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Abstract A new method allowing to describe shapes from a set of polygonal
curves using a relational descriptor is proposed in this paper. An approach based
on discrete lines at several increasing widths is run on the contour of an object to
provide a multi-level polygonal representation from accurate description to more
and more rough aspects. On each polygon is calculated a force histogram to define
a relational feature signature following a set of directions integrating both spatial
relation organization and disparities of the shape in a same distribution. Three dif-
ferent matching schemes are proposed to compare multilevel distributions: global
representation, level to level following extracted maxima. This new method is fast
and a first experimental study achieved on a common database shows its good
behavior.
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1 INTRODUCTION

Shape representation methods are usually split into main categories: region-based
approaches or contour-based approaches [1–3]. The choice of one representation
instead of another one generally relies on the application under consideration. We
focus on contour and more specifically on its polygonal description, consisting in
a finite chain of straight line segments closing in a loop. Such a representation is
widely used in several research fields such as graphic symbol recognition [4–7] or
Geographic Information System [8].

Segments often serves a common basis for both syntactic and structural ap-
proaches. Already in the 90s a string-matching technique to the problem of rec-
ognizing and classifying polygons has been defined by Maes [9] but this method is
limited when the polygonal approximation of the object is inconsistent. Another
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works focus for instance on the definition of a complete system for architectural
drawing analysis [10] or symbol spotting [11].

Main well-known drawbacks of polygonal approximation rely on sensitivity to
the noise or to over-segmentation effect considering the raster contour. Highly
concave curves tend also to provide a bad discontinuity behavior on the achieved
polygonal representation.

Since the last decades, numerous works have been carried out to assess the
polygonal contour best fitting a raster contour. For line extraction, the Hough
transform [12] has been widely used. But, applications are reasonably limited in
case of degraded images due to its high computational cost. However, robust vec-
torization algorithms exist in line drawing images as in engineering drawings [13–
15]. The use of such low-level primitives varies widely in accordance with the
complexity of the considered object. Efficient methods were also defined to take
into account noise and/or over-segmentation by refining the process at differ-
ent scales [16–19], etc. Despite existing relevant approximation works finding the
”best” polygon is always a challenge which highly depends on the application
under consideration.

In other words, since polygonal contour descriptors are based on the boundary
of a shape, they cannot capture the internal structure of a shape. Furthermore,
these methods are generally not suited to handle disjoint shapes or shapes with
holes because the boundary information is not available. Moreover, a common
drawback is error-prone raster to vector conversion inducing loss of information,
which may result in lower recognition rates. On the other hand, region-based meth-
ods are more suited to general applications. However, they are generally more
computationally intense and most approaches need to normalize (centroid posi-
tion, re-sampling) the image to process with affine properties. Such a normaliza-
tion introduce errors, sensitivity to noise, and thus inaccuracy in the recognition
process.

In this paper we consider a powerful aim consisting in describing the shape at
several scales from width of discrete lines [20]. Considering several widths allows to
limit noise effect and limit artifact while limiting to some extent the influence of
over-segmentation according to the processed widths. It allows to go progressively
from an accurate representation to a more rough one while highlighting the main
directions of the parts of the shape. Then we combine such description with a
feature descriptor able to efficiently handle with holes or split parts of an object
while integrating in its structure both relational parts and spatial variations [21].
This method can be assumed as hybrid; it combines a structural description of
shapes with a statistical shape descriptor.

The outline of the paper is as follows. First the main frameworks required to
define this new method are recalled in Section 2, that is discrete lines, blurred seg-
ments, and force histogram. The multi-polygonal structure is described in Section
3 as well as three basic matching strategies allowing to handle these represen-
tations. An experimental study performed on two common databases is given in
Section 4 to show the interest of the proposed approach. Finally perspectives are
provided in the conclusion.
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2 BACKGROUND

2.1 Discrete Lines

The arithmetical definition of discrete lines [20] is used in our method to decom-
pose a discrete shape contour into discrete line segments.

A discrete line D(a, b, µ, ω), whose main vector is (b, a), lower bound µ and
thickness ω (with a, b, µ and ω being integer such that gcd(a, b) = 1) is the set of
integer points (x, y) verifying µ ≤ ax− by < µ+ ω.

