
HAL Id: hal-02495301
https://hal.inria.fr/hal-02495301v3

Submitted on 4 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On soft errors in the Conjugate Gradient method:
sensitivity and robust numerical detection -revised

Emmanuel Agullo, Siegfried Cools, Emrullah Fatih-Yetkin, Luc Giraud, Nick
Schenkels, Wim Vanroose

To cite this version:
Emmanuel Agullo, Siegfried Cools, Emrullah Fatih-Yetkin, Luc Giraud, Nick Schenkels, et al.. On
soft errors in the Conjugate Gradient method: sensitivity and robust numerical detection -revised.
[Research Report] RR-9330, Inria Bordeaux Sud-Ouest. 2020, pp.43. �hal-02495301v3�

https://hal.inria.fr/hal-02495301v3
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
93

30
--

FR
+E

N
G

RESEARCH
REPORT
N° 9330
September 2020

Project-Team HiePACS

On soft errors in the
Conjugate Gradient
method: sensitivity and
robust numerical
detection - revised
Emmanuel Agullo, Siegfried Cools, Emrullah Fatih-Yetkin, Luc
Giraud, Nick Schenkels, Wim Vanroose

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vielle Tour
33405 Talence Cedex

On soft errors in the Conjugate Gradient
method: sensitivity and robust numerical

detection - revised

Emmanuel Agullo∗, Siegfried Cools†, Emrullah Fatih-Yetkin‡,
Luc Giraud∗, Nick Schenkels∗, Wim Vanroose†

Project-Team HiePACS

Research Report n° 9330 — September 2020 — 43 pages

Abstract: The conjugate gradient (CG) method is the most widely used iterative scheme for
the solution of large sparse systems of linear equations when the matrix is symmetric positive
definite. Although more than sixty year old, it is still a serious candidate for extreme-scale
computation on large computing platforms. On the technological side, the continuous shrinking
of transistor geometry and the increasing complexity of these devices affect dramatically their
sensitivity to natural radiation, and thus diminish their reliability. One of the most common effects
produced by natural radiation is the single event upset which consists in a bit-flip in a memory cell
producing unexpected results at application level. Consequently, the future computing facilities
at extreme scale might be more prone to errors of any kind including bit-flip during calculation.
These numerical and technological observations are the main motivations for this work, where we
first investigate through extensive numerical experiments the sensitivity of CG to bit-flips in its
main computationally intensive kernels, namely the matrix-vector product and the preconditioner
application. We further propose numerical criteria to detect the occurrence of such soft errors; we
assess their robustness through extensive numerical experiments.

Key-words: Soft-error, bit-flip, Conjugate Gradient method, numerical detection, sensitivity,
robustness, exascale

∗ Inria, France
† Applied Mathematics Group, University of Antwerpen, Belgium
‡ Kadir Has University, Turkey

Sur les soft-erreurs dans la méthode du Gradient Conjugué:
sensibilité et détection numérique robuste - révision

Résumé : La méthode du gradient conjugue (CG) est la méthode itérative la plus utilisées
pour résoudre des ssytèmes linéaires creux de grande taille lorsque la matrice est symétrique
définie positive. Bien que vieille de de soixante ans, cette méthode reste une candidate sérieuse
pour être mise en œuvre pour la résolution de très grands systèmes linéaires sur des plateformes
de calcul de très grande taille. Sur le plan technologique, la réduction permanente de la taille et la
complexité croissante des composantes électroniques de ces calculateurs affecte dramatiquement
leur sensibilité aux radiations cosmiques ce qui réduit leur fiabilité. L’un des effets les plus
courants des rayonnements naturels est la perturbation due à un événement unique qui consiste
en un retournement de bit dans une cellule mémoire produisant des résultats inattendus au
niveau de l’application. Par conséquent, les futures installations informatiques à très grande
échelle pourraient être plus sujettes à des erreurs de toute sorte. y compris le basculement de bit
pendant le calcul. Ces observations numériques et technologiques sont les suivantes les principales
motivations de ce travail, pour lequel nous étudions d’abord par le biais d’études approfondies et
approfondies la sensibilité de la CG aux sauts de bits dans ses principaux domaines d’application.
à forte intensité de calcul, à savoir le produit matrice-vecteur et le produit application du
préconditionneur. Nous proposons en outre des critères numériques pour détecter l’apparition de
tels défauts ; nous évaluons leur robustesse à travers des expériences numériques approfondies.

Mots-clés : Soft-erreur, bit-flip, Gradient Conjugué, détection numérique, sensibilité, ro-
bustesse, exascale

On soft errors in the Conjugate Gradient method 3

Contents
1 Introduction 4

2 Background 6
2.1 Preconditioned Conjugate Gradient algorithm . 6
2.2 Double Modular Redundancy . 6
2.3 Checksum techniques . 7
2.4 Round-off and soft error models . 8

2.4.1 Round-off errors . 8
2.4.2 Soft errors . 8

3 Study of the sensitivity of PCG to soft errors 10
3.1 Propagation of bit-flips in PCG . 10
3.2 Bit-flip injection protocol . 10
3.3 Numerical experiments . 14

3.3.1 Effect of the bit-flip value . 14
3.3.2 Soft errors in the matrix-vector product 14
3.3.3 Soft errors in the preconditioner application 14
3.3.4 Concluding remarks . 20

4 Numerical criteria for detecting soft errors in PCG 20
4.1 Numerical criteria . 20

4.1.1 Residual gap-based detection . 20
4.1.2 α-based detection . 21

4.2 Numerical experiments . 21
4.2.1 Checksum-based detection . 22
4.2.2 Residual gap-based detection . 23
4.2.3 α-based detection . 25
4.2.4 Concluding remarks . 25

5 Conclusion and perspectives 29

A Sensitivity of late bit-flips 32

B Checksum cost function 37

C Checksum false positives 40

D Residual gap-based detection 41

E α-based detection for the matrix-vector product 43

RR n° 9330

4 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

Foreword
This report is an updated version of [2] but based on a fully redesigned experimental framework
to allow for reproducible science and considered a larger set matrices that are also of larger sizes.
All the results presented in the revision correspond to a new set of experiments while the general
observations remain unchanged. We would like to point out that three Jupyter notebooks have
been made available on the HAL-repository as additional material. The first one illustrates how
to generate the raw data, the second one how this raw data can be analysed, and the third one
how we generated the figures displayed in the paper. We would also like to make the raw data
used to generate the final results presented in the paper available, but they are too large to be
stored on the HAL-repository. This foreword will be updated to indicate the location of the data
once we will have found a sustainable solution.

1 Introduction
The flexibility offered by Von Neumann machines for programming complex algorithms motivated
the quest for the design of many innovative numerical algorithms in the late 40’s. Computers
being considered as unreliable machines, it was not rare that the presentation of those algorithms
was accompanied with advanced numerical considerations for distinguishing “normal rounding-off
errors” due to digital computation from “errors of the computers”, using the expressions from [19],
which introduced the Conjugate Gradient (CG) algorithm, a seminal paper of that unprecedented
fertile period. This numerical technique is still a method of choice for solving large sparse linear
systems of equations involving a symmetric positive definite (SPD) matrix. While the study of
numerical correctness since led to a continuous, productive research field [20], the tremendous
progress in hardware design progressively reduced the interest of detecting soft errors (using
the modern expression for characterizing errors that do not lead to an immediate failure of a
program). At some extra energy cost, hardware mechanisms such as Error Correcting Codes
(ECC) were indeed able to correct most soft errors so that, from a numerical design point of view,
they could almost be considered as – and indeed often were – a non-existent problem.

The advent of distributed-memory platforms and networks of heterogeneous workstations in
the 90’s once again drew the attention of the computational science community to faults leading
to errors, as long running parallel executions were regularly aborted because of the crash or the
non response of only a single processing unit. For this reason, early high-level parallel libraries for
programming these parallel platforms such as the Parallel Virtual Machine (PVM) [13] proposed
primitives (hostfailentry() in the revision 3 of the PVM standard for instance) allowing
an application to design tailored schemes for recovering from such hard errors (using modern
terminology). From the numerical perspective, one major breakthrough was the introduction of
algorithm-based fault tolerance (ABFT) schemes [22] to detect and correct errors when matrix
operations such as addition, multiplication, scalar product, LU-decomposition, and transposition
are performed using multiple processor systems. The proposed method could “detect and correct
any failure within a single processor in a multiple processor system”, using the words of the authors.
On the other hand, the operating system community developed efficient checkpoint-restart (CPR)
mechanisms. Together with the progress of interconnect network technologies, their ability to
handle those faults in a transparent way for the application once again allowed programmers to
view (parallel) computers as reliable computing platforms. As a consequence, in spite of solid
proposals (such as [4]), the most widely employed interface for programming distributed-memory
machines today, the Message Passing Interface (MPI) standard, does not provide support allowing
applications to design customized resilient schemes, even in its revision 3.1 [11], the most recent
standard at the time of writing the present article.

