ 1/12L. The approach acc-mb-SGD-d uses minibatches of size d

√
L/µe

and could thus easily be parallelized. Note that we potentially have σ̃ � σ.

accelerated SVRG method. In all figures, we consider that n iterations of SVRG count as 2
effective passes over the data since it appears to be a good proxy of the computational time.
Indeed, (i) if one is allowed to store the variables zki , then n iterations exactly correspond to
two passes over the data; (ii) the gradients ∇̃fi(xk–1)− ∇̃fi(x̃k–1) access the same training
point which reduces the data access overhead; (iii) computing the full gradient z̄k can
be done in practice in a much more efficient manner than computing individually the n
gradients ∇̃fi(xk), either through parallelization or by using more efficient routines (e.g.,
BLAS2 vs BLAS1 routines for linear algebra). Each experiment is conducted five times
and we always report the average of the five experiments in each figure. We also include
in the comparison two baselines from the literature: AC-SA is the accelerated stochastic
gradient descent method of Ghadimi and Lan (2013), and adam-heur is the Adam method
of Kingma and Ba (2014) with its recommended step size. As Adam is not converging, we
adopt a standard heuristics from the deep learning literature, consisting of reducing the
step size by 10 after 50 and 150 passes over the data, respectively, which performs much
better than using a constant step size in practice.

5.2 Evaluation of Algorithms without Perturbations

First, we study the behavior of all methods when σ̃2 = 0. We report the corresponding
results in Figures 1, 2, and 3. Since the problem is deterministic, we can check that the value
F ∗ we consider is indeed optimal by computing a duality gap using Fenchel duality. For SGD
and random-SVRG, we do not use any averaging strategy, which we found to empirically
slow down convergence, when used from the start; knowing when to start averaging is indeed
not easy and requires heuristics which we do not evaluate here.
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Figure 1: Optimization curves without perturbations when using the logistic loss and the
parameter λ = 1/10n. We plot the value of the objective function on a logarithmic scale
as a function of the effective passes over the data (see main text for details). Best seen in
color by zooming on a computer screen. Note that the method Adam is not converging.
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Figure 2: Same experiment as in Figure 1 with λ = 1/100n.
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Figure 3: Same experiment as in Figure 1 with squared hinge loss instead of logistic. ACC-
SA and acc-SGD-d were unstable for this setting due to the large size of the noise region
σ2/
√
µL =

√
10nσ2 and potentially large gradients of the loss function over the optimization

domain.

From these experiments, we obtain the following conclusions:

• Acceleration for SVRG is effective on the datasets gene and ckn-cifar except on al-
pha, where all SVRG-like methods perform already well. This may be due to strong
convexity hidden in alpha leading to a regime where acceleration does not occur—
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that is, when the complexity is O(n log(1/ε)), which is independent of the condition
number. Note that this algorithm is now implemented in the open-source Cyanure
toolbox (Mairal, 2019)5.

• Acceleration is more effective when the problem is badly conditioned. When λ =
1/100n, acceleration brings several orders of magnitude improvement in complexity.

• Accelerated SGD is unstable with the squared hinge loss. During the initial phase with
constant step size 1/L, the expected primal gap is in a region of radius O(σ2/

√
µL) ≈√

nσ2, which is potentially huge, causing large gradients and instabilities.

• Accelerated minibatch SGD performs best among the SGD methods and is competitive
with SVRG in the low precision regime. The performance of Adam on these datasets
is inconsistent; it performs best among SGD methods on alpha, but is significantly
worse on ckn-cifar. Note also that AC-SA performs in general similarly to acc-SGD-d.

5.3 Evaluation of Algorithms with Perturbations

We now consider the same setting as in the previous section, but we add DropOut per-
turbations with rate δ in {0.01, 0.1}. As predicted by theory, all approaches with constant
step size do not converge. Therefore, we only report the results for decreasing step sizes
in Figures 4, 5, and 6. We evaluate the loss function every 5 data passes and we estimate
the expectation (36) by drawing 5 random perturbations per data point, resulting in 5n
samples. The optimal value F ∗ is estimated by letting the methods run for 1000 epochs
and selecting the best point found as a proxy of F ∗.

The conclusions of these experiments are the following:

• accelerated minibatch SGD performs the best among SGD approaches in general
except on alpha where Adam performs best.

• accelerated SVRG performs better than SVRG in general, or they achieve the same
performance. As in the deterministic case, the gains are typically more important in
ill-conditioned cases.

• accelerated SVRG performs better than SGD approaches in the low perturbation
regime δ = 0.01 and only on the alpha dataset when δ = 0.1. Otherwise, the methods
perform similarly.

• not reported on these figures, high perturbation regimes, e.g., δ = 0.3 make variance
reduction less useful since the noise due to data sampling becomes potentially of the
same order as σ̃2; Yet, benefits are still seen on the alpha dataset, whereas SGD
approaches perform slightly better than SVRG approaches on ckn-cifar and gene.

6. Discussion

In this paper, we have studied simple stochastic gradient-based rules with or without vari-
ance reduction, and presented an accelerated algorithm dedicated to finite-sums minimiza-
tion under the presence of stochastic perturbations. The approach we propose achieves

5. http://julien.mairal.org/cyanure/
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Figure 4: Optimization curves with DropOut rate δ when using the logistic loss and λ =
1/10n. We plot the value of the objective function on a logarithmic scale as a function of
the effective passes over the data. Best seen in color by zooming on a computer screen.
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Figure 5: Same setting as in Figure 4 but with λ = 1/100n.
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Figure 6: Same setting as in Figure 4 but with the squared hinge loss.

the classical optimal worst-case complexities for finite-sum optimization when there is no
perturbation (Arjevani and Shamir, 2016), and exhibits an optimal dependency in the noise
variance σ̃2 for convex and strongly convex problems.

Our work is based on stochastic variants of estimate sequences introduced by Nesterov
(1983, 2004). The framework leads naturally to many algorithms with relatively generic
proofs of convergence, where convergence is proven at the same time as the algorithm’s
design. With iterate averaging techniques inspired by Ghadimi and Lan (2013), we show
that a large class of variance-reduction stochastic optimization methods can be made robust
to stochastic perturbations. Estimate sequences also naturally lead to several accelerated
algorithms, some of them we did not present in this paper. For instance, it is possible to
show that replacing in (29) the lower bound ψ(xk) + ψ′(xk)

>(x − xk) by ψ(x) itself—in a
similar way as we proceeded to obtain iteration (B) from iteration (A)—also leads to an
accelerated algorithm with similar guarantees as (C).

Possibilities offered by estimate sequences are large, but our framework also admits a few
limitations, paving the way for future work. In particular, our results are currently limited
to Euclidean metrics—meaning that our convergence rates typically depend on quantities
involving the Euclidean norm (e.g., strong convexity or L-smooth inequalities), and one
may expect extensions of our work to other metrics such as Bregman distances. Estimate
sequences admit indeed known extensions to such metrics, and can also deal with higher-
order smoothness assumptions than Lipschitz continuity of the gradient (Baes, 2009)—e.g.,
cubic regularization (Nesterov and Polyak, 2006). We leave such directions for the future.

