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ABSTRACT
This paper investigates robustness of finite-time stability property for a homoge-
neous nonlinear dynamical system with sufficiently small affine inputs. In addition,
robust stability conditions are presented for the systems admitting homogeneous ap-
proximations at the origin or at infinity. The effects of additional stable unmodeled
dynamics in the input channel on robust stability are investigated. The utility of
the obtained results is illustrated via robustness analysis of homogeneous observer
with time-varying gains.
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1. Introduction

The problem of robustness analysis of nonlinear control systems is at the center of
attention of researchers for several decades (Arcak & Kokotović, 2001; Chaillet, Angeli,
& Ito, 2014a, 2014b; Freeman & Kokotovic, 2008; Jiang, Teel, & Praly, 1994; Sontag,
1989, 1998), etc.

One of the most popular robust stability properties, which was introduced in (Son-
tag, 1989), is the concept of input-to-state stability (ISS). This framework has become
indispensable for various branches of nonlinear control theory, such as design of non-
linear observers (Arcak & Kokotović, 2001), robust stabilization of nonlinear systems
(Freeman & Kokotovic, 2008), etc. However, sometimes it is impossible to ensure the
ISS behavior of a closed loop system globally, and its local variant (LISS) is frequently
used. Moreover, another relaxation of the ISS concept, known as integral input-to-state
stability (iISS), has been proposed in (Sontag, 1998). The following interpretation of
these notions is possible: while the state of an ISS system is small if inputs are small,
the state of an iISS system is small if inputs have a finite energy. Moreover, every ISS
system is necessarily iISS, but the converse is not true. It has been shown that ISS
property (resp., iISS, LISS) are equivalent to the existence of a smooth ISS (resp.,
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iISS, LISS) Lyapunov function (Sontag & Wang, 1995), which allows this framework
to be widely used.

Another related notion, named strong iISS, was introduced in (Chaillet et al.,
2014b). This new concept is given as an intermediate property, which offers an in-
teresting compatibility between ISS and the generality of iISS. This concept ensures
that the trajectories of any strongly iISS system are globally bounded provided that
the input amplitude is less than a specific constant, when it is greater than this con-
stant we recover a conventional iISS performance. The strong iISS property is found
useful for analysis of cascade-interconnected systems (Chaillet et al., 2014b).

Following (Braidiz, Efimov, Polyakov, & Perruquetti, 2019), in this paper we are
going to develop these robust stability concepts for a class of homogeneous systems
and their interconnections. Many results dealing with analysis and design have been
proposed for this kind of models, see (Bacciotti & Rosier, 2006; Bernuau, Efimov, Per-
ruquetti, & Polyakov, 2013, 2014; Bernuau, Polyakov, Efimov, & Perruquetti, 2013b;
Bhat & Bernstein, 2005; Coron, 2007; Efimov & Perruquetti, 2010; Hahn, 1967; Hahn,
Hosenthien, & Lehnigk, 1963). Such a popularity of homogeneous systems follows their
various advantages. And one of them consists in ability of this type of dynamics to
converge in finite-time to the origin. The finite-time stability (FTS) was discovered by
Erugin 1951, Zubov 1957 and studied by Roxin 1966. It becomes popular in many ap-
plications needed an accelerated convergence of the trajectories to the goal reference,
and studied by (Bhat & Bernstein, 2000, 2005; Korobov, 1979; Moulay & Perruquetti,
2006; Roxin, 1966).

The goal of this work is to investigate the robustness of (homogeneous) FTS systems
with respect to exogenous (small) inputs by applying the ISS framework and uniform
stability concepts. The basic conditions of ISS and iISS for homogeneous systems have
been established in (Bernuau, Polyakov, et al., 2013b), and in this work we are going
to go beyond with more evolved analysis.