Inria

http:

On soft errors in the Conjugate Gradient method 5

As the size of transistors continues to reduce and the number of components continues to
increase, soft errors in supercomputers become more and more common. In the fault tolerance
literature, many techniques have been proposed to detect and/or correct soft errors. The best-
known general technique to detect soft errors is the double modular redundancy (DMR) approach.
This approach either uses two different pieces of hardware to perform the same computation at
the same time or performs the same computation on the same hardware twice, then compares
the two results to detect whether errors occur or not. The most well-known general technique to
correct single soft errors is the triple modular redundancy (TMR) approach. TMR either performs
the same computation on three different pieces of hardware or uses the same hardware to perform
the same computation three times, then compares and selects the results obtained consistently at
least twice as the correct result. While DMR and TMR are very general, their overhead is high -
up to 100% overhead to detect errors and 200% overhead to correct errors. To protect memory
against corruption, ECC memory has been widely used by many computer vendors. Although
today’s ECC memory can detect and correct bit-flips in memory, it brings significant overhead in
space, time, and energy. Furthermore, ECC memory is not able to handle computational (i.e.,
arithmetic) errors that are caused by faults in logic units. New types of unreliable hardware, such
as in-memory computers [12] (which are no longer Von Neumann machines), are emerging as
serious competitors (or, more likely, accelerators) to traditional processors, as they are expected
to achieve a much higher energy efficiency.

As the preconditioned version of CG, PCG, remains the Krylov subspace method of choice
for solving large sparse SPD linear systems, the goal of this paper is to study its sensitivity to
soft errors and propose numerical remedies to detect them. Although much truncated, the above
very brief journey through half a dozen decades of the modern computing era shows that our
concern for the reliability of machines has been slowly but constantly evolving. This motivates
us to characterize these errors from a high-level point of view, disregarding low-level hardware
details, may the underneath silicon be an exascale machine, the initial motivation for this work,
or, potentially, an embedded computer in high altitude [35], or any other type of unreliable digital
computer (such as [12]). We therefore only assume that soft errors may occur, corrupting data
or computation, without the hardware or system detecting them and notifying the application
that an error occurred. We call this type of soft error, “silent data corruption” (SDC) (after [9]),
which may cause a simulation to silently return an incorrect answer that does not reflect any
sensitivity of the solution to the input data and consequently could lead to a misleading analysis
of the computed outcome. We focus on such errors in the present study and we refer the reader
to [18] and the references therein for a recent overview on the resilience and fault tolerance issues
in HPC.

The first contribution of this paper is to study the sensitivity of PCG to such soft errors.
We mainly focus on its main computational kernels, i.e., the matrix-vector product and the
preconditioner application. In particular, we investigate the sensitivity to soft errors for various
space and time locations.

The second contribution is the proposition of two numerical criteria to detect these soft errors.
The PCG method is a very sophisticated and elegant numerical scheme that has many properties
induced by the symmetric positive definiteness of the matrix A. Unfortunately, most characteristic
properties are no longer valid in finite precision calculation. On the other hand, a lot of work has
been devoted to study PCG in finite precision [23, 24]. We therefore consider some of the finite
precision results to define a first possible numerical soft error detection mechanism based on the
residual gap. We consider an additional criterion, which was already proposed in the original
paper on CG [19, Thm 5.5], based on a bound (as opposed to a strict equality), hence expected
to be less prone to defection due to finite precision calculation. We study the respective quality
of both these criteria and show that, combined together, they are extremely efficient to detect

RR n° 9330

6 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

soft errors, occurring not only in the matrix-vector product and preconditioner application, but
also in all the operations involved in PCG.

The rest of the paper is organized as follows. In Section 2, we briefly present the PCG
algorithm, we review the main classical error detection techniques and we detail round-off and
soft error modelling. In Section 3, we then study the sensitivity of PCG to soft errors occurring
in its main computational kernels that are the matrix-vector product and the preconditioner
application. In particular, we investigate the dependency on the bit and temporal location of
the error. In Section 4, we propose numerical criteria to detect soft errors in those two kernels
and assess their robustness through extensive numerical experiments. Finally, we summarize the
contributions of this paper in Section 5 and draw up some perspectives for future works.

2 Background

2.1 Preconditioned Conjugate Gradient algorithm
PCG is a Krylov subspace method for solving a large linear system

Ax = b

where A ∈ Rn×n is symmetric positive definite (SPD), the right-hand side b ∈ Rn and the solution
x ∈ Rn. In exact arithmetic, the method converges within at most n iterations. In practice
with finite precision calculation, this property does not hold and preconditioning [28, 33] is often
needed to accelerate the convergence. While in the context of Krylov subspace methods, PCG is
a sophisticated, elegant and powerful numerical algorithm [24, 28, 33], its algorithm looks fairly
simple and can be written as depicted in Algorithm 1, where M defines the preconditioner.

Algorithm 1 Preconditioned Conjugate Gradient
1: r0 := b−Ax0; u0 = M−1r0; p0 := u0; γ0 := rT0 u0
2: for i = 0, . . . do
3: si := Api
4: αi := γi/s

T
i pi

5: xi+1 := xi + αipi
6: ri+1 := ri − αisi
7: ui+1 := M−1ri+1

8: γi+1 := rTi+1ui+1

9: βi+1 := γi+1/γi
10: pi+1 := ui+1 + βi+1pi
11: end for

2.2 Double Modular Redundancy
Although potentially costly, DMR is certainly the best-known general agnostic technique for
detecting soft errors. It consists in duplicating both the operations and data, and checking the
equality of the output of the redundant calculations. For classical PCG, soft error detection with
such a full duplication technique can be implemented as described in Algorithm 2.

This duplication process is simple, generic and effective. However, the price for this detection
technique may not be affordable with respect to computational and storage costs. Level-1 BLAS
operations have a moderate computational cost so that their duplication may be considered

Inria

On soft errors in the Conjugate Gradient method 7

Algorithm 2 Preconditioned Conjugate Gradient with DMR detection
1: r10 := b−Ax0; p10 := r10; r20 := b−Ax0; p20 := r20
2: for i = 0, . . . do
3: s1 := Ap1i ; s2 := Ap2i ; check(s1 == s2)
4: α1 := (r1i , r

1
i)/(s

1, p1i) ; α2 := (r2i , r
2
i)/(s

2, p2i) ; check(α1 == α2)
5: x1i+1 := x1i + α1p1i ; x2i+1 := x2i + α2p2i ; check(x1i+1 == x2i+1)
6: r1i+1 := r1i − α1s1 ; r2i+1 := r2i − α2s2; check(r1i+1 == r2i+1)
7: u1i+1 := M−11r1i+1; u2i+1 := M−12r2i+1; check(u1i+1 == u2i+1)
8: β1 := (r1i+1, u

1
i+1)/(r1i , u

1
i) ; β2 := (r2i+1, u

2
i+1)/(r2i , u

2
i) ; check(β1 == β2)

9: p1i+1 := u1i+1 + β1p1i ; p2i+1 := u2i+1 + β2p2i ; check (p1i+1 == p2i+1)
10: end for

acceptable under certain conditions. On the other hand, duplication of the two most compu-
tationally intensive kernels that are the matrix-vector product and preconditioning may not
be affordable. Alternatively, checksum techniques can be employed to protect and check the
correctness of these last two kernels.

2.3 Checksum techniques

Detecting soft errors in matrix calculation with checksum techniques was first proposed in [22] and
further investigated for applications with iterative methods in [30]. To protect a matrix-vector
product the main idea relies on the following equality that holds in exact arithmetic for any
vector v ∈ Rn:

IT (Av) = (ITA)v

where I is the vector of Rn with all entries equal to one. Each entry ` of the row vector cT = (ITA)
is the checksum of the `th column of A that can be securely computed before starting PCG. At
each PCG iteration, checking the correctness of the matrix-vector product reduces to test the
equality:

cT pi−1 = IT si−1.

The left-hand side requires an extra dot-product calculation and the right-hand side is simply the
sum of all the entries of the output vector si−1. Because of the symmetry of A the checksum
vector can also be computed by c = AI so that the idea can be applied in a matrix-free context
as well as for the preconditioner application calculation.

In finite precision arithmetic, there may not be a bitwise equality between cT pi−1 and IT si−1

because of the non-associativity of the sum in presence of round-off errors [20]. To assess the
correctness of the matrix-vector product, we cannot simply check the bitwise equality and instead
need to consider that the calculation is correct if

|cT pi−1 − IT si−1|
|cT pi−1|

≤ τ, (1)

where the threshold τ has to be safely defined. To prevent the occurrence of too many false
detection instances (referred to as false-positives), the threshold τ needs to be chosen large
enough. However, τ cannot be chosen arbitrarily large; otherwise actual errors would be missed.
Consequently, the checksum-based detection methods need some tuning of the threshold τ with
respect to round-off effects to achieve effectiveness, as further discussed in Section 4.2.1.

RR n° 9330

8 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

Figure 2.1: IEEE 754 double-precision binary floating-point format.

2.4 Round-off and soft error models

2.4.1 Round-off errors

Round-off errors are conservatively modelled with the IEEE 754 specification. In particular, we
rely on the IEEE 754 double-precision binary floating-point format, referred to as binary64 and
illustrated in Figure 2.1. Let us denote (bi)

63
i=0 the sequence of bits defining a double-precision

number d where (bi)
51
i=0 defines the mantissa/fraction, (bi)

62
i=52 the exponent and b63 the sign so

that

d = (−1)b632e−1023 (1 +m) ,with e =

62∑
i=52

bi2
i−52 and m =

51∑
i=0

bi2
i−52. (2)

The accuracy and stability of numerical algorithms in the presence of round-off errors is still
an intense field of research [20] and we will rely on such finite precision results to define a first
possible soft error detection mechanism in Section 4.1.1.