Another limitation we encountered was the inability to propose robust accelerated vari-
ants of SAGA, MISO, or SDCA based on our stochastic estimate sequences framework. To
address this problem, after the first version of this manuscript was made publicly available,
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we investigated in (Kulunchakov and Mairal, 2019b) a significantly different approach based
on the Catalyst method (Lin et al., 2018), allowing us to accelerate stochastic first-order
methods in a generic fashion, at the price of a logarithmic factor in the optimal complexity—
in other words, we were able to obtain for SAGA, MISO, and SDCA a complexity close
to (5) up to a logarithmic factor in the condition number LQ/µ. We believe that estimate
sequences may be useful to obtain the optimal complexity without this logarithmic term,
but the construction would be non-trivial and would rely on a different lower bound than
the one we used in Section 4.

Finally, we note that the optimal complexities we have obtained with diminishing step-
sizes for strongly convex objectives can also be achieved by using instead a constant step-size
combined with mini-batch and restart strategies. As a constant step-size yields a linear rate
of convergence to a noise-dominated region of radius O(σ̃2), we can indeed use the restart
procedure described in Section 3 of (Kulunchakov and Mairal, 2019b), which would yield
the optimal complexity as well.

Acknowledgments

This work was supported by the ERC grant SOLARIS (number 714381) and by ANR 3IA
MIAI@Grenoble Alpes, (ANR-19-P3IA-0003). The authors would like to thank Anatoli
Juditsky and the anonymous reviewers for interesting discussions that greatly improved the
quality of this manuscript.

Appendix A. Useful Mathematical Results

A.1 Simple Results about Convexity and Smoothness

The next three lemmas are classical upper and lower bounds for smooth or strongly convex
functions (Nesterov, 2004).

Lemma 22 (Quadratic upper bound for L-smooth functions) Let f : Rp → R be
L-smooth. Then, for all x, x′ in Rp,

|f(x′)− f(x)−∇f(x)>(x′ − x)| ≤ L

2
‖x− x′‖22.

Lemma 23 (Lower bound for strongly convex functions) Let f : Rp → R be a µ-
strongly convex function. Let z be in ∂f(x) for some x in Rp. Then, the following inequality
holds for all x′ in Rp:

f(x′) ≥ f(x) + z>(x′ − x) +
µ

2
‖x− x′‖22.

Lemma 24 (Second-order growth property) Let f : Rp → R be a µ-strongly convex
function and X ⊆ Rp be a convex set. Let x∗ be the minimizer of f on X . Then, the
following condition holds for all x in X :

f(x) ≥ f(x∗) +
µ

2
‖x− x∗‖22.
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Lemma 25 (Useful inequality for smooth and convex functions) Consider an
L-smooth µ-strongly convex function f defined on Rp and a parameter β in [0, µ]. Then,
for all x, y in Rp,

‖∇f(x)−∇f(y)− β(x− y)‖2 ≤ 2L(f(x)− f(y)−∇f(y)>(x− y)).

Proof Let us define the function φ(x) = f(x)− β
2 ‖x‖

2, which is (µ− β)-strongly convex.
It is then easy to show that φ is (L− β)-smooth, according to Theorem 2.1.5 in (Nesterov,
2004): indeed, for all x, y in Rp,

φ(x) = f(x)− β

2
‖x‖2 ≤ f(y) +∇f(y)>(x− y) +

L

2
‖x− y‖2 − β

2
‖x‖2

= φ(y) +∇φ(y)>(x− y) +
L− β

2
‖x− y‖2,

and again according to Theorem 2.1.5 of (Nesterov, 2004),

‖∇φ(x)−∇φ(y)‖2 ≤ 2L(φ(x)− φ(y)−∇φ(y)>(x− y))

= 2L

(
f(x)− f(y)−∇f(y)>(x− y)− β

2
‖x− y‖2

)
≤ 2L

(
f(x)− f(y)−∇f(y)>(x− y)

)
.

A.2 Useful Results to Select Step Sizes

In this section, we present basic mathematical results regarding the choice of step sizes.
The proofs of the first two lemmas are trivial by induction.

Lemma 26 (Relation between (δk)k≥0 and (Γk =
∏k
t=1(1− δt))k≥0) Consider the fol-

lowing cases:

• δk = δ (constant). Then Γk = (1− δ)k;

• δk = 1/(k + 1). Then, Γk = δk = 1
(k+1) ;

• δk = 2/(k + 2). Then, Γk = 2
(k+1)(k+2) ;

• δk = min(1/(k + 1), δ). then,

Γk =

{
(1− δ)k if k < k0 with k0 =

⌈
1
δ − 1

⌉
Γk0−1

k0
k+1 otherwise.

• δk = min(2/(k + 2), δ). then,

Γk =

{
(1− δ)k if k < k0 with k0 =

⌈
2
δ − 2

⌉
Γk0−1

k0(k0+1)
(k+1)(k+2) otherwise.

32



Estimate Sequences for Stochastic Composite Optimization

Lemma 27 (Simple relation) Consider a sequence of weights (δk)k≥0 in (0, 1). Then,

k∑
t=1

δt
Γt

+ 1 =
1

Γk
where Γt :=

t∏
i=1

(1− δi). (37)

Lemma 28 (Convergence rate of Γk) Consider the same quantities defined in the pre-
vious lemma and consider the sequence γk = (1 − δk)γk–1 + δkµ = Γkγ0 + (1 − Γk)µ with
γ0 ≥ µ, and assume the relation δk = γkη. Then, for all k ≥ 0,

Γk ≤ min

(
(1− µη)k ,

1

1 + γ0ηk

)
. (38)

Besides,

• when γ0 = µ, then Γk = (1− µη)k.

• when µ = 0, Γk = 1
1+γ0ηk

.

Proof First, we have for all k, γk ≥ µ such that δk ≥ ηµ, which leads then to Γk ≤
(1− ηµ)k. Besides, γk ≥ Γkγ0 and thus Γk = (1 − δk)Γk–1 ≤ (1− Γkγ0η) Γk–1. Then,
1

Γk
(1− Γkγ0η) ≥ 1

Γk–1
, and

1

Γk
≥ 1

Γk–1
+ γ0η ≥ 1 + γ0ηk,

which is sufficient to obtain (38). Then, the fact that γ0 = µ leads to Γk = (1 − µη)k is
trivial, and the fact that µ = 0 yields Γk = 1

1+γ0ηk
can be shown by induction. Indeed, the

relation is true for Γ0 and then, assuming the relation is true for k − 1, we have for k ≥ 1,

Γk = (1− δk)Γk–1 = (1− ηγk)Γk–1 = (1− ηγ0Γk)Γk–1 ≥ (1− ηγ0Γk)
1

1 + γ0η(k–1)
,

which leads to Γk = 1
1+γ0ηk

.

Lemma 29 (Accelerated convergence rate of Γk) Consider the same quantities de-
fined in Lemma 27 and consider the sequence γk = (1 − δk)γk–1 + δkµ = Γkγ0 + (1 − Γk)µ
with γ0 ≥ µ, and assume the relation δk =

√
γkη. Then, for all k ≥ 0,

Γk ≤ min

(
(1−√µη)k ,

4

(2 +
√
γ0ηk)2

)
.

Besides, when γ0 = µ, then Γk = (1−√µη)k.