To this end this paper is organized as follows. After introducing definitions of robust
stability and generalized homogeneity in Section 2, we will investigate the robustness
of homogeneous affine nonlinear systems, and the robustness of a system which admits
a homogeneous approximation (that is locally homogeneous) in Section 3. Next, we
will also study the robust stability of the interconnected systems with homogeneous
subsystems in Section 3. These results are applied in Section 4 to analysis of the esti-
mation error dynamics of an observer introduced in (Perruquetti, Floquet, & Moulay,
2008).

2. Preliminaries

In this section, after notation we will introduce the used in the sequel robust stabil-
ity concepts (subsection 2.2) and the framework of generalized homogeneous systems
(subsection 2.3).

2.1. Notation

• R+ = {x ∈ R : x ≥ 0} , where R is the set of real numbers; | · | denotes the
absolute value in R and ‖ · ‖ denotes the Euclidean norm in Rn.
• S = {x ∈ Rn : ‖x‖ = 1} denotes the unit sphere in Rn, and ‖A‖Mm,n

=
sup
x∈S
‖Ax‖, A ∈ Mm,n, where Mm,n is the set of all m × n−matrices over the
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field of real numbers, it forms a vector space and ‖ · ‖Mm,n
denotes the matrix

norm induced by ‖ · ‖. When m = n we write Mn instead of Mn,n.
• For a (Lebesgue) measurable function d : R+ → Rm define the norm ‖d‖[t0,t1) =

ess supt∈[t0,t1)‖d(t)‖, then ‖d‖∞ = ‖d‖[0,+∞) and the set of d with the property
‖d‖∞ < +∞ we further denote as L∞ (the set of essentially bounded measurable
functions).
• A continuous function α : R+ → R+ belongs to the class K if α(0) = 0 and

the function is strictly increasing. The function α : R+ → R+ belongs to the
class K∞ if α ∈ K and it is increasing to infinity. A continuous function β :
R+ × R+ → R+ belongs to the class KL if β(·, t) ∈ K∞ for each fixed t ∈ R+;
it is a decreasing function in the second argument and lim

t→+∞
β(s, t) = 0 for each

fixed s ∈ R+\{0} . A continuous function β : R+×R+ → R+ belongs to the class
GKL if β(·, 0) ∈ K∞, β(s, ·) is a decreasing function for any fixed s ∈ R+ \ {0}
and β(s, τ) = 0, ∀τ ≥ T for each fixed s ∈ R+ for some 0 ≤ T < +∞.

• The notation DV (x) =
(
∂V
∂x1

(x), · · · , ∂V∂xn (x)
)T

stands for the first derivative of

a continuously differentiable function V at point x.

• The notation 〈DV (x), f(x)〉 =
n∑
i=1

∂V
∂xi

(x)fi(x) stands for the directional deriva-

tive of a continuously differentiable function V with respect to the vector field
f evaluated at point x ∈ Rn.
• Cp(Rn,R) denotes the space of functions f : Rn → R which have p continuous

derivatives and C∞(Rn,R) denotes the space of smooth functions. We denote by
CLp(Rn,R) a subset of C0(Rn,R) that is Cp(Rn \ {0},R).

2.2. Stability properties

In this subsection we give some definitions of robust stability (for more details see
(Bernuau, Polyakov, et al., 2013b)) and FTS, which will be investigated for systems
with disturbances:

ẋ(t) = f(x(t), δ(t)), t ≥ 0, (1)

where x(t) ∈ Rn is the state and δ(t) ∈ Rm is the external input, δ ∈ L∞. The vector
field f : Rn × Rm → Rn with f(0, 0) = 0 is assumed to be such that the solutions of
(1) exist and they are uniquely defined at least locally in forward time. For an initial
condition x0 ∈ Rn and input δ ∈ L∞, define the corresponding solution by x(t, x0, δ)
for any t ≥ 0 for which the solution exists.

2.2.1. Finite-time stability

First, let us define the basic stability notions and their Lyapunov characterizations.
Let V ⊂ Rn be a nonempty open neighborhood of the origin.