In this work, we study sequences of points, corresponding to shape contours,
and we compute polygonal approximations containing all the points of the se-
quences.

More precisely, let us consider a sequence of points Sb, it is named a blurred

segment of width ν if there exists a discrete line D(a, b, µ, ω) containing all the
points of Sf and such that ω−1

max(|a|,|b|) ≤ ν. This discrete line is called the optimal

bounding line of Sb.

A linear algorithm was proposed in [20] to incrementally obtain the character-
istics of the optimal bounding line of a sequence of points. It relies on the linear
and incremental computation of the convex hull of the scanned point sequence as
well as on the arithmetical and geometrical properties of discrete lines.

Based on this algorithm, an interesting geometrical structure can be computed
on a shape contour: the width-ν tangential cover. It consists in the sequence of
all maximal blurred segments of width ν (MBSν) located on the shape contour
(see Fig. 1). The common zone of several MBSν can contain a point with high
curvature, called dominant point. A method to detect dominant points from a
width-ν tangential cover of a contour is proposed in [22,23], a polygonal represen-
tation of the contour is then deduced. Different values of width then induce several
polygonal simplifications of a same contour (see Fig. 4).

Fig. 1 On the left, the width-1 tangential cover of a piece of a shape contour. On the center,
the width-2 tangential cover of the same piece. On the right, the width-1 tangential cover of a
noisy discrete circle.
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2.2 Force Histogram

2.2.1 Force Histogram of a shape

The histogram of forces was initially defined to assess the spatial relation between
two binary objects but it can be easily used to provide a discriminate signature
(and descriptor) characterizing one object. We recall here basic notions aiming at
describing such a kind of signature which efficiently integrates both whole shape
and spatial description following a set of directions. A full description of the un-
derlying theoretical developments can be found in [24,21,25,26].
The attraction force between two points at a distance d is given by:

∀d ∈ R∗+, ϕr(d) = 1/dr

with r, the kind of force processed, e.g. r = 0 for constant forces, which are suitable
considering one object and r = 2 for gravitational ones.
The handling of segments is considered to decrease the computation time instead
of directly studying any pair of points. Let I1 and I2 be two segments beared by a
line of angle θk from the frame, DθkI1I2 the distance between them and |.| the length
of a segment. The calculation of the attraction force fr of a segment with regard
to another is given by:

fr(|I1|, DθkI1I2 , |I2|) =

∫ |I1|+DθkI1I2+|I2|
D
θk
I1I2

+|I2|

∫ |I2|
0

ϕr(u− v)dvdu

Considering one raster object A, following a direction θk it can be entirely
described by the set of segments beared by a pencil of parallel lines of angle θk
from the orthogonal frame. Let us take one line, denoted Dθkη . The set of S segments
corresponds to: Aθk(η) = ∪{Ii}i=1,S and the mutual attraction of these segments
is given by:

F (θ,Aθk(η), Aθk(η)) =
∑
i∈1..S

∑
j∈1..S

fr(|Ii|, DθkIiIj , |Ij |)

Due to superimposed segments, constant forces are suitable in our study. An ap-
proximation of gravitational force impact might be done using points while avoid-
ing superimposed points and linked points at a null distance. The last constraint
can be eventually removed by using a sub-pixel modeling. Another way can be
to introduce progressive forces (as in [24]) but this generally leads to minor the
impact of gravitational ones considering compact shapes.

2.2.2 Force histogram of a polygon

Using raster data all the pencils of lines Dηθ which entirely describe A are then
processed and the associated mutual attraction summed. Considering a polygonal
description of A, noted PA, the calculation is based on a set of regular polygons
having 3 or 4 vertices (see Fig. 2). All the lines Dηθ bearing a polygonal point are
projected on a perpendicular straight line to set the intervals describing A [24,21,
26]. Then A consists in a set of trapezium (or triangle) whose height is given by
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q

Object	A

Fig. 2 Set of triangles or trapezium describing an object A following a direction θ.

the width of intervals, combined with bases to calculate the associated attraction
and summed (Riemann sum).

The calculation of FAA(θ), respectively FP
A

(θ), remains to an assessment of
the forces exerted by an object with itself in the direction θ.