Proof see Lemma 2.2.4 of (Nesterov, 2004).
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A.3 Averaging Strategies

Next, we show a generic convergence result and an appropriate averaging strategy given a
recursive relation between quantities acting as Lyapunov function.

Lemma 30 (Averaging strategy) Assume that there is a sequence (xk)k≥1 generated
by an algorithm that minimizes a convex function F , and that there exist non-negative
sequences (Tk)k≥0, (δk)k≥1 in (0, 1), (βk)k≥1 and a scalar α > 0 such that for all k ≥ 1,

δk
α
E[F (xk)− F ∗] + Tk ≤ (1− δk)Tk–1 + βk, (39)

where the expectation is taken with respect to any random parameter used by the algorithm.
Then,

E[F (xk)− F ∗] +
α

δk
Tk ≤

αΓk
δk

(
T0 +

k∑
t=1

βt
Γt

)
where Γk :=

k∏
t=1

(1− δt). (40)

Generic averaging strategy. For any point x̂0, consider the averaging sequence (x̂k)k≥0,

x̂k = Γk

(
x̂0 +

k∑
t=1

δt
Γt
xt

)
= (1− δk)x̂k–1 + δkxk (for k ≥ 1),

then,

E[F (x̂k)− F ∗] + αTk ≤ Γk

(
F (x̂0)− F ∗ + αT0 + α

k∑
t=1

βt
Γt

)
. (41)

Uniform averaging strategy. Assume that δk = 1
k+1 and consider the average sequence

x̂k = 1
k

∑k
i=1 xi. Then,

E[F (x̂k)− F ∗] + αTk ≤
α

k

(
T0 +

k∑
t=1

βt
Γt

)
. (42)

Proof Given that Tk ≤ (1−δk)Tk–1 +βk, we obtain (39) by simply unrolling the recursion.
To analyze the effect of the averaging strategies, divide now (39) by Γk:

δk
αΓk

E[F (xk)− F ∗] +
Tk
Γk
≤ Tk–1

Γk–1
+
βk
Γk
.

Sum from t = 1 to k and notice that we have a telescopic sum:

1

α

k∑
t=1

δt
Γt

E[F (xt)− F ∗] +
Tk
Γk
≤ T0 +

k∑
t=1

βt
Γt
. (43)

Then, add (1/α)E[F (x̂0)− F ∗] on both sides and multiply by αΓk:

k∑
t=1

δtΓk
Γt

E[F (xt)− F ∗] + ΓkE[F (x̂0)− F ∗] + αTk ≤ Γk

(
αT0 + E[F (x̂0)− F ∗] + α

k∑
t=1

βt
Γt

)
.

By exploiting the relation (37), we may then use Jensen’s inequality and we obtain (41).
Consider now the specific case δk = 1

k+1 , which yields Γk = 1
k+1 . Multiply then Eq. (43)

by α/k and use Jensen’s inequality; we obtain Eq. (42).
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Appendix B. Relation Between Iteration (B) and MISO/SDCA

In this section, we derive explicit links between the proximal MISO algorithm (Lin et al.,
2015), a primal version of SDCA (Shalev-Shwartz, 2016), and iteration (B) when used with
the gradient estimator (15) without stochastic perturbations. Under the big data condition
L/µ ≤ n, consider indeed β = µ, constant step-sizes ηk = η = 1

nµ , γk = µ, and a uniform
sampling distribution Q; then, we obtain the following algorithm

x̄k ← (1− µη)x̄k–1 + µηxk–1 − η
(
∇fik(xk−1)− zikk−1 + z̄k−1

)
and xk = Proxψ

µ
[x̄k]

z̄k = z̄k−1 +
1

n
(zikk − z

ik
k−1) and zikk = ∇fik(xk−1)− µxk−1,

with z̄0 = x̄0 = 0. Then, since µη = 1
n , it is easy to show that in fact z̄k = µx̄k for all k ≥ 0.

This is then exactly the proximal MISO algorithm (see Bietti and Mairal, 2017). For the
relation between primal variants of SDCA and MISO, see page 4 and Equation (3) of Bietti
and Mairal (2017).

Appendix C. Recovering Classical Results for Proximal SGD

In this section, we present several corollaries of Theorem 2 to recover classical results for
proximal variants of the stochastic gradient descent method. Throughout the section, we
assume that the gradient estimates have variance bounded by σ2:

ω2
k = E[‖gk −∇f(xk–1)‖2] ≤ σ2.

Convergence results for the deterministic case σ2 = 0 can be also recovered naturally from
the corollaries. We start by applying Theorem 2 with a constant step-size strategy ηk = 1/L,
which shows convergence to a noise-dominated region of radius σ2/L. In all the corollaries
below, we use the notation from Theorem 2.

Corollary 31 (Proximal variants of SGD with constant step-size, µ > 0) Assume
that f is µ-strongly convex, choose γ0 = µ and ηk = 1/L with Algorithm (A) or (B). Then,
for any point x̂0,

E [F (x̂k)− F ∗ + dk(x
∗)− d∗k] ≤

(
1− µ

L

)k
(F (x̂0)− F ∗ + d0(x∗)− d∗0) +

σ2

L
, (44)

when using the averaging strategy from Theorem 2. Note that dk(x
∗) − d∗k ≥

µ
2‖xk − x

∗‖2
for all k ≥ 0 with equality for Algorithm (A).

Next, we show how to obtain converging algorithms by using decreasing step sizes.

Corollary 32 (Proximal variants of SGD with decreasing step-sizes, µ > 0)
Assume that f is µ-strongly convex and that we target an accuracy ε smaller than 2σ2/L.
First, use a constant step-size ηk = 1/L with γ0 = µ within Algorithm (A) or (B), using x̂0 =
x0, leading to the convergence rate (44), until E[F (x̂k)−F ∗+dk(x∗)−d∗k] ≤ 2σ2/L. Then, we
restart the optimization procedure, using the previously obtained x̂k, xk as new initial points,
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with decreasing step-sizes ηk = min
(

1
L ,

2
µ(k+2)

)
, and generate new sequences (x̂′k, x

′
k)k≥0.

The total number of iterations to achieve E[F (x̂′k)− F ∗] ≤ ε is upper bounded by

O

(
L

µ
log

(
F (x0)− F ∗ + d0(x∗)− d∗0

ε

))
+O

(
σ2

µε

)
. (45)

Note that d0(x∗)− d∗0 = µ
2‖x0 − x∗‖2 ≤ F (x0)− F ∗ for Algorithm (A).