2.4.2 Soft errors

In addition to round-off errors (the “normal rounding-off errors” in [19]), soft errors (the “errors
of the computers” in [19]) may occur. As discussed in the introduction of the present paper, a
brief journey through the modern computing era motivates us to characterize soft errors from
a high-level point of view, disregarding low-level hardware details. While there is a substantial
literature for characterizing errors based on their hardware characteristics, much less effort has
been devoted to characterize them from a high-level point of view. However, quoted in [27], Rees
argued back in 1997 that “failure is a matter of function only [and is thus] related to purpose,
not to whether an item is physically intact or not”. M. Hoemmen and M. Heroux proposed a
fault characterization in that perspective [21]. In [9], J. Elliot, M. Hoemmen and F. Mueller also
consider a type of fault they do characterize from a high-level point of view, i.e., in their case,
“a fault that silently introduces bad data, while not persistently tainting the data that was used
in the calculation. For example, let a = 2 and b = 2, then c = a+ b = 10.” They acknowledge
that “while simplistic, this model presumes no knowledge of the nature of the fault, only that c
is incorrect. This model assumes that the machine is unreliable in an unpredictable way, and
therefore [they] are skeptical of the output it presents.”

We consider that model referred to as silent data corruption (SDC) in [9] and refine it,
depending on (1) whether the input data also gets tainted once the operation has completed,
(2) at which stage the perturbation occurs and (3) how the perturbation is incurred. First, we
distinguish whether the input data (a and b in the above example) is tainted or not once the
operation has completed. Assume, for instance, that a gets tainted (say, a = 8 instead of 2)
during the execution of the operation, eventually leading to the perturbation of c (c = 10). If
the perturbation on a occurred while a was in a persistent memory (such as the main memory),
a remains tainted once the operation has completed. We refer to this case as a persistent soft
error. In the above example, the final state would be: a = 8, b = 2, c = 10. This type of error

Inria

On soft errors in the Conjugate Gradient method 9

|δd| / |d|
original value ` = 63 52 ≤ ` ≤ 62 0 ≤ ` ≤ 51

b` = 0 2 22
`−52

− 1
2`−52

1 +m
≤ 1

2

b` = 1 2
1

2
≤ 1− 2−2`−52

< 1
−2`−52

1 +m
≤ 1

2

Table 2.1: Relative perturbation and associated bounds with a bit-flip on the `th bit depending
on its original value b`.

can be detected if the input data have been stored redundantly without the need of performing
the computation redundantly. On the contrary, if the perturbation on a occurred while a was in
transient memory (such as a cache), a does not remain tainted once the operation has completed.
Following [8, 21] terminology, we refer to this case as a transient soft error. In the example,
the final state would be: a = 2, b = 2, c = 10. This second type of error cannot be detected
relying only on input data redundancy and is thus more critical. We therefore focus only on such
transient soft errors in the remainder of the paper (we present results for an analogous study on
persistent soft errors in [1]).

The second refinement we make explicit with respect to the model proposed in [9] is the
stage at which the perturbation occurs. As we do not aim at considering low-level details, we
consider the logical operation at which an error occurs as opposed to an hardware instruction or
a floating point operation. In our case, we thus refer to an instruction in Algorithm 1 such as the
matrix-vector product (step 3) or the application of the preconditioner (step 7). We will focus
mainly on both these operations as they are the most time consuming and DMR may thus be
expensive to apply. Nonetheless, we will eventually cover all CG steps in the concluding remarks
of our study on detection mechanisms (see Section 4.2.4 and Figure 4.5 in particular).

Third, we consider soft errors occurring as bit-flips on the operands of the considered step.
Note that this choice introduces a bias as the considered steps may be composed of multiple
atomic hardware operations. A bit-flip occurring on the input data (a and b in the above example)
may thus be viewed as an early error while a bit-flip occurring on the output data (c) may be
viewed as a late error. In our model, we thus do not consider the intermediates between those.
Note once again that in the case of transient errors (focus of this paper), an early bit-flip on a
(for instance changing a = 2 into a = 8) will affect the output data (c = 10) and the input data a
is set back to its original value. Note that a single transient bit-flip injected on the input data is
likely to induce multiple bit-flips on the output data.

We now provide a brief overview on bit-flip arithmetic. If a bit-flip occurs on an operand of
value d, its value becomes d+ δd with a relative perturbation that depends both on the index `
of the affected bit and on the original value b` of this `th bit in the definition of d in (2). The
possible relative perturbation |δd|/|d| and associated bounds are summarized in Table 2.1. Note
that the largest relative perturbations are obtained when the bit-flip affects a bit in the exponent
that was originally equal to zero (b` = 0).

RR n° 9330

10 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

3 Study of the sensitivity of PCG to soft errors

3.1 Propagation of bit-flips in PCG

As discussed above, we are interested in the possible impact of a transient bit-flip that might
occur on data computed by the algorithm. Because the most computationally intensive numerical
kernels are the matrix-vector product and the preconditioner application we only consider bit-flips
in these two key steps of the algorithm. An additional motivation to focus on those two kernels is
that the other calculations are mainly cheaper BLAS-1 operations that could be protected by
DMR at an affordable extra computational cost. The propagation of the bit-flip in Algorithm 1
is as follows:

1. Transient error in the matrix-vector calculation. Assuming a transient error occurs
at step 3 of Algorithm 1 during iteration i, after that step, the quantity si gets altered,
while A and pi are not. It implies that the current iterate (xi+1) is computed using a
corrupted scalar (αi) and a non-corrupted vector (pi) whereas the computed residual (ri+1)
is computed using both a corrupted scalar (αi) and vector (si).

2. Transient error in the preconditioner application. Assuming a transient error at
step 7 of Algorithm 1 during iteration i, the next updated iterate (xi+2) in iteration i+ 1
is computed using a corrupted scalar (αi+1) and a consistently corrupted vector (pi+1).
Similarly, the iteratively computed residual (ri+2) is updated using the corrupted scalar
(αi+1) and corrupted vector (si+1).

The propagation of transient errors located in the matrix-vector product and in the precondi-
tioner application have therefore a different impact on the quantities computed by CG, possibly
introducing different effects on its numerical behavior.

Figure 3.1 shows the data flow in the main PCG loop as well as associated corrupted quantities
when a transient soft error appears in the matrix-vector product (left) or preconditioning (right).
In these graphs a vertex corresponds to a computing task and an edge to data dependencies
between those. The orange color indicates that the task is performed with one corrupted input
variable and red is used when more than one input variable is affected by a previous error.

3.2 Bit-flip injection protocol

A transient bit-flip in the matrix-vector product or the application of the preconditioner can
happen anywhere in the computation kernel. For simplicity, however, we only consider early
bit-flip injections in the input vector (pi or ri+1), which will be reset to its original value after
the calculations with this vector are performed, or late bit-flip injections in the output vector (si
or ui+1). This approach can be seen as considering the two extreme cases of the effect that a
single bit-flip can have: modifying the output vector directly implies that only one entry of si
or ui+1 will be erroneous, but modifying the input vector pi or ri+1 implies that multiple – and
possibly every – entry of si or ui+1 will be erroneous.

We use the following protocol in order to create a database of PCG runs with and without
the injection of a bit-flip:

1. Given a SPD A ∈ Rn×n, we generate a vector x ∈ Rn with random entries in [−1, 1] and
calculate the corresponding right-hand side b.

2. We solve the resulting linear system Ax = b for x: once without the injection of a bit-flip
and once with the injection of a bit-flip.

Inria

On soft errors in the Conjugate Gradient method 11

(a) Transient error in matrix-vector product.
(b) Transient error in preconditioner appli-
cation.

Figure 3.1: Propagation of transient errors in the PCG algorithm.

RR n° 9330

12 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

ID Name Size Norm Cond AMG Jacobi No preconditioner
iterations iterations iterations

1 bodyy5 18, 589 8.04e3 7.87e3 16 (2) 443 (52) 752 (112)
3 bundle1 10, 581 6.43e12 1.00e3 16 (2) 58 (8) 242 (2)
5 crystm02 13, 965 1.76e-12 2.50e2 10 (1) 58 (8) 146 (24)
7 crystm03 24, 696 9.79e-13 2.64e2 10 (1) 58 (8) 151 (25)
9 Dubcova1 16, 129 4.80 9.97e2 39 (5) 174 (23) 170 (28)
11 fv1 9, 604 4.51 8.81 5 (1) 32 (4) 33 (6)
13 fv3 9, 801 4.00 2.03e3 6 (1) 223 (30) 229 (38)
15 jnlbrng1 40, 000 1.84e1 1.83e2 6 (1) 127 (16) 140 (22)
17 Kuu 7, 102 5.41e1 1.58e4 110 (14) 581 (74) 712 (111)
19 minsurfo 40, 806 8.10 81.11 6 (1) 91 (11) 100 (16)
21 obstclae 40, 000 8.20 4.10e1 6 (1) 68 (9) 70 (11)
23 torsion1 40, 000 8.20 4.10e1 6 (1) 68 (9) 70 (11)
25 wathen100 30, 401 3.70e2 5.82e3 18 (2) 50 (7) 333 (54)
27 wathen120 36, 441 3.69e2 2.58e3 18 (2) 50 (7) 379 (57)

Table 3.1: Some numerical properties of the matrices used in the experiments. The matrices with
even IDs 2n correspond to the normalized versions of the matrices with IDs 2n− 1. We also list
the average number of iterations (and standard deviations in parantheses) required by the linear
systems in order to converge to threshold ε2 = 10−10 when no fault occurs (see (3)).

3. The injected bit-flip is randomly generated by varying the following parameters:

• The iteration at which the error occurs: we use nine sample locations ranging from
10% up to 90% of the iterations required for PCG to converge without bit-flip.