Let us consider a set of p directions Θ = {θk}k=1,p∧θk∈[−π,+π) with a constant

step. Finally the calculation of FAA onto Θ defines a spatial relational descriptor,

denoted FA for raster data and FP
A

for polygonal one. The calculation of the
complexity depends on the sorting of the projected vertices. That is in O(pv ln(v))
with v the number of vertices of the polygon.

3 MULTI-POLYGONAL MATCHING

3.1 Multi-Polygonal Structure

Let A and B be two shapes and let PA = ∪ωi∈Ω(PAωi ) and PB = ∪ωi∈Ω(PBωi )
be their multi-polygonal representation obtained using n increasing width Ω =
{ω1, ω2 . . . ωn} with ωi < ωi+1 and PAωi the polygon calculated from the width wi.
The force histogram (or distribution) is calculated on each representation from the
set of points defining each polygon following p directions Θ (see previous section).
Then the multi-polygonal descriptor associated to a shape A is denoted by:

FP
A

=
⋃
ωi∈Ω

(
FP

Aωi
)

3.2 Multi-Polygonal Descriptor Properties

By axiomatic definitions of the function F , the following properties can be checked
and easily introduced in the matching process following the specificity of the ap-
plication under consideration:

– Translation as polygon are processed independently of their location in an
image. Only points and the whole shape of the polygon are considered.
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– Symmetry according to a mirror representation of the polygon. In this case
processing the directions in the opposite direction allows to directly take into
account the symmetry property.

– Homothety according to a normalized distribution. Considering real points,
the global shape of the polygon is the same at different scales. Obviously con-
sidering discrete data, high disparities might occur at very low scales. However
the whole representation of the force histogram remains stable in most of the
cases due to the low sensitivity to noise of the approach [21,25].

– Rotation because the approach is isotropic. A rotation of the polygon relies on
circular shifts on the achieved force histogram. An assessment of the rotation
(not invariant) can be carried out by minimizing the distance between two
superimposed force histograms at different shifts.

Such properties rely on each polygonal representation PAωi but they can be

easily extended to the whole description FP
A

as they are calculated from the
same located shape and so apply along a common principle at each associated

level FP
A
ωi .

It is important to notice that if a shape contains several holes having or not
parts of shapes implying a set of external and internal polygons, it is always
possible to calculate the associated distribution due to the bi-linearity property.
That is trapezium describing the holes are not integrated in the calculation of F .
In other words, it is not useful to process holes during the matching step as they
are directly taken into account inside of the force histogram.

3.3 Matching Strategies

Three schemes able to match two multi polygonal distributions (MPD) FP
A

and

FP
B

are defined in this section. LetM be a metric, or a similarity ratio, calculating
a score between two distributions.

3.3.1 Weighted histogram matching

The first scheme, denoted by M1 relies on the calculation of a global distribution

G(FP
A

) related to a shape A by aggregating the distributions achieved at each
level. Let θk be a direction, which corresponds to the kth bin of the distribution.
A weighted scheme similar to [27] is used here as follows (assuming that ω0 = 0).

G
(
FP

A

(θk)
)

=
∑
i=1,n

(ωi − ωi−1)FP
Aωi

(θk)

And so on, considering all the p directions (see section 2.2) to define the average

distribution G(FP
A

). The distance ∆M1
between two MPD A and B is directly

given by:

∆M1
(A,B) =M

(
G
(
FP

A
)
,G
(
FP

B
))
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Considering raster data, a similar scheme was successively applied to classify chest
radiograph image view but considering F-signatures computed on a set of image
binarisation [28]. Here the modeling is based on polygon handling and the weight
is set from the difference between successive width values.

3.3.2 Level polygonal feature set matching

The second scheme, noted M2, relies on an assessment level per level of both dis-
tributions which are weighted as in M1 by the difference of two successive levels,
that is:

∆M2
(A,B) =

1

n

∑
i=1,n

(ωi − ωi−1)M
(
FP

Aωi
,FP

Bωi
)

The interest of this scheme is to study the similarity of pairwise distributions at
each level ωi. The aggregation is quite similar as the one of Krishnapuram et al.

[29] who modeled standard relationships between fuzzy sets described by level cuts.
However we do not ensure a convex hull representation and we put no hypothesis
about polygonal level membership.