Definition 2.1. (Bernuau et al., 2014; Bhat & Bernstein, 2000) For δ = 0 the origin
of the system (1) is said to be:

1. Lyapunov stable (LS) if for all x0 ∈ V the solutions are defined for all t ≥ 0, and
there exists a function α ∈ K such that for all x0 ∈ V we have ‖x(t, x0, 0)‖ ≤
α(‖x0‖),∀t ≥ 0;

2. Asymptotically stable (AS) if it is LS and limt→+∞ ‖x(t, x0, 0)‖ = 0 for all x0 ∈ V;
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3. FTS if it is LS and there exists a function T : V → R+ such that x(t, x0, 0) = 0
for all t ≥ T (x0) and all x0 ∈ V.

In addition, if V = Rn, then the origin is a globally AS (GAS) or globally FTS (GFTS).
If the properties 1), 2) or 1), 3) are satisfied for a given set of inputs δ (with T and α
independent on δ) we say that the system (1) is uniformly AS or FTS, respectively.

The following proposition shows how to investigate FTS by using the Lyapunov
theory.

Proposition 2.2. (Moulay & Perruquetti, 2006) For δ = 0 the origin of the system
(1) is FTS with a continuous settling-time function at the origin if and only if there
exists a nonempty open neighborhood of the origin V ⊂ Rn, real numbers c > 0, 0 <
α < 1 and a positive definite Lyapunov function V ∈ CL1 (V,R+) satisfying

〈DV (x), f(x, 0)〉 ≤ −c[V (x)]α, ∀x ∈ V.

2.2.2. ISS and related notions

Next, let us introduce robust stability properties, which are investigated in this work.

Definition 2.3. (Hong, Jiang, & Feng, 2008; Sontag, 1989) The system (1) is said to
be

• ISS, if there exist β ∈ KL and γ ∈ K such that for any initial state x0 ∈ Rn and
any δ ∈ L∞, the solution x(t, x0, δ) exists for all t ≥ 0 and satisfies

‖x(t, x0, δ)‖ ≤ β(‖x0‖, t) + γ(‖δ‖∞);

• ISS with respect to small inputs if there exists a constant R > 0 such that for
all x0 ∈ Rn, the solution x(t, x0, δ) exists for all t ≥ 0 and satisfies

‖δ‖∞ < R =⇒ ‖x(t, x0, δ)‖ ≤ β(‖x0‖, t) + γ(‖δ‖∞). (2)

If ISS or ISS with respect to small inputs property holds with β ∈ GKL, then (1) is
called finite-time ISS (FTISS) or FTISS with respect to small inputs, respectively.

If additionally (2) holds only for x0 ∈ V, where V is a neighborhood of the origin in
Rn, then the previous properties are called local.

Definition 2.4. (Sontag, 1998) The system (1) is called iISS, if there are some func-
tions α ∈ K∞, γ ∈ K and β ∈ KL such that for any x0 ∈ Rn and δ ∈ L∞ the estimate
holds:

α(‖x(t, x0, δ)‖) ≤ β(‖x0‖, t) +

t∫
0

γ(‖δ(s)‖)ds, ∀t > 0. (3)

If β ∈ GKL, we say that the system (1) is finite-time iISS (FTiISS).

Definition 2.5. (Chaillet et al., 2014a, 2014b) The system (1) is said to be strongly
iISS if it is both iISS and ISS with respect to small inputs.
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Definition 2.6. The system (1) is said to be finite-time strongly iISS if it is both
FTiISS and FTISS with respect to small inputs.

If in the above definitions we replace the distance to the origin ‖x‖ with the distance
to a compact set, then we can recover the respective stability characterizations with
respect to this set.