Proof Given the linear convergence rate (44), the number of iterations of the first the
constant step-size strategy is upper bounded by the left term of (45). Then, after restarting
the algorithm, we may apply Theorem 2 with E[F (x̂0)− F ∗ + d0(x∗)− d∗0] ≤ 2σ2/L. With
γ0 = µ, we have γk = µ for all k ≥ 0, and the rate of Γk is given by Lemma 26, which yields

for k ≥ k0 =
⌈

2L
µ − 2

⌉
,

E[F (x̂′k)− F ∗] ≤ Γk

(
2σ2

L
+ σ2

k∑
t=1

δtηt
Γt

)

= Γk

2σ2

L
+
σ2

L

k0−1∑
t=1

δt
Γt

+ σ2
k∑

t=k0

2δt
Γtµ(t+ 2)


=

k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−1

2σ2

L
+
σ2

L
Γk0−1

k0−1∑
t=1

δt
Γt

)
+ σ2

k∑
t=k0

2δtΓk
Γtµ(t+ 2)

=
k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−1

2σ2

L
+ (1− Γk0−1)

σ2

L

)
+ σ2

k∑
t=k0

2δtΓk
Γtµ(t+ 2)

≤ k0(k0 + 1)

(k + 1)(k + 2)

2σ2

L
+ σ2 1

(k + 1)(k + 2)

 k∑
t=k0+1

4(t+ 1)(t+ 2)

µ(t+ 2)2


≤ k0

(k + 1)(k + 2)

4σ2

µ
+

4σ2

µ(k + 2)
,

where the second inequality uses the fact that µ
2‖x0 − x∗‖2 ≤ F (x0)− F ∗ ≤ 2σ2

L , and then
we use Lemmas 26 and 27. The term on the right is of order O(σ2/µk) whereas the term
on the left becomes of the same order or smaller whenever k ≥ k0 = O(L/µ). This leads to
the desired iteration complexity.

We may now study the case µ = 0, first with a constant step size. The next corollary
consists of simply applying the uniform averaging strategy of Lemma 30 to Proposition 1,
noting that δk = 1

k+1 for all k ≥ 0 if µ = 0 and γ0 = 1/η.

Corollary 33 (Proximal variants of SGD with constant step size, µ = 0) Assume
that f is convex, choose a constant step size ηk = η ≤ 1

L with Algorithm (A) or (B) with
γ0 = 1/η. Then,

E [F (x̂k)− F ∗] ≤
d0(x∗)− d∗0

k
+ ησ2, (46)

where x̂k = 1
k

∑k
i=1 xi. Note that d0(x∗)− d∗0 = 1

2η‖x0 − x∗‖2 for Algorithm (A).
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The noise dependency is now illustrated for Algorithm (A) in the next corollary, obtained
in a finite horizon setting.

Corollary 34 (Proximal variants of SGD with µ = 0, finite horizon) Consider the
same setting as in the previous corollary. Assume that we have a budget of K iterations for
Algorithm (A). Choose a constant step size

ηk = min

(
1

L
,

√
T0

Kσ2

)
with T0 =

1

2
‖x0 − x∗‖2.

Then, with γ0 = 1/η and when using the averaging strategy from Corollary 33,

E[F (x̂K)− F ∗] ≤ LT0

K
+ 2σ

√
T0

K
. (47)

This corollary is obtained by optimizing the right side of (46) with respect to η under the
constraint η ≤ 1/L. Considering both cases η = 1/L and η =

√
T0/Kσ2, it is easy to check

that we have (47) in all cases. Whereas this last result is not a practical one since the
step size depends on unknown quantities, it shows that our analysis is nevertheless able to
recover the optimal noise-dependency in O(σ

√
T0/K), (see Nemirovski et al., 2009).

Appendix D. Proofs of the Main Results

D.1 Proof of Proposition 3

Proof The proof borrows a large part of the analysis of Xiao and Zhang (2014) for control-
ling the variance of the gradient estimate in the SVRG algorithm. First, we note that all
the gradient estimators we consider may be written in the generic form (15), with β = 0 for
SAGA or SVRG. Then, we will write ∇̃fik(xk–1) = ∇fik(xk–1)+ζk, where ζk is a zero-mean
variable with variance σ̃2 drawn at iteration k, and zik = uik + ζik for all k, i, where ζik has
zero-mean with variance σ̃2 and was drawn during the previous iterations. Let us denote

by ω2
k = E[‖gk − f(xk–1)‖2] and let us introduce the quantity Ak = E

[
1

(qikn)2
‖ζk‖2

]
. Then,

ω2
k = E

∥∥∥∥ 1

qikn
(∇̃fik(xk–1)− βxk–1 − zikk–1) + z̄k–1 + βxk–1 −∇f(xk–1)

∥∥∥∥2

= E
∥∥∥∥ 1

qikn
(∇fik(xk–1)− βxk–1 − zikk–1) + z̄k–1 + βxk–1 −∇f(xk–1)

∥∥∥∥2

+ E
[

1

(qikn)2
‖ζk‖2

]
≤ E

∥∥∥∥ 1

qikn
(∇fik(xk–1)− βxk–1 − zikk–1)

∥∥∥∥2

+Ak

=
1

n

n∑
i=1

1

qin
E
[
‖∇fi(xk–1)− βxk–1 − zik–1‖2

]
+Ak

=
1

n

n∑
i=1

1

qin
E
[
‖∇fi(xk–1)− βxk–1 − ui∗ + ui∗ − zik–1‖2

]
+Ak

≤ 2

n

n∑
i=1

1

qin
E
[
‖∇fi(xk–1)− βxk–1 − ui∗‖2

]
+

2

n

n∑
i=1

1

qin
E
[
‖zik–1 − ui∗‖2

]
+Ak
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≤ 2

n

n∑
i=1

1

qin
E
[
‖∇fi(xk–1)−∇fi(x∗)−β(xk–1−x∗)‖2

]
+

2

n

n∑
i=1

1

qin
E
[
‖uik–1−ui∗‖2

]
+ 3Ak

≤ 4

n

n∑
i=1

Li
qin

E
[
fi(xk–1)−fi(x∗)−∇fi(x∗)>(xk–1−x∗)

]
+

2

n

n∑
i=1

1

qin
E
[
‖uik–1−ui∗‖2

]
+3Ak

≤ 4LQE
[
f(xk–1)− f(x∗)−∇f(x∗)>(xk–1 − x∗)

]
+

2

n

n∑
i=1

1

qin
E
[
‖uik–1 − ui∗‖2

]
+ 3Ak,

(48)

where the first inequality uses the relation E[‖X − E[X]‖2] ≤ E[‖X‖2] for all random
variable X, taking here expectation with respect to the index ik ∼ Q and conditioning
on Fk–1; the second inequality uses the relation ‖a+b‖2 ≤ 2‖a‖2 +2‖b‖2; the last inequality
uses Lemma 25.

We have now two possibilities to control the quantity Ak related to ζk. First, we may
simply upper bound it as follows

Ak = E
[

1

(qikn)2
‖ζk‖2

]
≤ ρQσ̃2.

Then, since x∗ minimizes F , we have 0 ∈ ∇f(x∗)+∂ψ(x∗) and thus −∇f(x∗) is a subgradi-
ent in ∂ψ(x∗). By using as well the convexity inequality ψ(x) ≥ ψ(x∗)−∇f(x∗)>(x− x∗),
we have

f(xk–1)− f(x∗)−∇f(x∗)>(xk–1 − x∗) ≤ F (xk–1)− F ∗, (49)

leading finally to (21).
The second possibility is to relate Ak to σ̃2

∗, under the assumption that each fi may be

written as fi(x) = Eξ
[
f̃i(x, ξ)

]
, i ∈ [1, . . . , n] with f̃i(., ξ) Li-smooth with Li ≥ µ for all ξ.