3.3.3 Key direction matching

At last, a third scheme M3 is based on the matching of a set of meaningful direction
values, denoted by Φ, consisting in local minimum and maximum points extracted
from the derivative of each distribution. Let us consider a distribution A at width
ωi, Φ

A
ωi corresponds to the set of directions corresponding to the loci of both

extrema and minima of FP
Aωi , that is:

ΦAωi = {θk|θk ⊂ Θ\{θ1, θp}∧ (FP
Aωi (θk−1) < FP

Aωi (θk) > FP
Aωi (θk+1)

∨FP
Aωi (θk−1) > FP

Aωi (θk) < FP
Aωi (θk+1))}

Due to the circular representation (modulo the size p), θ1 and θp are separately
processed. Considering two objects A and B, the matching is similar to M2 but
limited to the set of suitable directions ΦAωi and ΦBωi extracted at each level ωi:

∆M3
(A,B) =

1

n

∑
i=1,n

(ωi − ωi−1)M
(
FP

Aωi

ΦAωi
∪ΦBωi

,FP
Bωi

ΦAωi
∪ΦBωi

)

In some extent, the underlying idea of the well-known curvature scale space
method [30] is followed. However the derivative does not require Gaussian filters
to smooth the distribution in order to focus on key points. The computation of
force histogram integrates the whole shape according to progressive directions and
the studied distributions are most of the time regular with no high disparities.
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4 EXPERIMENTAL STUDY

4.1 Databases and metrics

Two well-known shape databases provided by Sharvit et al. [31] are used to test our
methods. The first database B1 consists in nine categories with 11 shapes in each
cluster and the second one B2 consists in 18 categories of 12 shapes. Considering
B1 a few of the shapes are occluded (airplanes and hands) and some shapes are
partially represented (rabbits, men, and hands). There are also distorted objects
(tools) and heterogeneous shapes in the same cluster (animals) (see Fig. 3). The
database B2 contained also shapes having similar disturbance.

qi = xi coshi + yi sinhi, into a Radon matrix. That is, for
each point (xi,yi) of the image, i is fixed and the value qi

is calculated using stepwise increments of hi from 0 to p.
The increment is defined following the Shannon theory
(see [36] for more details) to avoid aliasing. Here, we set
Dh = Dq = 1, Dx = Dy = 1/2 and the sampled values of qi

are defined by a linear interpolation. This algorithm
requires time O (N2 M) for an image of size N · N and M
different angles (here M = 180).

Two major optimizations are made to reduce the com-
plexity. The cosine and the sine of all the possible values
of hi are computed just once. The values of qi are also
defined recursively. That is, since the step increment Dx is
set to 1/2, we have: qiþ1

2
¼ qi þ cos hi

2 . Therefore, when we
move in the x-direction, q is incremented by cosh/2. Simi-
larly, in the y-direction q is increased by sinh/2.

Hence, the discrete Radon transform is represented by a
digital image and the discrete R-transform is defined by:

^RðhÞ ¼
Pqmax

q̂¼qmin
T̂

2

Rf ðq̂; ĥÞ. We are aware that the properties
of the continuous Radon transform carry over to the dis-
crete Radon transform only approximately, due to errors
of discretization. However, we will see in Section 6 that
experiments provide evidence that errors are small.

5. Measure of distance

We have seen from Section 3 that a rotation of the shape
implies a translation of the R-transform modulo p. There-
fore, if we apply a one-dimensional Fourier transform on
this function, the rotation invariance is achieved by ignor-
ing the phase in the coefficients and only keeping the mag-
nitudes of the coefficients. Let Rl

q and Rl
m, respectively, be

the discrete R-transform of a query and a model shape for l
different levels of the Chamfer distance transform. After
the discrete one-dimensional Fourier transform F, the
query and the model feature vectors are defined as follows:

X q¼
FR0

qð1Þ
FR0

qð0Þ
; . . . ;

FR0
qðpÞ

FR0
qð0Þ

; . . . ;
FRl

qð1Þ
FRl

qð0Þ
; . . . ;

FRl
qðpÞ

FRl
qð0Þ

 !

X m ¼ FR0
mð1Þ

FR0
mð0Þ

; . . . ;
FR0

mðpÞ
FR0

mð0Þ
; . . . ;

FRl
mð1Þ

FRl
mð0Þ

; . . . ;
FRl

mðpÞ
FRl

mð0Þ

! "
.