All these stability properties can be verified by looking for existence of a corre-
sponding Lyapunov function:

Definition 2.7. (Bernuau et al., 2014; Sontag & Wang, 1995) A V ∈ C1(Rn,R+) is
called

• an ISS Lyapunov function if for all x ∈ Rn, δ ∈ Rm and some α1, α2, α3 ∈ K∞
and γ ∈ K :

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (4)

〈DV (x), f(x, δ)〉 ≤ −α3(‖x‖) + γ(‖δ‖), (5)

such a function V is called ISS Lyapunov function with respect to a compact
set A = {x ∈ Rn : V (x) ≤ A} for some A ≥ 0, if the inequality (5) holds for all
x ∈ Rn \ A;
• an iISS Lyapunov function if (4) and (5) hold for a positive definite function
α3 : R+ → R+;
• a FTISS (resp., FTiISS) Lyapunov function if (4) and (5) hold and there exists
ε > 0 such that α3(‖x‖) ≥ cV (x)α for all ‖x‖ ≤ ε with c > 0 and 0 < α < 1;
• a local ISS Lyapunov function if there exists r > 0 such that the inequalities (4)

and (5) hold ∀x ∈ Rn with ‖x‖ ≤ r, ∀δ ∈ Rm with ‖δ‖ ≤ r.

Note that an ISS Lyapunov function can also satisfy instead of (5) an equivalent
condition for some χ ∈ K and α3 ∈ K∞ (see (Sontag & Wang, 1995)):

‖x‖ ≥ χ(‖δ‖) =⇒ 〈DV (x), f(x, δ)〉 ≤ −α3(‖x‖). (6)

Relations between existence of ISS (iISS, FTISS, FTiISS) Lyapunov functions and
ISS (iISS, FTISS, FTiISS) properties are presented in the following theorems:

Theorem 2.8. (Angeli, Sontag, & Wang, 2000; Sontag & Wang, 1995) The following
properties are equivalent:

1) The system (1) is ISS (iISS) with δ as input;
2) There is an ISS (iISS) Lyapunov function V ∈ C1(Rn,R+).

Theorem 2.9. (Bernuau, Polyakov, Efimov, & Perruquetti, 2013a) If for the system
(1) there exists a (local) FTISS (FTiISS) Lyapunov function, then it is (locally) FTISS
(FTiISS).

Note that to check strong iISS property we can unite the Lyapunov characterizations
given before for iISS and ISS (the same for finite-time counterparts).

The last theorem in this subsection is about preservation of strong iISS under cas-
cade interconnection:
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Theorem 2.10. (Chaillet et al., 2014b) Assume that the systems ẋ1 = f1(x1, δ1) and
ẋ2 = f2(x2, δ2) (f1(0, 0) = 0, f2(0, 0) = 0) are strongly iISS with respect to δ1 and δ2
respectively. Then the cascade {

ẋ1 = f1(x1, x2),
ẋ2 = f2(x2, δ2),

is strongly iISS.

2.3. Generalized homogeneity

In control theory, homogeneity is a special kind of Lie symmetry, which simplifies qual-
itative analysis of nonlinear dynamic systems. In particular, it allows local properties
(e.g., local stability) to be extended globally using a scaling or dilation of the solutions.

Definition 2.11. A map d : R→Mn is called a dilation in Rn iff it satisfies

• Group property: d(0) = In, d(t+ s) = d(t)d(s), t, s ∈ R;
• Continuity property: d is continuous, i.e. ∀t > 0,∀ε > 0,∃γ > 0 : |s − t| <
γ =⇒ ‖d(s)− d(t)‖Mn

≤ ε;
• Limit property: lim

s→−∞
‖d(s)x‖ = 0 and lim

s→+∞
‖d(s)x‖ = +∞ uniformly on

the unit sphere S.

Definition 2.12. The dilation d is monotone in Rn if ‖d(s)‖Mn
< 1, ∀s < 0.

Any dilation in Rn is monotone under proper selection of the weighted Euclidean
norm in Rn Polyakov (2018).

Definition 2.13. The function ‖ · ‖d : Rn → R+ is called the canonical homoge-
neous norm ‖x‖d = esx , where sx ∈ R : ‖d(−sx)x‖ = 1.