Then,

E
[

1

(qikn)2
‖ζk‖2

]
= E

[
1

(qikn)2

∥∥∥∇̃fik(xk−1)−∇fik(xk−1)
∥∥∥2
]

=E
[

1

(qikn)2

∥∥∥∇̃fik(xk−1)−∇̃fik(x∗)+∇̃fik(x∗)−∇fik(x∗)+∇fik(x∗)−∇fik(xk−1)
∥∥∥2
]

≤ E
[

1

(qikn)2

[∥∥∥∇̃fik(xk−1)− ∇̃fik(x∗) + ∇̃fik(x∗)−∇fik(x∗)
∥∥∥2
]]

≤ 2E
[

1

(qikn)2

[∥∥∥∇̃fik(xk−1)− ∇̃fik(x∗)
∥∥∥2

+
∥∥∥∇̃fik(x∗)−∇fik(x∗)

∥∥∥2
]]

≤ 4E
[

Lik
(qikn)2

(fik(xk−1)− fik(x∗)− 〈∇fik(x∗), xk−1 − x∗〉)
]

+ 2E
[

1

(qikn)2
σ̃2
ik,∗

]
≤ 4LQE

[
1

qikn
(fik(xk−1)− fik(x∗)− 〈∇fik(x∗), xk−1 − x∗〉)

]
+ 2ρQσ̃

2
∗

= 4LQ (f(xk−1)− f(x∗)− 〈∇f(x∗), xk−1 − x∗〉) + 2ρQσ̃
2
∗, (50)

where we use the relation E[‖X−E[X]‖2] ≤ E[‖X‖2] for the first inequality, the well-known
inequality for a convex norm ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 for the second inequality and the
definition σ̃∗ = 1

n

∑n
i=1 σ̃

2
i,∗.
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Then, we may combine (50) with (48) and use (49) to obtain (22).

D.2 Proof of Proposition 4

Proof To make the notation more compact, we call

Fk = E[F (xk)− F ∗], Dk = E[dk(x
∗)− d∗k] and Ck = E

[
1

n

n∑
i=1

1

qin
‖uik − ui∗‖2

]
.

Then, according to Proposition 3, we have

ω2
k ≤ 4LQFk–1 + 2Ck–1 + 3ρQσ̃

2,

and according to Proposition 1,

δkFk +Dk ≤ (1− δk)Dk–1 + 4LQηkδkFk–1 + 2ηkδkCk–1 + 3ρQηkδkσ̃
2. (51)

Then, we note that both for the SVRG and SAGA/MISO/SDCA strategies, we have (with
β = 0 for SVRG),

E[‖uik − ui∗‖2] =

(
1− 1

n

)
E[‖uik–1 − ui∗‖2] +

1

n
E‖∇fi(xk)−∇fi(x∗) + β(xk − x∗)‖2.

By taking a weighted average, this yields

Ck ≤
(

1− 1

n

)
Ck–1 +

1

n2

n∑
i=1

1

qin
E
[
‖∇fi(xk)−∇fi(x∗)− β(xk − x∗)‖2

]
≤
(

1− 1

n

)
Ck–1 +

1

n2

n∑
i=1

2Li
qin

E
[
fi(xk)− fi(x∗)−∇fi(x∗)>(xk − x∗)

]
≤
(

1− 1

n

)
Ck–1 +

2LQFk
n

,

where the second inequality comes from Lemma 25 and the last one uses similar arguments
as in the proof of Proposition 3. Then, we add a quantity βkCk on both sides of the
relation (51) with some βk > 0 that we will specify later:(

δk − βk
2LQ
n

)
Fk +Dk + βkCk

≤ (1− δk)Dk–1 +

(
βk

(
1− 1

n

)
+ 2ηkδk

)
Ck–1 + 4LQηkδkFk–1 + 3ρQηkδkσ̃

2,

and then choose βk
n = 5

2ηkδk, which yields

δk (1− 5LQηk)Fk+Dk+βkCk ≤ (1−δk)Dk–1+βk

(
1− 1

5n

)
Ck–1+4LQηkδkFk–1+3ρQηkδkσ̃

2.
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Remember that τk = min
(
δk,

1
5n

)
, notice that the sequences (βk)k≥0, (ηk)k≥0 and (δk)k≥0

are non-increasing and note that 4 ≤ 5(1− 1
5n) for all n ≥ 1. Then,

δk (1− 10LQηk)Fk + 5LQηkδk +Dk + βkCk︸ ︷︷ ︸
Tk

≤ (1− τk) (Dk–1 + βk–1Ck–1 + 5LQηk–1δk–1Fk–1) + 3ρQηkδkσ̃
2,

which immediately yields (23) with the appropriate definition of Tk, and by noting that
(1− 10LQηk) ≥ 1

6 .

D.3 Proof of Theorem 5

Proof The first part of the theorem is a direct application of Lemma 30 to Proposition 4,
by noting that (39) holds—when replacing the notation δt by τt in (39)—since for a fixed
number of iterations K, we have the relation τkδK

6τK
E[F (xk) − F ∗] + Tk ≤ (1− τk)Tk–1 +

3ρQηkδkσ̃
2 for all k ≤ K. Indeed, δk = τkδk

τk
≥ τkδK

τK
since the ratio δt/τt is non-increasing.

Then, we may now prove (25):

T0 = 5LQη0δ0(F (x0)− F ∗) + d0(x∗)− d∗0 +
5η0δ0

2

1

n

n∑
i=1

1

qin
‖ui0 − ui∗‖2

≤ 5LQη0δ0(F (x0)− F ∗) + d0(x∗)− d∗0

+
5η0δ0

2

1

n

n∑
i=1

2Li
qin

(fi(x0)− fi(x∗)−∇fi(x∗)>(x0 − x∗))

≤ 5LQη0δ0(F (x0)− F ∗) + d0(x∗)− d∗0 + 5η0δ0LQ(f(x0)− f(x∗)−∇f(x∗)>(x0 − x∗))
≤ 10LQη0δ0(F (x0)− F ∗) + d0(x∗)− d∗0,

where the first inequality uses Lemma 25, and the second one uses the definition of LQ,
whereas the last one uses (49).

D.4 Proof of Corollary 6

Proof First, notice that δk = ηkγk = µ
12LQ

and that α = 6τk
δk

. Then, we apply Theorem 5

and obtain

E [F (x̂k)− F ∗ + αTk] ≤ Θk

(
F (x̂0)− F ∗ + αT0 +

18ρQτkσ̃
2

δk

k∑
t=1

ηtδt
Θt

)

= Θk

(
F (x̂0)− F ∗ + αT0 +

3ρQσ̃
2

2LQ

k∑
t=1

τt
Θt

)

≤ Θk (F (x̂0)− F ∗ + αT0) +
3ρQσ̃

2

2LQ
.
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D.5 Proof of Corollary 8

Proof Since the convergence rate (27) applies for the first stage with a constant step size,
the number of iterations to ensure the condition E[F (x̂k)− F ∗ + 6Tk] ≤ 24ηρQσ̃

2 is upper
bounded by K with

K = O

((
n+

LQ
µ

)
log

(
F (x0)− F ∗ + d0(x∗)− d∗0

ε

))
,

when using the upper-bound (25) on T0. Then, we restart the optimization procedure,
using x′0 = xK and x̂′0 = x̂′K , assuming from now on that E[F (x̂′0)− F ∗ + 6T ′0] ≤ 24ηρQσ̃

2,

with decreasing step sizes ηk = min
(

2
µ(k+2) , η

)
. Then, since δk = µηk ≤ 1

5n , we have that

τk = δk for all k, and Theorem 5 gives us—note that here Γk = Θk—

E
[
F (x̂′k)− F ∗

]
≤ Γk

(
F (x̂′0)− F ∗ + 6T ′0 + 18ρQσ̃

2
k∑
t=1

ηtδt
Γt

)
with Γk =

k∏
t=1

(1− δt).