For two shapes represented by their R-transform, the
Euclidean distance is directly calculated between the two
Fourier feature vectors Xq and X m.

6. Experimental results

Experimental results gathered during a shape recogni-
tion process are presented to show the efficiency of the pro-
posed algorithm. The method was tested on several
databases. First, two databases of Sharvit et al. [30] kindly
made available to us on his website: http://www.lems.
brown.edu/vision/researchAreas/SIID/ have been used.

The first database consists of nine categories with 11
shapes in each cluster (see Fig.7). Each shape is matched

against all the other shapes of the database (at all 9801
shape comparisons are made) and we count in the nth
(n from 1 to 11) nearest neighbors the number of times
the test image was correctly classified. A few of the shapes
are occluded (clusters airplanes and hands) and some
shapes are partially represented (clusters rabbits, men,
and hands). There are also distorted objects (cluster 6)
and very heterogeneous shapes in the same cluster (ani-
mals). Furthermore, to demonstrate scale invariance and
robustness to noise, the experiments were tested again with
the database of Fig. 7 increased in scale by 400%, scaled
down by 50%, and degraded with salt-and-pepper noise
(common in binary images) with different degrees. We
can remark that the results of the matching are quite sim-
ilar to those obtained with the original database (compare
Figs. 9–11 with Fig. 8). More significantly, we have run the
experiments on a certain shape which has been scaled and
rotated (see Fig. 12). When two shapes are similar the dis-
tance is close to zero and we can see from Fig. 12 that with
only one exception, the distance measures are small. The
exception is due to pixelation errors resulting from the scal-
ing of the smallest image which has been scaled down by a
factor of 32 from the largest. Also a shape from a different
class is included in the Fig. 12 to have a reference of how
small the metric is for the scaled/rotated dogs. On average
the distance is 9 times greater between the dogs and the
rabbit images than between the dogs theirself.

We also compare our method with two recent approaches
which give rise interesting results for several test databases
(see [6] and [37] for comparative studies):

• The approach of Bernier and Landry [6] based on a
polar representation of the contour points with respect
to the centroid of the shape.

• The approach of Zhang and Lu [37] defined on the
generic Fourier descriptor transform from a polar-raster
sampled shape image.

Fig. 7. A database of 99 shapes made available by Sharvit on his website
[30].

46 S. Tabbone et al. / Computer Vision and Image Understanding 102 (2006) 42–51

Fig. 3 Sharvit’dabatase composed of 99 shapes.

Such databases are widely used to compare feature descriptors which are more
adapted to classify raster pattern due to noise, artifacts and distorted parts. For
instance, the generic Fourier descriptor [3] provides high recognition rates on these
databases. Here we consider only polygonal representations of shapes which are
obviously more sensitive to noise effect and pattern distortions. The aim is to show
the interest of such multi-polygonal structure through the matching strategies
M1, M2 and M3. Several metrics and similarity ratio ∆ will be tested as Jaccard,
Tanimoto, Chi2 and Hellinger. Due to the weak number of samples the evaluation
process is similar to a leave one out considering the distance of each sample with
the remaining database (as k = 1) to avoid a bias.

4.2 Evaluation

4.2.1 Multi-scale structure

We provide in Fig. 4 an example of polygonal decomposition following four widths
to better visualize the structure used in this paper. Two samples belong to the
same cluster (fish) and another belong to the cluster hand.

It may be noted that the small elements (polygonal contour in green in Fig. 4)
of the structure are better preserved at low width (for instance the fins of the
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Shape ⍵=1 ⍵=2 ⍵=4⍵=3

Fig. 4 Multi-Polgonal representation following width.

fishes) and a larger width concentrates rather meaningful directions of the shape
(the palm of the hand is smoothed as well as fish fins).

Few shapes and the force histogram calculated on associated polygon defined
from the width ω1 are given in Fig. 5.

Fig. 5 Force histogram calculated on Polygons (width ω1).