In Polyakov (2018) it is shown that the canonical homogeneous norm is single-
valued and continuous provided that the dilation is monotone. Obviously, it has the
properties lim

x→0
‖x‖d = 0 and ‖d(s)x‖d = es‖x‖d > 0 for all x ∈ Rn \{0} and all s ∈ R,

in addition

‖x‖d = 1⇔ ‖x‖ = 1.

Definition 2.14. A vector field f : Rn → Rn (resp., a function h : Rn → R) is said
to be d-homogeneous of degree ν ∈ R (resp., µ ∈ R) if for all s ∈ R and all x ∈ Rn we
have e−νsd(−s)f(d(s)x) = f(x), (resp., e−µsh(d(s)) = h(x)). We say that a system
ẋ = f(x) is d-homogeneous if f is d-homogeneous.

Any linear vector field is d-homogeneous of zero degree with d(s) = esI. Homo-
geneity property was introduced also for Banach or Hilbert spaces, and it is given by
a group of dilations (Polyakov, Coron, & Rosier, 2018; Polyakov, Efimov, Fridman, &
Perruquetti, 2016).

The following lemma provides a useful comparison between homogeneous functions.

Lemma 2.15. (Bhat & Bernstein, 2005) Suppose that V1, V2 ∈ C0(Rn,R+) are
d−homogeneous of degrees l1 > 0 and l2 > 0, respectively, and V1 is positive definite.

6



Then a1[V1(x)]
l2
l1 ≤ V2(x) ≤ a2[V1(x)]

l2
l1 for all x ∈ Rn, where a1 = min

{z;V1(z)=1}
V2(z)

and a2 = max
{z;V1(z)=1}

V2(z).

In the following definition we introduce the notion of homogeneous approximations
that can be useful for local analysis and design of nonlinear control systems (see
(Andrieu, Praly, & Astolfi, 2008) and (Efimov & Perruquetti, 2016) for more details).

Definition 2.16. A function (resp., a vector field) f is said to be homogeneous in the
0−limit with associated triple (ν0, d, f0) if lim

s→−∞
sup
x∈S
‖e−ν0sf(d(s)(x)) − f0(x)‖ = 0

(resp., if lim
s→−∞

sup
x∈S
‖e−ν0sd(−s)f(d(s)(x)) − f0(x)‖ = 0). A function (resp., a vector

field) f is said to be homogeneous in the ∞-limit with associated triple (ν∞, d, f∞) if
lim

s→+∞
sup
x∈S
‖e−ν∞sf(d(s)(x))−f∞(x)‖ = 0 (resp., if lim

s→+∞
sup
x∈S
‖e−ν∞sd(−s)f(d(s)(x))−

f∞(x)‖ = 0).

Example 2.17. Let f : (x1, x2) ∈ R2 7−→ (x2, x
1.5
2 + 5x1.72 )T ∈ R2.

The vector field f is homogeneous in the 0-limit with associated triple

(ν0,d0(s), f0(x)) =

(
0.5,

(
e0.5s 0
0 es

)
,
(
x2, x

1.5
2

)T)
and in ∞−limit with the

triple (ν∞,d∞(s), f∞(x))) =

(
0.7,

(
e0.3s 0
0 es

)
, (x2, 5x

1.7
2 )T

)
.

The existence of a homogeneous Lyapunov function for a GAS homogeneous system
was provided in Rosier (1992); Zubov (1958 (in Russian)) by using weighted dilation.
The proof for any other kind of dilation is literally the same:

Theorem 2.18. (Rosier, 1992) For δ = 0, assume that the system (1) is d-
homogeneous with degree ν and the origin is GAS. Then there exists a d-homogeneous
positive definite Lyapunov function V ∈ C∞(Rn \ {0},R+) ∩ C0(Rn,R+), with degree
of homogeneity k > max{−ν, 0}, such that

〈DV (x), f(x, 0)〉 < 0, ∀x 6= 0. (7)

3. Robustness analysis of a homogeneous system with respect to
multiplicative perturbation

In this section, first, we will consider stable homogeneous systems, which are affine in
the external perturbations, and establish the conditions of uniform (robust) stability.
Next, we will analyze locally homogeneous dynamics by looking for similar properties.
And finally, a cascade connection will be investigated.