Then, after taking the expectation with respect to the output of the first stage,

E
[
F (x̂′k)− F ∗

]
≤ Γk

(
24ρQησ̃

2 + 18ρQσ̃
2

k∑
t=1

ηtδt
Γt

)
.

Denote now by k0 the largest index such that 2
µ(k0+2) ≥ η and thus k0 = d2/(µη) − 2e.

Then, according to Lemma 26, for k ≥ k0,

E [F (x̂k)− F ∗] ≤ Γk

24ρQησ̃
2 + 18ρQησ̃

2
k0−1∑
t=1

δt
Γt

+ 18ρQσ̃
2

k∑
t=k0

2δt
µΓt(t+ 2)


≤ k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−124ρQησ̃

2 + 18ηρQσ̃
2Γk0−1

k0−1∑
t=1

δt
Γt

)

+ 36ρQσ̃
2

k∑
t=k0

δtΓk
µΓt(t+ 2)

≤ k0(k0 + 1)

(k + 1)(k + 2)
24ηρQσ̃

2 + 36ρQσ̃
2

k∑
t=k0

(t+ 1)(t+ 2)

µ(k + 1)(k + 2)(t+ 2)2

≤ k0η

k + 2
24ρQσ̃

2 +
36ρQσ̃

2

µ(k + 2)
= O

(
ρQσ̃

2

µk

)
,

which gives the desired complexity.
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D.6 Proof of Corollary 9

Proof Let us call x′0 the point obtained by running one iteration of (A) with step-size
η ≤ 1

12LQ
and gradient estimator (1/n)

∑n
i=1 ∇̃fi(x0), whose variance is σ̃2/n. Then, since

δ1 = Γ1 = 1/2, according to Theorem 2, we have

E
[
F (x′0)− F ∗ +

1

2η
‖x′0 − x∗‖2

]
≤ 1

2η
‖x0 − x∗‖2 +

ησ̃2

n
. (52)

Then, we consider the main run of the algorithm, and apply Theorem 5, replacing x0 by
x′0. With the chosen setup, we have δk = 1

k+1 and since K ≥ 5n, we have δK = τK , such
that (24) becomes

E [F (x̂K)− F ∗] ≤ ΘK

(
F (x′0)− F ∗ + 6T0 + 18ρQησ̃

2
k∑
t=1

δt
Θt

)
,

and from (25), we have

T0 ≤ 10LQη(F (x′0)− F ∗) +
1

2η
‖x′0 − x∗‖2 ≤

5

6
(F (x′0)− F ∗) +

1

2η
‖x′0 − x∗‖2,

which yields, combined with (52),

E[F (x′0)− F ∗ + 6T0] ≤ 6E
[
F (x′0)− F ∗ +

1

2η
‖x′0 − x∗‖2

]
≤ 3

η
‖x0 − x∗‖2 +

6ησ̃2

n
.

Note that Lemma 26 gives us that Θk = (1 − 1/5n)5n−1 5n
k+1 ≤

3n
k+1 for k ≥ 5n and since

1 +
∑K

t=1
τt
Θt

= 1
ΘK

according to Lemma 27,

E [F (x̂K)− F ∗] ≤ ΘK

(
3

η
‖x0 − x∗‖2 +

6ησ̃2

n
+ 18ρQησ̃

2
K∑
t=1

δt
Θt

)
,

≤ 9n

η(K + 1)
‖x0 − x∗‖2 + 6ησ̃2ρQΘK

(
1

n
+ 3

K∑
t=1

τt
Θt

+ 3

5n−1∑
t=1

δt
Θt

)

≤ 9n

η(K + 1)
‖x0 − x∗‖2 + 6ησ̃2ρQ

(
ΘK

n
+ 3(1−ΘK) +

15n

K + 1

5n−1∑
t=1

δt

)

≤ 9n

η(K + 1)
‖x0 − x∗‖2 + 18ησ̃2ρQ

(
1 +

5n

K + 1
log(5n)

)
≤ 9n

η(K + 1)
‖x0 − x∗‖2 + 36ησ̃2ρQ.

It remains to optimize it over η to get the left side of (28).
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D.7 Proof of Lemma 10

Proof Let us assume that the relation yk–1 = (1 − θk–1)xk–1 + θk–1vk–1 holds and let us
show that it also holds for yk. Since the estimate sequences dk are quadratic functions, we
have

vk = (1− δk)
γk–1

γk
vk–1 +

µδk
γk

yk–1 −
δk
γk

(gk + ψ′(xk))

= (1− δk)
γk–1

γk
vk–1 +

µδk
γk

yk–1 −
δk
γkηk

(yk–1 − xk)

= (1− δk)
γk–1

γkθk–1
(yk–1 − (1− θk–1)xk–1) +

µδk
γk

yk–1 −
δk
γkηk

(yk–1 − xk)

= (1− δk)
γk–1

γkθk–1
(yk–1 − (1− θk–1)xk–1) +

µδk
γk

yk–1 −
1

δk
(yk–1 − xk)

=

(
(1− δk)γk–1

γkθk–1
+
µδk
γk
− 1

δk

)
yk–1 −

(1− δk)γk–1(1− θk–1)

γkθk–1
xk–1 +

1

δk
xk

=

(
1 +

(1− δk)γk–1(1− θk–1)

γkθk–1
− 1

δk

)
yk–1 −

(1− δk)γk–1(1− θk–1)

γkθk–1
xk–1 +

1

δk
xk.

Then note that θk–1 = δkγk–1
γk–1+δkµ

and thus, γk–1(1−θk–1)
γkθk–1

= 1
δk

, and

vk = xk–1 +
1

δk
(xk − xk–1).

Then, we note that xk − xk–1 = δk
1−δk (vk − xk) and we are left with

yk = xk + βk(xk − xk–1) =
βkδk

1− δk
vk +

(
1− βkδk

1− δk

)
xk.

Then, it is easy to show that

βk =
(1− δk)δk+1γk

δk(γk+1 + δk+1γk)
=

(1− δk)δk+1γk
δk(γk + δk+1µ)

=
(1− δk)θk

δk
,

which allows us to conclude that yk = (1− θk)xk + θkvk since the relation holds trivially for
k = 0.