The difference between the shapes can be directly seen in the distributions. For
instance the arm raised induced a directional perturbation visible on the second
force histogram. The last two force histogram samples indicate the main direction
of the shape (plane and tool) while integrating the width of the objects (see the
pick of the tool force histogram).
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4.2.2 Number of directions

Tests are done on Sharvit B1 to study the impact of the underlying parameters.
Five increasing widths are considered for the multi-polygonal representation of all
the shapes. The influence of the number of directions p is studied (see Table 1).

Directions 128 64 32 16
M1 68.9 84.4 83.3 83.3
M2 72.2 85.6 85.6 87.8
M3 67.8 76.7 81.1 80.0

Table 1 Recognition rates obtained using the Jaccard index.

The achieved results (using the Jaccard index) show a good behavior of the
three methods except for a large number of directions. Many spatial directions
introduce more irrelevant information during matching and thus reduce the impact
of significant directions.

4.2.3 Distance and Similarity

Following the previous study, p is set to 32 directions (16 is also a good compro-
mise). Five usual similarity ratio and distance are studied (see Table 2). We also
add a contour based approach Sa which consider circular directions (here 360)
defined from the centroid of the shape as in [32].

Methods M1 M2 M3 SA

Jaccard 83.3 85.6 81.1 74.4
Tanimoto 83.3 85.6 81.1 74.4

L1 82.2 85.6 82.2 74.4
Chi2 84.4 85.6 82.2 73.3

Hellinger 84.4 85.6 82.2 66.7

Table 2 Recognition rates. Metrics and Similarity

The three methods are few sensitive to usual metrics (or similarity). This good
behavior, as well as the good recognition rates, shows that the information stored
in the force histogram distributions, which integrates both the organization of the
spatial relationships and the disparities of the shape in the same distribution, are
discriminating and robust at the metric.

4.2.4 Increasing number of cuts

The impact of increasing number of widths is considered (see Fig. 6). A step set
at 0.5 between each width is considered. The number of directions p is set to 16
and Tanimoto index is applied.

An increase in recognition rates is obtained for all three methods. The method
M1 is sensitive to the number of processed polygons. So, the weighted sum of
force histogram becomes less discriminating when polygons of increasing width
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1.0     1.5     2.0     2.5     3.0     3.5     4.0     4.5     5.0     5.5     6.0     6.5     7.0    

Fig. 6 Recognition rates. Increasing number of cuts.

are added. The method M2 remains stable most of the time, showing the interest
of a matching level per level, that is following the same width. The behavior of the
method M3 is interesting as the score increases gradually, showing the influence
of main directions at high level.

4.2.5 Test on Sharvit B2

Another test is carried out on the database B2. We consider values of parameters
similar to those used to make tests on B1, that is p = 32, five widths and the
Jaccard index. We also consider a polygonal representation method, denoted by
KM , which provide a polygon close to the raster contour of a shape [17]. The force
histogram is calculated on it to make a comparison.

Methods M1 M2 M3 KM SA

Rate 84.3 86.7 81.5 83.4 63.0

Table 3 Recognition rates (32 bins - Jaccard Index)

The results are close to those ones obtained using B1 despite an increasing
number of samples showing the good behavior of our approaches. Handling with a
multi-level approach seems to better take into account the main directional regions
of a shape than a relevant method KM where the polygonal contour fits well the
pattern but only at one scale.

4.3 Discussion

Both methods M1 and M2 provide interesting results while having a robust be-
havior independently of the metric used.

Most of the recognition rates obtained with M2 are better than those ones
of M1 showing the interest of handling the polygons, level per level, instead of
averaging the amount of associated force histograms.
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Considering M3 the results are a bit disappointing even few directions are
processed (lower than 13% in average). This emphasizes that the relational curve
between the key directions remains a discriminant information. Furthermore this
method has an interesting behavior when the number of processed polygons in-
creases.

5 CONCLUSION

Original methods aiming at representing a shape from a set of distributions asso-
ciated to polygons have been proposed in this paper. These approaches combined
two powerful concepts: discrete lines and force histogram. Achieved results on two
databases are very promising. Furthermore the methods are fast and ensure a
robust matching.

New developments integrating the interval between key directions or enabling
to process with a different number of polygons per representation are under con-
sideration. As the larger the value of the width, the rougher the aspect of the
polygon is, further investigations are also dedicated to the search of the optimal
description of each sample of a database.
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