• The vector affected by the bit-flip: si or pi to model a bit-flip in the matrix-vector
product, and ui+1 or ri+1 to model a bit-flip in the preconditioner.

• The entry of the vector that is affected by the bit-flip.

• The bit in the 64-bit sequence of the IEEE-754 double precision representation that
will be flipped.

4. For the given matrix A, this process will be repeated multiple times – each time with a new
random vector x, corresponding right-hand side b and new random bit-flip.

A sketch of this protocol is given in Figure 3.2.
The matrices we used to generate our data are listed in Table 3.1. In order to see the effect

of the norm of A, we also consider the versions of these matrices scaled by ‖A‖2.The reason for
this scaling will become clear in Section 4.1.1, where this norm will play a role in one of our
detection criteria. Furthermore, we will consider CG runs without a preconditioner, with a Jacobi
preconditioner (JAC) [28] and with an algebraic multigrid preconditioner (AMG) [7, 26], and use
the stopping criterium

‖b−Axi+1‖2
‖b‖2

≤ ε`=1,2 (3)

with two threshold values: low accuracy with ε1 = 10−5 and high accuracy with ε2 = 10−10.
Finally, we generate two datasets: one with early bit-flips (in pi or ri+1), and one with late
bit-flips (in si or ui+1). For each of these, per combination of matrix, preconditioner, and ε`, we
performed 100,000 runs without a bit-flip, and the 100,000 corresponding runs with a bit-flip.

Inria

On soft errors in the Conjugate Gradient method 13

0 50 100 150 200 250 300

1e-14

1e-13

1e-12

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

Tr
u

e
 s

c
a
le

d
 r

e
s
id

u
a
l

iterations

not converged

not converged

converged

Target Accuracy

Authorized

Delay 50%

non-faulty10% 90%

Figure 3.2: The error is injected early or late in vector at any entry, any bit and at any time in
the iterative process for either the matrix-vector product or the preconditioner calculation.

RR n° 9330

14 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

3.3 Numerical experiments

We now study the sensitivity of the PCG algorithm with respect to soft error locations in time
and space. As bit-flip injections impact the convergence behavior of PCG, the stopping criterion
may be reached in a different number of iterations or even be prevented. We thus consider that a
faulty execution converges if it achieves the same stopping criterion as the non-faulty execution
with some authorized delay in term of number of iterations. In this work, we allow for 50%
extra iterations (with respect to the non-faulty execution) to decide whether or not the soft
error has prevented PCG to converge, see also Figure 3.2. We mention that we varied this extra
iteration bound and it did not significantly change the statistical results as the number of non
converging cases would remain roughly the same. Some of the bit-flips translate into NaN (Not
a Number). Such a situation is considered as a non-converged run in the proposed sensitivity
analysis (Section 3) and as a detected fault in the study of detection mechanisms (Section 4).
Finally, because we did not observe any significant differences between the results for early or
late bit-flips, we only show the results for the experimetns with early bit-flips in this section. The
results for late bit-flips are shown in Appendix A.

3.3.1 Effect of the bit-flip value

Figure 3.3 shows the percentage of successfully converged executions of PCG when a soft error
is injected in the matrix-vector product as a function of the index of the flipped bit in the
64-bit sequence of a double precision floating point number. We report both results on low
(ε = 10−5 in (3), top rows of the figure) and high (ε = 10−10, bottom rows) target accuracy. An
extra distinction is made in the rows between the experiments based on the original value of
bit, i.e., zero or one, and refer to them as “0 → 1” or “1 → 0” respectively. In the column we
differentiate between different preconditioners: an AMG precondtioner, a Jacobi preconditioner,
and no precondtioner, i.e., M = I.

As could have been expected from the bound on the relative perturbation size reported in
Table 2.1, one can notice that flipping a bit in the exponent from zero to one damages convergence
more than a bit moving from one to zero. This trend is particularly visible in the first two rows
of the graphs, for the less stringent stopping criterion. In the rest of our experiments we will,
however, not make this “0→ 1” or “1→ 0” distiction.

3.3.2 Soft errors in the matrix-vector product

Figure 3.4 shows the percentage of successfully converged executions of PCG when a soft error
is injected in the matrix-vector product as a function of the index of the flipped bit. The bits
flipped in the exponent or in high order bits of the mantissa very often prevent CG to converge,
especially when a high accuracy is targeted. We also observe that bit-flips in the low-order bits
in the mantissa do not prevent CG to converge for any of the two threshold values ε`; of course
the index of the bit from which no effect is observed is lower for large value of ε`.

We also depict the influence of the bit-flip injection time in Figure 3.5. Those results show
that early errors have a larger impact than late ones; this behavior is somehow coherent with the
results presented in [5, 6, 31] in the context of inexact Krylov solvers where the inexactness in
the matrix-vector calculation can grow as the inverse of the residual norm.

3.3.3 Soft errors in the preconditioner application

A similar experimental study was conducted for assessing the impact of transient errors in the
preconditioner application. The impact of the index of the flipped bit is reported in Figure 3.6,

Inria

On soft errors in the Conjugate Gradient method 15

AMG Jacobi no preconditioner

0
→

1

ε
=

1
0

−
5

1
→

0

ε
=

1
0

−
5

0
→

1

ε
=

1
0

−
1
0

1
→

0

ε
=

1
0

−
1
0

0204060 0204060 0204060

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Flipped bit

R
a

ti
o

 o
f

c
o

n
ve

rg
e

n
t

c
a

s
e

s
 (

%
)

A scaling no scaling

Figure 3.3: Comparison of the impact on convergence of the bit-flips at originally zero or one bits.
The 64-bit indices of the IEEE 754 floating point numbers are displayed between each graph;
from left to right, the sign (blue), exponent (green) and mantissa (red) bits are represented, see
also Figure 2.1.

RR n° 9330

16 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0204060 0204060 0204060

0

25

50

75

100

0

25

50

75

100

Flipped bit

R
a

ti
o

 o
f

c
o

n
ve

rg
e

n
t

c
a

s
e

s
 (

%
)

A scaling no scaling

Figure 3.4: Impact of the index of the flipped bit in the matrix-vector product on PCG convergence
success. The 64-bit indices of the IEEE 754 floating point numbers are displayed between each
graph; from left to right, the sign (blue), exponent (green) and mantissa (red) bits are represented.

Inria

On soft errors in the Conjugate Gradient method 17

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0

25

50

75

100

0

25

50

75

100

Fault injection time

R
a

ti
o

 o
f

c
o

n
ve

rg
e

n
t

c
a

s
e

s
 (

%
)

A scaling no scaling

Figure 3.5: Impact of the bit-flip injection time (as a proportion of the number of iterations with
respect to the non-faulty execution) in the matrix-vector product on PCG convergence success.

RR n° 9330

18 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0204060 0204060 0204060

0

25

50

75

100

0

25

50

75

100

Flipped bit

R
a

ti
o

 o
f

c
o

n
ve

rg
e

n
t

c
a

s
e

s
 (

%
)

A scaling no scaling

Figure 3.6: Impact of the index of the flipped bit in the preconditioner application on PCG
convergence success. Recall that no preconditioner means M = I.

while the influence of the bit-flip injection time is reported in Figure 3.7. We recall that no
preconditioner means M = I, and that in this context a bit-flip in the preconditioner is just a
bit-flip in the vector ui+1 = ri+1.

One interesting observation is the lower negative impact of soft errors in the preconditioner
application compared to errors in the matrix-vector product. For most of the experiments, a
flipped bit in the mantissa does not prevent PCG to converge. To confirm this observation, we
performed experiments using the identity as a preconditioner, which reduces to unpreconditioned
CG when no bit-flip is injected. Comparing the subsequent results, reported in the last column
of Figure 3.6 with those displayed in the last column of Figure 3.4, it can be seen that the
two graphs exhibit very different behavior. The reason for this significant difference is that
the propagation flows of a transient error occurring in the matrix-vector product and in the
preconditioner application are very different (see Figure 3.1 and related discussion, above). A
deeper theoretical analysis would certainly deserve to be undertaken to better understand this
behavior; however, this analysis is out of the scope of the present study. Finally, applying PCG
on matrices having a norm equal to one makes the numerical method generally slightly more
robust to bit-flip in the exponent. A possible explanation is that in such cases, the values of the
entries of the vectors are mostly lower than one, which corresponds to a large number of bits
equal to one in their exponents [10]. This trend is more visible for bit-flips in the preconditioner
application (see Figure 3.6) than in the matrix-vector product (see Figure 3.4).

Inria

On soft errors in the Conjugate Gradient method 19

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0

25

50

75

100

0

25

50

75

100

Fault injection time

R
a

ti
o

 o
f

c
o

n
ve

rg
e

n
t

c
a

s
e

s
 (

%
)

A scaling no scaling

Figure 3.7: Impact of the bit-flip injection time in the preconditioner application on PCG
convergence success. Recall that no preconditioner means M = I.

RR n° 9330

20 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

3.3.4 Concluding remarks

A few supplementary comments on the experiments presented so far can be made. The first
one is that PCG is rather robust and still converges in many cases even when bit-flips occur on
exponent or large digits of the mantissa; obviously the less stringent the convergence threshold
the more robust PCG is. A concurrent study performed in [25] shows similar results. Much
more surprising is that PCG is significantly more sensitive to transient soft errors occurring in
the matrix-vector product, than to those appearing in the preconditioner application. A second
remark is that scaling the matrices with their 2-norm seems to have little to no effect on the ratio
of convergent cases. Finally, in accordance with existing results on inexact Krylov, the earlier the
soft error appears in the convergence process the larger the impact on the numerical behavior is
and large errors close to the convergence might not prevent it to eventually converge. This is
again something that was also observed in [25].