3.1. Robustness of FTS homogeneous systems

In this subsection we will study the system (1) satisfying the following hypotheses:

H1 : f(x, δ) = f1(x) + f2(x)δ, δ ∈ Rm.
H2 : f1 : Rn → Rn and f2 : Rn → Mn,m are continuous and d-homogeneous with

degree of homogeneity ν ∈ R for a monotone dilation d.
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H3 : The system ẋ = f(x, 0) is GAS.

Assumptions H1 and H2 imply that the function f is also d-homogeneous with
degree of homogeneity ν for any constant δ.

Theorem 3.1. Assume that the system (1) satisfies assumptions H1,H2 and H3.

• If ν ∈ R, then (1) is uniformly GAS for small inputs.
• If ν < 0, then (1) is

- uniformly GFTS for small inputs,
- finite-time strongly iISS (in the sense of Definition 2.6).

Proof. Step I: In this step we will prove the uniform GAS of (1) for any
ν ∈ R and small inputs δ. We assume that the system ẋ = f(x, 0) is GAS and d-
homogeneous. Then, Theorem 2.18 implies that there exists a d-homogeneous positive
definite Lyapunov function V ∈ C∞(Rn \ {0},R+) ∩ C0(Rn,R+) with degree of homo-
geneity k > max{−ν, 0}, such that (7) holds. Using Lemma 2.15 with V1(x) = ‖x‖d
and V2(x) = 〈DV (x).f(x, 0)〉, we get

〈DV (x), f(x, 0)〉 ≤ −a‖x‖k+νd , ∀x ∈ Rn, (8)

where a = min
‖y‖=1

[−〈DV (y), f(y, 0)〉] . Let x ∈ Rn and y ∈ S be such that y =

d(− ln(‖x‖d))x, then

〈DV (d(ln(‖x‖d))y), f2(d(ln(‖x‖d))y)δ〉
=
〈
ek ln(‖x‖d)d(− ln(‖x‖d))DV (y), eν ln(‖x‖d)d(ln(‖x‖d))f2(y)δ

〉
= ‖x‖ν+kd 〈DV (y), f2(y)δ〉

,

by using Cauchy-Schwarz inequality and (8), one gets

〈DV (x), f(x, δ)〉 = 〈DV (x), f(x, 0)〉+ 〈DV (d(ln(‖x‖d))y), f2(d(ln(‖x‖d))y)δ〉
= 〈DV (x), f(x, 0)〉+ ‖x‖k+νd 〈DV (y), f2(y)δ〉
≤ −a‖x‖k+νd + ‖x‖k+νd

〈
f2(y)TDV (y), δ

〉
≤ −a‖x‖k+νd + c‖x‖k+νd ‖δ‖,

(9)
with c = sup

‖y‖=1

∥∥f2(y)TDV (y)
∥∥ .

For ‖δ‖ ≤ a
2c , we have 〈DV (x), f(x, δ)〉 ≤ −a

2‖x‖
k+ν
d , which implies that the system

(1) with the assumptions H1,H2 and H3 is uniformly GAS for small inputs δ and
for every ν ∈ R.

Step II: ν < 0

(1) Recall that if ‖δ‖ ≤ a
2c , then V̇ (x(t)) = 〈DV (x(t)), f(x(t), δ(t))〉 ≤ −a

2‖x(t)‖k+νd .
Using the homogeneity of V, there exist v1 = min

‖x‖d=1

V (x), and v2 = max
‖x‖d=1

V (x)

such that

v1‖x‖kd ≤ V (x) ≤ v2‖x‖kd. (10)

Consequently, V̇ (x) = 〈DV (x), f(x, δ)〉 ≤ − a
2vα2

V (x)α, with 0 < α = k+ν
k < 1,

for all x ∈ Rn. This inequality and Proposition 2.2 imply the finite-time rate
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of convergence to the origin globally and uniformly with respect to such small
inputs δ.