D.8 Proof of Lemma 11

Proof

E[F (xk)] = E[f(xk) + ψ(xk)]

≤ E
[
f(yk−1) +∇f(yk−1)>(xk − yk−1) +

L

2
‖xk − yk−1‖2 + ψ(xk)

]
= E [Ak] + E

[
(∇f(yk−1)− gk)>(xk − yk−1)

]
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= E [Ak] + E
[
(∇f(yk−1)− gk)>xk

]
= E [Ak] + E

[
(∇f(yk−1)− gk)>(xk − wk)

]
≤ E [Ak] + E [‖∇f(yk−1)− gk‖‖xk − wk‖]
≤ E [Ak] + E

[
ηk‖∇f(yk−1)− gk‖2

]
≤ E [Ak] + ηkω

2
k,

where Ak = f(yk−1) + g>k (xk − yk−1) + L
2 ‖xk − yk−1‖2 + ψ(xk) and wk = Proxηkψ[yk−1 −

ηk∇f(yk−1)]. The first inequality is due to the L-smoothness of f (Lemma 22); then, the
next three relations exploit the fact that E[(∇f(yk−1) − gk)>z] = 0 for all z that is deter-
ministic with respect to the algebra Fk−1; the third inequality uses the non-expansiveness
of the proximal operator. Using the definition (29) for lk, we proceed with

E[F (xk)] ≤ E
[
f(yk–1) + g>k (xk − yk–1) +

L

2
‖xk − yk–1‖2 + ψ(xk)

]
+ ηkω

2
k,

= E
[
lk(yk–1) + g̃>k (xk − yk–1) +

L

2
‖xk − yk–1‖2

]
+ ηkω

2
k,

≤ E [lk(yk–1)] +

(
Lη2

k

2
− ηk

)
E
[
‖g̃k‖2

]
+ ηkω

2
k,

where we use the fact that xk = yk–1 − ηkg̃k and g̃k = gk + ψ′(xk).

D.9 Proof of Corollary 14

Proof The proof is similar to that of Corollary 32 for unaccelerated SGD. The first stage

with constant step-size requires O
(√

L
µ log

(
F (x0)−F ∗

ε

))
iterations. Then, we restart the

optimization procedure, and assume that E
[
F (x0)− F ∗ + µ

2‖x
∗ − x0‖2

]
≤ 2σ2
√
µL

. With

the choice of parameters, we have γk = µ and δk =
√
γkηk = min

(√
µ
L ,

2
k+2

)
. We may

then apply Theorem 12 where the value of Γk is given by Lemma 26. This yields for

k ≥ k0 =
⌈
2
√

L
µ − 2

⌉
,

E[F (xk)−F ∗] ≤ Γk

(
E
[
F (x0)− F ∗ +

µ

2
‖x0 − x∗‖2

]
+ σ2

k∑
t=1

ηt
Γt

)

≤ Γk

 2σ2

√
µL

+
σ2

L

k0−1∑
t=1

1

Γt
+ σ2

k∑
t=k0

4

Γtµ(t+ 2)2


=

k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−1

2σ2

√
µL

+
σ2

L
Γk0−1

k0−1∑
t=1

1

Γt

)
+ σ2

k∑
t=k0

4Γk
Γtµ(t+ 2)2

=
k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−1

2σ2

√
µL

+ (1− Γk0−1)
σ2

√
µL

)
+ σ2

k∑
t=k0

4Γk
Γtµ(t+ 2)2
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≤ k0(k0 + 1)

(k + 1)(k + 2)

2σ2

√
µL

+ σ2 1

(k + 1)(k + 2)

 k∑
t=k0+1

4(t+ 1)(t+ 2)

µ(t+ 2)2


≤ k0

(k + 1)(k + 2)

4σ2

µ
+

4σ2

µ(k + 2)
≤ 8σ2

µ(k + 2)
,

where we use Lemmas 26 and 27. This leads to the desired iteration complexity.

D.10 Proof of Corollary 15

Proof Let us call x′0 the point obtained by running on step of iteration (A), which according
to Theorem 2 satisfies, with γ0 = 1/η,

E
[
F (x′0)− F ∗ +

1

2η
‖x′0 − x∗‖2

]
≤ 1

2η
‖x0 − x∗‖2 + ησ2.

Then, we note that according to Lemma 29, we have

Γk ≤
4(

2 + k
√
γ0η
)2 ≤ 4

γ0η (1 + k)2 ,

and we apply Theorem 12 to obtain the relation

E[F (xK)− F ∗] ≤ ΓKE
[
F (x′0)− F ∗ +

1

2η
‖x′0 − x∗‖2

]
+ σ2ηΓK

K∑
t=1

1

Γt

≤ ΓK

(
‖x0 − x∗‖2

2η
+ ησ2

)
+ σ2ηK

≤ 2

(1 +K)2η
‖x0 − x∗‖2 + σ2η(K + 1).

Optimizing with respect to η under the constraint η ≤ 1/L gives (32).

D.11 Proof of Proposition 16

Proof

ω2
k = E

∥∥∥∥ 1

qikn

(
∇̃fik(yk–1)− ∇̃fik(x̃k–1)

)
+ ∇̃f(x̃k–1)−∇f(yk–1)

∥∥∥∥2

= E
∥∥∥∥ 1

qikn

(
∇fik(yk–1) + ζk − ζ ′k −∇fik(x̃k–1)

)
+∇f(x̃k–1) + ζ̄k–1 −∇f(yk–1)

∥∥∥∥2

,

≤ E
∥∥∥∥ 1

qikn
(∇fik(yk–1)−∇fik(x̃k–1)) +∇f(x̃k–1) + ζ̄k–1 −∇f(yk–1)

∥∥∥∥2

+ 2ρQσ̃
2,

where ζk and ζ ′k are perturbations drawn at iteration k, and ζ̄k–1 was drawn last time x̃k–1

was updated. Then, by noticing that for any deterministic quantity Y and random variable

45



Kulunchakov and Mairal

X, we have E[‖X −E[X]− Y ‖2] ≤ E[‖X‖2] + ‖Y ‖2, taking expectation with respect to the
index ik ∼ Q and conditioning on Fk–1, we have

ω2
k ≤ E

∥∥∥∥ 1

qikn
(∇fik(yk–1)−∇fik(x̃k–1))

∥∥∥∥2

+ E[‖ζ̄k–1‖2] + 2ρQσ̃
2

≤ 1

n

n∑
i=1

1

qin
E ‖∇fi(yk–1)−∇fi(x̃k–1)‖2 + 3ρQσ̃

2

≤ 1

n

n∑
i=1

2Li
qin

E
[
fi(x̃k–1)− fi(yk–1)−∇fi(yk–1)>(x̃k–1 − yk–1)

]
+ 3ρQσ̃

2

≤ 1

n

n∑
i=1

2LQE
[
fi(x̃k–1)− fi(yk–1)−∇fi(yk–1)>(x̃k–1 − yk–1)

]
+ 3ρQσ̃

2

= 2LQE
[
f(x̃k–1)− f(yk–1)−∇f(yk–1)>(x̃k–1 − yk–1)

]
+ 3ρQσ̃

2

= 2LQE
[
f(x̃k–1)− f(yk–1)− g>k (x̃k–1 − yk–1)

]
+ 3ρQσ̃

2,

(53)

where the second inequality uses the upper-bound E[‖ζ̄‖2] = σ2

n ≤ ρQσ
2, and the third one

uses Theorem 2.1.5 in (Nesterov, 2004).

D.12 Proof of Lemma 17

Proof We can show that Lemma 11 still holds and thus,

E[F (xk)] ≤ E [lk(yk–1)] +

(
Lη2

k

2
− ηk

)
E
[
‖g̃k‖2

]
+ ηkω

2
k.