4 Numerical criteria for detecting soft errors in PCG

4.1 Numerical criteria

The PCG method is a very sophisticated and elegant numerical scheme that has many properties
induced by the symmetric positive definiteness of the matrix A, which, in particular, can be used
to define a vectorial norm. Among those properties, we can recall the orthogonality between the
residual ri at each iteration or the A-orthogonality of the descent directions pi. Unfortunately,
those properties, as associated characteristic equalities, are no longer valid in finite precision
calculation. On the other hand a lot of work has been devoted to study PCG in finite precision,
see [24, 23] and references therein. We consider some of the finite precision results and use them
to define a potential soft error detection mechanism based on the residual gap.

4.1.1 Residual gap-based detection

In exact arithmetic, the iteratively computed residual ri is equal to the true residual defined by
b−Axi associated with the current iterate xi; that is

ri − (b−Axi) = 0. (4)

In finite precision calculation, the computed quantities (denoted with a bar) differ from their exact
mathematical values. A first consequence is that fi ≡ r̄i − (b−Ax̄i) is no longer zero and defines
the gap between the true and the iteratively computed residual referred to as the residual gap,
which determines the maximal attainable accuracy. Using the rounding error analysis performed
in [15, 16], given an initial guess x̄0, the computed vectors satisfy

p̄0 = r̄0 = b−Ax̄0 + f0

and

x̄i = x̄i−1 + ᾱi−1p̄i−1 + δxi, (5)
r̄i = r̄i−1 − ᾱi−1Ap̄i−1 + δri, (6)
p̄i = r̄i − β̄ip̄i−1 + δpi, (7)

where the individual δ-terms account for the local round-off errors associated with the different
iterative updates.

Inria

On soft errors in the Conjugate Gradient method 21

Using (5) and (6), a recurrence on the residual gap can be derived that accounts for the
accumulation of the local round-off errors

fi = r̄i − (b−Ax̄i)
= r̄i−1 − ᾱi−1Ap̄i−1 + δri − (b−A(x̄i−1 + ᾱi−1p̄i−1 + δxi))

= fi−1 + δri +Aδxi

so that we have

fi = f0 +A

i∑
`=1

δr` +A

i∑
`=1

δx`.

The norm of the residual gap between the true and the computed residuals has been intensively
studied [15, 23, 34]. Assuming the standard model of floating point arithmetic with machine
precision ε, see, e.g. [15, 32, 34], it is shown in [34] that the following upper bound holds for the
norm of the residual gap

‖fi‖ ≤ ε

(
m||A||

i∑
`=0

||x̄`||+
i∑

`=0

||r`||

)
, (8)

where m corresponds to the maximal number of non-zero entries in the rows of the matrix A.
This bound on the residual gap can be used to detect soft errors that have larger effects than the
one predicted by the worse case scenario of the rounding error analysis. It can be assessed on a
periodic basis, for instance every other CheckPeriod iterations, as illustrated at lines 11 to 16 in
Algorithm 3. Finally we note that fact that the bound (8) depends on ‖A‖ is the motivation for
us to include the scaled versions of all the matrices in our numerical experiments.

4.1.2 α-based detection

Among the numerous relationships that exist between the quantities computed by PCG, there
is one that is possibly less prone to defection due to finite precision calculation because it is a
bound and not a strict equality as for the orthogonality or A-orthogonality properties. It was
already presented in the original paper on CG [19, Thm 5.5],

∀i 1

λmax
< αi <

1

λmin
(9)

where λmax and λmin denote the largest and smallest eigenvalues of A, or the preconditioned
matrix. From a practical view point, the calculation or the tight approximation of λmin is
generally expensive while λmax can often be cheaply approximated using for instance randomized
techniques [17]. Consequently, we only consider the lower bound to define our α-based detection
mechanism, which is cheap to check at each iteration to possibly detect that an error occurred,
as illustrated at lines 6 to 8 in Algorithm 3. The overall PCG algorithm equipped with both
residual gap and α-based detection is given in Algorithm 3.

4.2 Numerical experiments

In this section, we aim at evaluating the robustness and genericity of the numerical detection
mechanisms described in the previous sections (we do not consider the full DMR technique). We
use the same data as in Section 3.3, and show the results for both early and late bit-flips. However,
because we want to evaluate the different detection criteria, we will only take into account the

RR n° 9330

22 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

Algorithm 3 PCG enhanced with both residual gap-based and α-based detection
Require: A, b, x0,M, λmax, CheckPeriod.
1: r0 := b−Ax0; u0 = M−1r0; p0 := r0
2: f0 = ε(||r0||+m||A||||x0||)
3: for i = 0, . . . do
4: si := Api
5: αi := rTi ui/s

T
i pi

6: if αi < 1
λmax

then
7: CreateDetectionAlert()
8: end if
9: xi+1 := xi + αipi

10: ri+1 := ri − αisi
11: fi+1 = fi + ε(||ri+1||+m||A||||xi+1||)
12: if mod(i, CheckPeriod) == 0 then
13: if ||ri+1 − (b−Axi+1)|| > fi+1 then
14: CreateDetectionAlert()
15: end if
16: end if
17: ui+1 = M−1ri+1

18: βi+1 := rTi+1ui+1/r
T
i ui

19: pi+1 := ui+1 + βi+1pi
20: end for

experiments with a bit-flip and slightly broaden the classical terminology to characterize soft
error detection mechanisms.

Table 4.1 discusses the color codes used in this section. The first four rows correspond to the
classical taxonomy of the outcomes of any kind of decision methodology, that we extend with the
last three rows for a finer analysis. These final rows correspond to situations where the detector
raises an alert (or not) after a soft error occurred that did not prevent PCG from converging, or
if the bit-flip translated into NaN. If, in a more binary setting, one only wishes to detect bit-flips
that prevent convergence, the special positive, negative and critical cases could for example be
interpreted as false positives, true negatives and true positives respectively. Depending on the
goal of the detection, other interpretations are possible.

4.2.1 Checksum-based detection

Although the well-known checksum technique can be applied for protecting both the matrix-vector
product and the preconditioner application, we focus on its capabilities in the case of bit-flip in
the matrix-vector calculation. As indicated in Section 2.3, a threshold τ has to be chosen that
should comply with two conflicting constraints: be large enough to reduce the false positives
and be small enough to limit the number of false negatives. We do this independently for each
combination of matrix, ε` and preconditioner by minimizing the following cost function:

cost(τ) = ω
n1

n1 + n2
FP(τ) + (1− ω)

n2
n1 + n2

FN(τ). (10)

Here, n1 and n2 are the number of PCG runs for the given matrix, ε` and preconditioner without
and with a bit-flip, FP(τ) and FN(τ) are the number of false positives and false negatives for the
given value of τ , and ω ∈ [0, 1] is used to balance the two terms.

Inria

On soft errors in the Conjugate Gradient method 23

Color Term Explanation
true positive A bit-flip occurred, it prevented convergence, and the

detector raised an alert.
false negative A bit-flip occurred, it prevented convergence, but the de-

tector did not raise an alert.
true negative No bit-flip occurred, and the detector did not raise an

alert.
false positive No bit-flip occurred and the detector raised an alert.

special negative A bit-flip occurred, but it did not prevent convergence,
and the detector did not raise an alert.

special positive A bit-flip occurred, but it did not prevent convergence,
and the detector raised an alert.

special critical A bit-flip occurred, it prevented convergence, and it re-
sulted in a NaN.

Table 4.1: Corresponding terms for color codes.

In Figure 4.1, we report on experiments where the checksum threshold parameter has been
optimally tuned for each individual matrix, value of ε`, and preconditioner in order to minimize
the cost function. The abscissa corresponds to the matrix index as defined in Table 3.1 and the
values on top of the bars are the individual threshold values τ . In Figure 4.2 we report the same
results, but here we used a non-optimal value for τ : the mean value of the optimal values of τ for
all experiments with the same ε`. The former figure, on the one hand, illustrates the potential of
the checksum critirion, but the optimization procedure it requires may often be prohibitive in
practice. The latter figure, on the other hand, represents a more realistic usage of the checksum.

It should be noted that this average non-optimal value is by no means a terrible choice for τ .
The difficulty lies in finding optimal values for every matrix (or a set of matrices). Furthermore,
this value can vary greatly if we change ε or the preconditioner. In Appendix B we illustrate this
further by plotting the full cost function. So while the checksum criterium is very generic and
can be computed easily, it does require a careful tuning of the threshold parameter τ .

4.2.2 Residual gap-based detection

In this section we investigate the robustness of the soft error detection mechanism based on the
residual gap. As discussed in Section 1 and illustrated in Figure 3.1, one could expect that soft
errors in the matrix-vector product will very likely create a larger residual gap than predicted by
the theoretical bound that only accounts for the worse case induced by round-off. The errors in
the preconditioner calculation generate corrupted quantities that similarly affect the computed
residual and the current iterate, so that the corresponding error mostly vanishes in the residual
gap. Consequently, we first consider the experiments where the bit-flips are injected in the
matrix-vector product. Furthermore, because we want to design criteria able to detect soft errors
that prevent PCG to converge, we only consider non converging runs in our analysis below.

It would also not make sense to check the residual gap at each iteration, as the required
matrix-vector product would be as costly as DMR to protect the matrix-vector calculation.
We therefore only check this criterion periodically (every other CheckPeriod = 10 iterations in
our experiments, as in Algorithm 3) and when exiting PCG (after convergence or reaching the
maximal number of iterations). We also compare the behaviour of the residual gap detection
with that of the checksum criterion for the detection of soft errors in the matrix-vector product
(with optimal and not optimal τ). This is shown in Figure 4.3, where we once again present the

RR n° 9330

24 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

Special critical Special negative Special positive True positive False negative

8
.1

1
e
−

0
8

8
.1

1
e
−

0
8

3
.5

1
e
−

1
0

5
.3

4
e
−

1
0

2
.3

1
e
−

1
0

2
.3

1
e
−

1
0

2
.3

1
e
−

1
0

1
.5

2
e
−

1
0

1
.0

0
e
−

0
8

1
.0

0
e
−

0
8

2
.3

1
e
−

1
0

2
.3

1
e
−

1
0

1
.5

2
e
−

0
8

1
.5

2
e
−

0
8

1
.8

7
e
−

0
9

2
.8

5
e
−

0
9

5
.3

4
e
−

0
8

3
.5

1
e
−

0
8

8
.1

1
e
−

1
0

1
.2

3
e
−

0
9

8
.1

1
e
−

1
0

8
.1

1
e
−

1
0

8
.1

1
e
−

1
0

8
.1

1
e
−

1
0

2
.3

1
e
−

1
0

2
.3

1
e
−

1
0

1
.5

2
e
−

1
0

1
.5

2
e
−

1
0

0%

25%

50%

75%

100%

5 10 15 20 25

Matrix id

D
e

te
c
ti
o

n
 r

a
ti
o

s
 (

%
)

(a) Early bit-flips.

8
.1

1
e
−

0
8

5
.3

4
e
−

0
8

5
.3

4
e
−

1
0

5
.3

4
e
−

1
0

1
.0

0
e
−

1
0

1
.0

0
e
−

1
0

6
.5

8
e
−

1
1

1
.0

0
e
−

1
0

1
.5

2
e
−

0
8

1
.0

0
e
−

0
8

1
.2

3
e
−

0
9

2
.8

5
e
−

0
9

1
.8

7
e
−

0
7

1
.8

7
e
−

0
7

5
.3

4
e
−

0
8

8
.1

1
e
−

0
8

2
.3

1
e
−

0
6

2
.3

1
e
−

0
6

2
.3

1
e
−

0
8

2
.3

1
e
−

0
8

1
.0

0
e
−

0
8

1
.5

2
e
−

0
8

1
.5

2
e
−

0
8

1
.5

2
e
−

0
8

1
.0

0
e
−

1
0

1
.5

2
e
−

1
0

1
.5

2
e
−

1
0

1
.5

2
e
−

1
0

0%

25%

50%

75%

100%

5 10 15 20 25

Matrix id

D
e

te
c
ti
o

n
 r

a
ti
o

s
 (

%
)

(b) Late bit-flips.

Figure 4.1: Outcome of the checksum-based detection for the faulty runs when using the optimal
thresholds τ (top of the bars) for early (in pi) and late (in si) bit-flips, considering only the
experiments with a Jacobi preconditioner and ε = 1e-10 (ω = 0.5).

Special critical Special negative Special positive True positive False negative

0%

25%

50%

75%

100%

5 10 15 20 25

Matrix id

D
e

te
c
ti
o

n
 r

a
ti
o

s
 (

%
)

(a) Early bit-flips (τ = 1.20e-7).

0%

25%

50%

75%

100%

5 10 15 20 25

Matrix id

D
e

te
c
ti
o

n
 r

a
ti
o

s
 (

%
)

(b) Late bit-flips (τ = 1.49e-7).

Figure 4.2: Outcome of the checksum-based detection for the faulty runs when using the non-
optimal thresholds τ for early (in pi) and late (in si) bit-flips, considering only the experiments
with a Jacobi preconditioner and ε = 1e-10 (ω = 0.5).

Inria

On soft errors in the Conjugate Gradient method 25

proportion of undetected critical soft errors. The checksum strategy with an optimal threshold
may be very efficient for late bit-flips, but it performs poorly for early bit-flips. Additionally,
as discussed above, the optimization procedure may be prohibitive in practice, and when the
checksum criterion is used with non-optimal parameter τ the detection is significantly less efficient,
even for late bit-flips. The residual gap criterion, however, performs very well. This confirms the
robustness of the residual gap criterion combined with periodic and final checks as a practical
detection, since it achieves a very high rate of detection while not requiring any optimization
procedure.

4.2.3 α-based detection

In this section we study the robustness and reliability of the α-based criterion (given by Equa-
tion (9)) to detect possible soft errors in the preconditioner application as it proved to be not
effective to detect errors in the matrix-vector calculation. We display the ratio of undetected
soft errors as a function of the bit-flip index as well as the ratio for the residual gap criterion in
Figure 4.4. Both methods only seem to miss errors caused by bit-flips in the low order bits of the
exponent, but the α-based detection criterion appears to be much more robust than the residual
gap-based detection. This is to be expected, since due to the consistent propagation of the error
in the iterations and residual updates, the residual gap criterion is going to be less effective when
it comes to detecting errors in the preconditioner calculation.

4.2.4 Concluding remarks

In this section, we have assessed three numerical criteria to detect soft errors: the classical
checksum mechanism, a bound on the norm of the residual gap and a bound on the α value.
The numerical experiments have revealed the difficulty to define the threshold associated with
the checksum in finite precision calculation. In that context, the rounding error analysis of the
residual gap measurement provides a robust criterion. This criterion is particularly effective to
detect soft errors in the matrix-vector product. Because the residual gap deviation bound is
based on solid theoretical results, no false-positives can exist in non-faulty executions. Finally, the
criterion based on α allows the detection of most of the errors in the preconditioner application.
The combination of these last two criteria enables us to equip the PCG algorithm with numerical
techniques to detect errors that do not suffer from false-positives; consequently they are robust
and reliable. A possible drawback of the α criterion is that it requires knowledge of the largest
eigenvalue; we note that some numerically scalable multi-level preconditioning techniques provide
this information (see [3] and reference therein). Finally, we remark that scaling the matrices
with their 2-norm doesn’t seem to have a large effect on either the residual gap-based detection –
which motiviated this scaling – or the α-based detection.

One could naturally wonder whether these two detection mechanisms, which are robust criteria
for detecting soft errors in the matrix-vector product and preconditioner application, would also
be a robust criterion to detect errors occurring in the other steps of the PCG algorithm. In
that respect, we performed an additional extensive set of experiments by injecting bit-flips in all
steps of Algorithm 1. In Figure 4.5 we report the outcome of these experiments based on the
step in which the errors were injected for the residual gap criterion, the α-based criterion, and
the combination of both criteria as expressed in Algorithm 3. Several comments can be made.
First, regarding the sensitivity of bit-flips occurring in step 10; altering an entry of the descent
direction rarely prevents PCG from converging. Although possibly surprising, this is consistent
with the observation made in Section 3.3.3, that is, the weak sensitivity of PCG to soft-errors in
the calculation of the preconditioned residual. Second, the ability of the residual gap detection to
catch a soft error occurring in the computation of the iterate update (step 5) is remarkable.

RR n° 9330

26 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

AMG J acobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0204060 0204060 0204060

0

5

10

15

0

5

10

15

R
a
ti
o
 o

f
u
n
d
e
te

c
te

d
 c

a
s
e
s
 (
%

)

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0204060 0204060 0204060

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

Flipped bit

R
a

ti
o

 o
f

u
n

d
e

te
c
te

d
 c

a
s
e

s
 (

%
)

residual gap checksum checksum (not optimal) A scaling no scaling

Figure 4.3: Detection performance of gap deviation and checksum-based methodologies for soft
errors in the matrix-vector calculation. (top) Early bit-flips (in pi). (bottom) Late bit-flips (in
si).

Inria

On soft errors in the Conjugate Gradient method 27

AMG J acobi

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0204060 0204060

0

20

40

60

0

20

40

60

R
a
ti
o
 o

f
u
n
d
e
te

c
te

d
 c

a
s
e
s
 (
%

)

AMG Jacobi

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0204060 0204060

0

20

40

60

0

20

40

60

Flipped bit

R
a

ti
o

 o
f

u
n

d
e

te
c
te

d
 c

a
s
e

s
 (

%
)

alpha residual gap A scaling no scaling

Figure 4.4: Detection performance of the residual gap and α-based methodologies for soft errors
in the preconditioner calculation. (top) Early bit-flips (ri+1). (bottom) Late bit-flips (ui+1).

RR n° 9330

28 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

0%

25%

50%

75%

100%

3 4 5 6 7 8 9 10

D
e
te

c
ti
o
n
 r
a
ti
o
s
 (
%

)

Alpha

0%

25%

50%

75%

100%

3 4 5 6 7 8 9 10

Residual gap

0%

25%

50%

75%

100%

3 4 5 6 7 8 9 10

Combined

0%

25%

50%

75%

100%

3 4 5 6 7 8 9 10

D
e
te

c
ti
o
n
 r
a
ti
o
s
 (
%

)

0%

25%

50%

75%

100%

3 4 5 6 7 8 9 10

Fault step

0%

25%

50%

75%

100%

3 4 5 6 7 8 9 10

Special critical Special negative Special positive True positive False negative

Figure 4.5: Comparison of the detection success of the alpha and residual gap based methodologies,
and their combination for bit-flips in all possible steps of PCG. The set PCG runs used for this
experiment is different from the other experiments, but was created using the same methodology
described in Section 3.2. The only difference is the possible locations for the bit-flip. (top) Early
bit-flips. (bottom) Late bit-flips.