≤ E
[
lk(yk–1) + akf(x̃k–1)− akf(yk–1) + akg

>
k (yk–1 − x̃k–1)

]
+ E

[(
Lη2

k

2
− ηk

)
‖g̃k‖2

]
+ 3ρQηkσ̃

2,

Note also that

lk(yk–1) + f(x̃k–1)− f(yk–1) = ψ(xk) + ψ′(xk)
>(yk–1 − xk) + f(x̃k–1)

≤ ψ(x̃k–1)− ψ′(xk)>(x̃k–1 − xk) + ψ′(xk)
>(yk–1 − xk) + f(x̃k–1)

= F (x̃k–1) + ψ′(xk)
>(yk–1 − x̃k–1).

Therefore, by noting that lk(yk–1) + akf(x̃k–1)− akf(yk–1) ≤ (1− ak)lk(yk–1) + akF (x̃k–1) +
akψ

′(xk)
>(yk–1 − x̃k–1), we obtain the desired result.

D.13 Proof of Corollary 20

Proof The proof is similar to that of Corollary 14 for accelerated SGD. The first stage with

constant step-size η requires O

((
n+

√
nLQ
µ

)
log
(
F (x0)−F ∗

ε

))
iterations. Then, we restart

the optimization procedure, and assume that E [F (x0)− F ∗] ≤ B with B = 3ρQσ̃
2
√
η/µn.
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With the choice of parameters, we have γk = µ and δk =
√

5µηk
3n = min

(√
5µη
3n ,

2
k+2

)
.

We may then apply Theorem 18 where the value of Γk is given by Lemma 26. This yields

for k ≥ k0 =
⌈√

12n
5µη − 2

⌉
,

E[F (xk)− F ∗] ≤ Γk

(
E
[
F (x0)− F ∗ +

µ

2
‖x0 − x∗‖2

]
+

3ρQσ̃
2

n

k∑
t=1

ηt
Γt

)

≤ Γk

2B +
3ρQσ̃

2η

n

k0−1∑
t=1

1

Γt
+

3ρQσ̃
2

n

k∑
t=k0

12n

5Γtµ(t+ 2)2


=

k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−12B +

3ρQσ̃
2η

n

k0−1∑
t=1

Γk0−1

Γt

)
+

36ρQσ̃
2

5µ

k∑
t=k0

Γk
Γt(t+ 2)2

=
k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−12B + (1− Γk0−1)

3ρQσ̃
2η

nδk0

)
+

36ρQσ̃
2

5µ

k∑
t=k0

Γk
Γt(t+ 2)2

≤ 2k0(k0 + 1)B

(k + 1)(k + 2)
+

8ρQσ̃
2

µ(k + 1)(k + 2)

 k∑
t=k0+1

(t+ 1)(t+ 2)

(t+ 2)2


≤ 2k0B

k + 2
+

8ρQσ̃
2

µ(k + 2)
,

where we use Lemmas 26 and 27. Then, note that k0B ≤ 6ρQσ̃
2/µ and we obtain the right

iteration complexity.

D.14 Proof of Corollary 21

Proof Let us call x′0 the point obtained by running one iteration of (A) with step-size
η ≤ 1

3LQ
and gradient estimator (1/n)

∑n
i=1 ∇̃fi(x0), whose variance is σ̃2/n. Following

the proof of Corollary 9, the relation (52) holds. Then, we consider the main run of the
algorithm, and apply Theorem 18, replacing x0 by x′0, which yields, combined with (52)

E [F (xk)− F ∗] ≤ Γk

(
F (x′0)− F ∗ +

1

2η
‖x′0 − x∗‖2 +

3ρQσ̃
2

n

k∑
t=1

ηt
Γt

)

≤ Γk

(
1

2η
‖x′0 − x∗‖2 + η

σ̃2

n
+

3ρQσ̃
2

n

k∑
t=1

ηt
Γt

)
.

Then, we note that δk = min

(√
5Γk
3n ,

1
3n

)
such that Γk =

(
1− 1

3n

)k
for k ≤ k0, where k0

is the index such that
(
1− 1

3n

)k0+1 ≤ 1
15n <

(
1− 1

3n

)k0 , which gives us (3n− 1) log(15n) ≤
k0 ≤ 3n(log(15n)). For k > k0, we are in a constant step size regime, and we may then use
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Lemma 29 to obtain

Γk = Γk0
4(

2 + (k − k0)

√
5γk0η

3n

)2 ≤ Γk0
4

(k − k0)2 5Γk0
3n

≤ 3n

(k − k0)2
.

Then, noticing that K ≥ 2k0 + 1, we have K − k0 ≥ (K + 1)/2, and we conclude that

E [F (xK)− F ∗] ≤ 3n‖x′0 − x∗‖2

2η(K − k0)2
+

3ηρQσ̃
2(K + 1)

n
≤ 6n‖x′0 − x∗‖2

η(K + 1)2
+

3ηρQσ̃
2(K + 1)

n
.

Then, it remains to optimize with respect to η, under the constraint η ≤ 1/(3LQ), which
provides (35).
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Dmitry Kovalev, Samuel Horváth, and Peter Richtarik. Dont jump through hoops and
remove those loops: Svrg and katyusha are better without the outer loop. In Algorithmic
Learning Theory, pages 451–467, 2020.

A. Kulunchakov and J. Mairal. Estimate sequences for variance-reduced stochastic compos-
ite optimization. In Proceedings of the International Conferences on Machine Learning
(ICML), 2019a.

A. Kulunchakov and J. Mairal. A generic acceleration framework for stochastic composite
optimization. In Advances in Neural Information Processing Systems (NeurIPS), 2019b.

49



Kulunchakov and Mairal

G. Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1):365–397, 2012.

G. Lan and Y. Zhou. An optimal randomized incremental gradient method. Mathematical
Programming, 171(1–2):167–215, 2018a.

G. Lan and Y. Zhou. Random gradient extrapolation for distributed and stochastic opti-
mization. SIAM Journal on Optimization, 28(4):2753–2782, 2018b.

L. Lei, C. Ju, J. Chen, and M. I. Jordan. Non-convex finite-sum optimization via SCSG
methods. In Advances in Neural Information Processing Systems (NIPS), 2017.

H. Lin, J. Mairal, and Z. Harchaoui. A Universal Catalyst for First-Order Optimization.
In Advances in Neural Information Processing Systems (NIPS), 2015.

H. Lin, J. Mairal, and Z. Harchaoui. Catalyst acceleration for first-order convex optimiza-
tion: from theory to practice. Journal of Machine Learning Research (JMLR), 18(212):
1–54, 2018.

Q. Lin, X. Chen, and J. Peña. A sparsity preserving stochastic gradient methods for sparse
regression. Computational Optimization and Applications, 58(2):455–482, 2014.

Z. Lu and L. Xiao. On the complexity analysis of randomized block-coordinate descent
methods. Mathematical Programming, 152(1):615–642, 2015.

J. Mairal. Incremental majorization-minimization optimization with application to large-
scale machine learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

J. Mairal. End-to-end kernel learning with supervised convolutional kernel networks. In
Advances in Neural Information Processing Systems (NIPS), 2016.

J. Mairal. Cyanure: An open-source toolbox for empirical risk minimization for Python,
C++, and soon more. preprint arXiv:1912.08165, 2019.

J. Mairal, F. Bach, and J. Ponce. Sparse modeling for image and vision processing. Foun-
dations and Trends in Computer Graphics and Vision, 8(2-3):85–283, 2014.
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