Inria

On soft errors in the Conjugate Gradient method 29

5 Conclusion and perspectives

In this paper we have experimentally investigated the robustness of PCG to transient soft-errors
in its (usually) most time consuming kernels: the preconditioner and matrix-vector product.
As could have been expected, we observed that soft errors affecting the exponent have a more
detrimental impact on the convergence of PCG than low order bits in the mantissa. Surprisingly,
we noticed that PCG was more robust to soft errors in the preconditioner that in the matrix-vector
calculation. Based on these observations we proposed numerical criteria that aim at detecting
soft errors that prevent PCG to converge. In particular, we illustrated that the classical checksum
approach, based on equalities in exact arithmetic, may lack robustness in practice where a priori
tuning procedure may be prohibitive. Alternatively, criteria based on the residual gap and on
the range of validity of the values of α, which do not require any optimization procedure, allow
for the definition of robust mechanisms. Future works will consist in using those criteria to
design a self-correcting (or self-stabilizing using the terminology of [29]) PCG algorithm and in
investigating similar approaches for modern variants of PCG such as pipelined PCG [14] as well
as extending our work to non-symmetric Krylov subspace solvers.

Acknowledgments

This work has been funded by the EXA2CT European Project on Exascale Algorithms and
Advanced Computational Techniques, which receives funding from the EU’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 610741. Experiments presented in this
paper were carried out using the PlaFRIM experimental testbed, supported by Inria, CNRS
(LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine
(see https://www.plafrim.fr/). Siegfried Cools acknowledges funding by the Research Foundation
Flanders (FWO) under grand number 12H4617N.

References

[1] Emmanuel Agullo, Siegfried Cools, Emrullah Fatih-Yetkin, Luc Giraud, Nick Schenkels, and
Wim Vanroose. A complementary note on soft errors in the Conjugate Gradient method: the
persistent error case. Research Report RR-9360, Inria Bordeaux Sud-Ouest, August 2020.

[2] Emmanuel Agullo, Siegfried Cools, Emrullah Fatih-Yetkin, Luc Giraud, and Wim Vanroose.
On soft errors in the Conjugate Gradient method: sensitivity and robust numerical detection.
Research Report RR-9226, Inria Bordeaux Sud-Ouest, November 2018.

[3] Emmanuel Agullo, Luc Giraud, and Louis Poirel. Robust preconditioners via generalized
eigenproblems for hybrid sparse linear solvers. SIAM Journal on Matrix Analysis and
Applications, 40(2):417–439, 2019.

[4] Wesley Bland, Aurelien Bouteiller, Thomas Hérault, George Bosilca, and Jack J. Dongarra.
Post-failure recovery of MPI communication capability: Design and rationale. IJHPCA,
27(3):244–254, 2013.

[5] A. Bouras and V. Frayssé. Inexact matrix-vector products in Krylov methods for solving
linear systems: a relaxation strategy. SIAM Journal on Matrix Analysis and Applications,
26(23):660–678, 2005.

RR n° 9330

30 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

[6] A. Bouras, V. Frayssé, and L. Giraud. A relaxation strategy for inner-outer linear solvers
in domain decomposition methods. Technical Report TR/PA/00/17, CERFACS, Toulouse,
France, 2000.

[7] William L Briggs, Steve F McCormick, et al. A multigrid tutorial, volume 72. SIAM, 2000.

[8] J. Elliott, F. Mueller, M. Stoyanov, and C. Webster. Quantifying the Impact of Single Bit
Flips on Floating Point Arithmetic. Technical Report 2013-2, pages 1–13, 2013.

[9] James Elliott, Mark Hoemmen, and Frank Mueller. Evaluating the impact of sdc on the
gmres iterative solver. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th
International, pages 1193–1202. IEEE, 2014.

[10] James Elliott, Mark Hoemmen, and Frank Mueller. Exploiting data representation for fault
tolerance. Journal of computational science, 14:51–60, 2016.

[11] The MPI Forum. Mpi: A message passing interface standard version 3.1, June, 2015.

[12] Manuel Le Gallo, Abu Sebastian, Roland Mathis, Matteo Manica, Heiner Giefers, Tomas
Tuma, Costas Bekas, Alessandro Curioni, and Evangelos Eleftheriou. Mixed-precision
in-memory computing. Nature Electronics, 1:246–253, 2018.

[13] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and
Vaidyalingam S Sunderam. PVM: Parallel virtual machine: a users’ guide and tutorial for
networked parallel computing. MIT press, 1994.

[14] P. Ghysels and W. Vanroose. Hiding global synchronization latency in the preconditioned
Conjugate Gradient algorithm. Parallel Computing, 40(7):224–238, 2014.

[15] Anne Greenbaum. Estimating the attainable accuracy of recursively computed residual
methods. SIAM Journal on Matrix Analysis and Applications, 18(3):535–551, 1997.

[16] Martin H. Gutknecht and Zdenek Strakoš. Accuracy of two three-term and three two-term
recurrences for Krylov space solvers. SIAM Journal on Matrix Analysis and Applications,
22(1):213–229, 2000.

[17] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM Review,
53(2):217–288, 2011.

[18] Thomas Herault and Yves Robert, editors. Fault-Tolerance Techniques for High-Performance
Computing. Springer International Publishing, 2015.

[19] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 46(6):409–436, December
1952.

[20] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.

[21] Mark Hoemmen and Michael Allen Heroux. Fault-tolerant iterative methods via selective
reliability. Proceedings of the 2011 International . . . , 2011.

[22] Kuang-hua Huang and Jacob a Abraham. Algorithm-Based Fault Tolerance for Matnx
Operations. IEEE Transactions on Computers, c(6):518–528, 1984.

Inria

On soft errors in the Conjugate Gradient method 31

[23] J. Liesen and Z. Strakoš. Krylov Subspace Methods. Numerical Mathematics and Scientific
Computation. Oxford University Press, 2013.

[24] Gérard Meurant and Zdenek Strakoš. The Lanczos and conjugate gradient algorithms in
finite precision arithmetic, volume 15. Cambridge University Press, 2006.

[25] Burcu Ozcelik Mutlu, Gokcen Kestor, Joseph Manzano, Osman Unsal, Samrat Chatterjee,
and Sriram Krishnamoorthy. Characterization of the impact of soft errors on iterative
methods. In 2018 IEEE 25th International Conference on High Performance Computing
(HiPC), pages 203–214. IEEE, 2018.

[26] L. N. Olson and J. B. Schroder. PyAMG: Algebraic multigrid solvers in Python v4.0, 2018.
Release 4.0.

[27] Behrooz Parhami. Defect, fault, error,..., or failure? IEEE Transactions on Reliability,
46(4):450–451, 1997.

[28] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[29] Piyush Sao and Richard Vuduc. Self-stabilizing iterative solvers. Proceedings of the Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems - ScalA ’13, pages 1–8,
2013.

[30] Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. Characterizing
the impact of soft errors on iterative methods in scientific computing. Proceedings of the
international conference on Supercomputing - ICS ’11, page 152, 2011.

[31] V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications
to scientific computing. SIAM Journal Scientific Computing, 25:454–477, 2003.

[32] Z. Strakoš and P. Tichy. Error estimation in preconditioned conjugate gradients. BIT
Numerical Mathematics, pages 789–817, 2005.

[33] Henk A. Van der Vorst. Iterative Krylov methods for large linear systems. Cambridge mono-
graphs on applied and computational mathematics. Cambridge University Press, Cambridge,
UK, New York, 2003.

[34] Henk A. van der Vorst and Qiang Ye. Residual replacement strategies for Krylov subspace
iterative methods for the convergence of true residuals. SIAM Journal Scientific Computing,
22(3):835–852, 2000.

[35] Raoul Velazco, Pascal Fouillat, and Ricardo Reis. Radiation effects on embedded systems.
Springer Science & Business Media, 2007.

RR n° 9330

32 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

A Sensitivity of late bit-flips
Figures 1.1–1.5 show the sensitivity results for experiments with late bit-flips (si and ui+1) and
are analogous to figures 3.3–3.7 in Section 3.3. The results are very similar and we refer to that
section for further information.

AMG Jacobi no preconditioner

0
→

1

ε
=

1
0

−
5

1
→

0

ε
=

1
0

−
5

0
→

1

ε
=

1
0

−
1

0

1
→

0

ε
=

1
0

−
1

0

0204060 0204060 0204060

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Flipped bit

R
a
ti
o
 o

f
c
o
n
ve

rg
e
n
t
c
a
s
e
s
 (

%
)

A scaling no scaling

Figure 1.1: Comparison of the impact on convergence of the bit-flips at originally zero or one bits.
The 64-bit indices of the IEEE 754 floating point numbers are displayed between each graph;
from left to right, the sign (blue), exponent (green) and mantissa (red) bits are represented.

Inria

On soft errors in the Conjugate Gradient method 33

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1

0

0204060 0204060 0204060

0

25

50

75

100

0

25

50

75

100

Flipped bit

R
a
ti
o
 o

f
c
o
n
ve

rg
e
n
t
c
a
s
e
s
 (

%
)

A scaling no scaling

Figure 1.2: Impact of the index of the flipped bit in the matrix-vector product on PCG convergence
success. The 64-bit indices of the IEEE 754 floating point numbers are displayed between each
graph; from left to right, the sign (blue), exponent (green) and mantissa (red) bits are represented.

RR n° 9330

34 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1

0

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0

25

50

75

100

0

25

50

75

100

Fault injection time

R
a
ti
o
 o

f
c
o
n
ve

rg
e
n
t
c
a
s
e
s
 (

%
)

A scaling no scaling

Figure 1.3: Impact of the bit-flip injection time (as a proportion of the number of iterations with
respect to the non-faulty execution) in the matrix-vector product on PCG convergence success.

Inria

On soft errors in the Conjugate Gradient method 35

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1

0

0204060 0204060 0204060

0

25

50

75

100

0

25

50

75

100

Flipped bit

R
a
ti
o
 o

f
c
o
n
ve

rg
e
n
t
c
a
s
e
s
 (

%
)

A scaling no scaling

Figure 1.4: Impact of the index of the flipped bit in the preconditioner application on PCG
convergence success.

RR n° 9330

36 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1

0

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0

25

50

75

100

0

25

50

75

100

Fault injection time

R
a
ti
o
 o

f
c
o
n
ve

rg
e
n
t
c
a
s
e
s
 (

%
)

A scaling no scaling

Figure 1.5: Impact of the bit-flip injection time in the preconditioner application on PCG
convergence success.

Inria

On soft errors in the Conjugate Gradient method 37

B Checksum cost function
To illustrate some of the difficulties in finding an optimal value for the parameter τ in the
checksum criterium, we plot the cost function (10) for different values of ω, ε, preconditioners,
and matrices. As can be seen in figures 2.1, 2.2, and 2.3 the optimal value for τ can vary orders
of magnitudes for different parameters or matrices. Only the weighting parameter ω has no big
influence. Note that these cost functions were calculated using the dataset with early bit-flips.

Figure 2.1: Cost function for a given matrix, ε, and preconditioner, but with different values of ω.

RR n° 9330

38 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

Figure 2.2: Cost function for a given matrix, and ω, but with different combinations of ε and
preconditioner.

Inria

On soft errors in the Conjugate Gradient method 39

Figure 2.3: Cost function for a given ε, preconditioner, and ω, but for different matrices.

RR n° 9330

40 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

C Checksum false positives
In Section 4.2.1 we reported on the efficiency of the checksum detection criterion by looking at
the faulty runs. Figures 3.1 and 3.2 show the results for the non faulty PCG runs. While some
matrices do have a few false positive cases, this number is too small to be visible on the figures.

True negative False positive

8
.1

1
e
−

0
8

8
.1

1
e
−

0
8

3
.5

1
e
−

1
0

5
.3

4
e
−

1
0

2
.3

1
e
−

1
0

2
.3

1
e
−

1
0

2
.3

1
e
−

1
0

1
.5

2
e
−

1
0

1
.0

0
e
−

0
8

1
.0

0
e
−

0
8

2
.3

1
e
−

1
0

2
.3

1
e
−

1
0

1
.5

2
e
−

0
8

1
.5

2
e
−

0
8

1
.8

7
e
−

0
9

2
.8

5
e
−

0
9

5
.3

4
e
−

0
8

3
.5

1
e
−

0
8

8
.1

1
e
−

1
0

1
.2

3
e
−

0
9

8
.1

1
e
−

1
0

8
.1

1
e
−

1
0

8
.1

1
e
−

1
0

8
.1

1
e
−

1
0

2
.3

1
e
−

1
0

2
.3

1
e
−

1
0

1
.5

2
e
−

1
0

1
.5

2
e
−

1
0

0%

25%

50%

75%

100%

5 10 15 20 25

Matrix id

D
e

te
c
ti
o

n
 r

a
ti
o

s
 (

%
)

(a) Early bit-flips.
8
.1

1
e
−

0
8

5
.3

4
e
−

0
8

5
.3

4
e
−

1
0

5
.3

4
e
−

1
0

1
.0

0
e
−

1
0

1
.0

0
e
−

1
0

6
.5

8
e
−

1
1

1
.0

0
e
−

1
0

1
.5

2
e
−

0
8

1
.0

0
e
−

0
8

1
.2

3
e
−

0
9

2
.8

5
e
−

0
9

1
.8

7
e
−

0
7

1
.8

7
e
−

0
7

5
.3

4
e
−

0
8

8
.1

1
e
−

0
8

2
.3

1
e
−

0
6

2
.3

1
e
−

0
6

2
.3

1
e
−

0
8

2
.3

1
e
−

0
8

1
.0

0
e
−

0
8

1
.5

2
e
−

0
8

1
.5

2
e
−

0
8

1
.5

2
e
−

0
8

1
.0

0
e
−

1
0

1
.5

2
e
−

1
0

1
.5

2
e
−

1
0

1
.5

2
e
−

1
0

0%

25%

50%

75%

100%

5 10 15 20 25

Matrix id
D

e
te

c
ti
o

n
 r

a
ti
o

s
 (

%
)

(b) Late bit-flips.

Figure 3.1: Outcome of the checksum-based detection for the non-faulty runs when using the
optimal thresholds τ (top of the bars) for early (in pi) and late (in si) bit-flips, considering onlye
the experiments with a Jacobi preconditioner and ε = 1e-10 (ω = 0.5).

True negative False positive

0%

25%

50%

75%

100%

5 10 15 20 25

Matrix id

D
e

te
c
ti
o

n
 r

a
ti
o

s
 (

%
)

(a) Early bit-flips (τ = 1.20e-7).

0%

25%

50%

75%

100%

5 10 15 20 25

Matrix id

D
e

te
c
ti
o

n
 r

a
ti
o

s
 (

%
)

(b) Late bit-flips (τ = 1.49e-7).

Figure 3.2: Outcome of the checksum-based detection for the non-faulty runs when using the
non-optimal thresholds τ for early (in pi) and late (in si) bit-flips, considering only the experiments
with a Jacobi preconditioner and ε = 1e-10 (ω = 0.5).

Inria

On soft errors in the Conjugate Gradient method 41

D Residual gap-based detection
Figure 4.1 shows the robustness of the residual gap based detection method in more detail, by
investigating the robustness of three policies: either checking this criterion only periodically (every
other CheckPeriod = 10 iterations in our experiments, as in Algorithm 3), only when exiting
PCG (after convergence or reaching the maximal number of iterations), or both periodically and
on exit. It can be observed that the strategy that combines a periodic checking with a final one
is the most effective; it successfully detects most of the errors in the matrix-vector operation that
prevent PCG to converge. The issue with only checking when exiting PCG is that the upper
bound in Equation (8) continuously increases along the iteration so that the actual residual gap,
which becomes larger than the bound after an error, ultimately ends up below the upper bound.
Symmetrically, the policy that only checks periodically the bound misses the soft errors that
occurs between the last check and the exit of PCG when it exceeds the maximum number of
iterations. Furthermore, as can be seen in Table 3.1, CG with a AMG preconditioner converges
in a very small number of iterations, often less than our CheckPeriod = 10 . This is why in
Figure 4.1 the periodic detection performs so poorly with the AMG preconditioner.

RR n° 9330

42 Agullo & Cools &Fatih-Yetkin & Giraud & Schenkels & Vanroose

AMG J acobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0204060 0204060 0204060

0

10

20

30

40

0

10

20

30

40

R
a
ti
o
 o

f
u
n
d
e
te

c
te

d
 c

a
s
e
s
 (
%

)

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1

0

0204060 0204060 0204060

0

10

20

30

40

0

10

20

30

40

Flipped bit

R
a
ti
o
 o

f
u
n
d
e
te

c
te

d
 c

a
s
e
s
 (

%
)

periodic + final final periodic A scaling no scaling

Figure 4.1: Detection performance of the three policies based on the residual gap criterion. (top)
Early bit-flips (in pi). (bottom) Late bit-flips (in si).

Inria

On soft errors in the Conjugate Gradient method 43

E α-based detection for the matrix-vector product

In Section 4.2 we did not report on the quality of the α-based detection for faults in the
matrix-vector product. The ratio of undetected cases for this case can be seen in Figure 5.1

AMG J acobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0204060 0204060 0204060

0

25

50

75

0

25

50

75

R
a
ti
o
 o

f
u
n
d
e
te

c
te

d
 c

a
s
e
s
 (
%

)

AMG Jacobi no preconditioner

ε
=

1
0

−
5

ε
=

1
0

−
1
0

0204060 0204060 0204060

0

20

40

60

80

0

20

40

60

80

Flipped bit

R
a
ti
o
 o

f
u
n
d
e
te

c
te

d
 c

a
s
e
s
 (

%
)

alpha residual gap A scaling no scaling

Figure 5.1: Detection performance of the residual gap and α-based methodologies for soft errors
in the matrix-vector product calculation. (top) Early bit-flips (in ri+1). (bottom) Late bit-flips
(in ui+1).

RR n° 9330

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vielle Tour
33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Background
	Preconditioned Conjugate Gradient algorithm
	Double Modular Redundancy
	Checksum techniques
	Round-off and soft error models
	Round-off errors
	Soft errors

	Study of the sensitivity of PCG to soft errors
	Propagation of bit-flips in PCG
	Bit-flip injection protocol
	Numerical experiments
	Effect of the bit-flip value
	Soft errors in the matrix-vector product
	Soft errors in the preconditioner application
	Concluding remarks

	Numerical criteria for detecting soft errors in PCG
	Numerical criteria
	Residual gap-based detection
	-based detection

	Numerical experiments
	Checksum-based detection
	Residual gap-based detection
	-based detection
	Concluding remarks

	Conclusion and perspectives
	Sensitivity of late bit-flips
	Checksum cost function
	Checksum false positives
	Residual gap-based detection
	-based detection for the matrix-vector product