(2) Let the function W be defined by:

W (x) = ln[1 + V (x)].

It is continuously differentiable, positive definite and radially unbounded, which
means that it is a Lyapunov function for (1) when δ = 0. The conditions k+ν > 0
and ν < 0 give

‖x‖k+νd ≤ v(‖x‖d), with v(s) =

{
1, if s ≤ 1
sk, if s ≥ 1

.

This implies that if ‖x‖d ≤ 1 then
‖x‖k+νd

1+V (x) ≤
v(‖x‖d)
1+V (x) ≤ 1. If ‖x‖d ≥ 1, then

‖x‖k+νd

1+V (x) ≤
‖x‖kd

1+v1‖x‖kd
≤ 1

v1
using (10). Therefore,

‖x‖k+νd

1 + V (x)
≤ max

{
1,

1

v1

}
= v3. (11)

Combining the properties (9) and (11) we obtain:

〈DW (x), f(x, δ)〉 ≤ −a ‖x‖
k+ν
d

1+V (x) + v3‖δ‖
≤ −a ‖x‖

k+ν
d

1+v2‖x‖d + v3‖δ‖,
≤ −α3(‖x‖d) + v3‖δ‖,

where α3(s) = a sk+ν

1+v2s
is a positive definite function. This implies the iISS prop-

erty for the system (1) (Definition 2.7). Recall that eW − 1 ≥W for any W ≥ 0,
select ε > 0, then

‖x‖d ≤ ε =⇒ a
‖x‖k+νd

1+v2εk
≤ a ‖x‖

k+ν
d

1+V (x)

=⇒ 〈DW (x), f(x, δ)〉 ≤ −a ‖x‖
k+ν
d

1+v2εk
+ v3‖δ‖

≤ −CV (x)
k+ν

k + v3‖δ‖
≤ −CW (x)α + v3‖δ‖,

with C = a

v
k+ν
k

2 (1+v2εk)
. The fact that 0 < α = k+ν

k < 1 and Theorem 2.9 imply

that the system (1) is finite-time iISS. Combining this result with the uniform
GFTS for small inputs proven previously (which is stronger than FTISS for small
inputs) we substantiates that the system (1) is finite-time strongly iISS.

The theorem is proven.

To conclude analysis of the system (1) given in this subsection, ISS and FTISS
conditions are formulated for generalized homogeneous systems with exogenous dis-
turbances (extending the result of (Bernuau, Polyakov, et al., 2013b)). These results
will be used in the last subsection to study the interconnected homogeneous systems
with different degrees of homogeneity.
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Theorem 3.2. Consider the system (1) with f ∈ C0(Rn+m,Rn), let
e−µsdx(−s)f(dx(s)x,dδ(s)δ) = f(x, δ), ∀s ∈ R, ∀x ∈ Rn and ∀δ ∈ Rm, where
dx and dδ are linear dilations, and the system (1) be GAS for δ = 0. Then, the system
(1) is ISS for all µ ∈ R, and FTISS if µ < 0.

Proof. Since the system ẋ = f(x, 0) is GAS and homogeneous, there exists a ho-
mogeneous Lyapunov function V such that the inequality (8) is satisfied, where k >
max {−µ, 0} is the degree of homogeneity of V and a = inf

‖x‖dx=1
[−〈DV (x), f(x, 0)〉] .

Let s = − ln(‖x‖dx) and x̃ = dx(s)x, using the inequality (8), we get

〈DV (x), f(x, δ)〉 ≤ ‖x‖µ+kdx

(
−a+ b sup

‖x̃‖dx=1
‖f(x̃,dδ(s)δ)− f(x̃, 0)‖

)

with b = sup
‖x‖dx=1

‖DV (x)‖ . The continuity of the function f implies that there exists

a constant c > 0 such that

‖x‖dx ≥ c−1‖δ‖dδ ⇐⇒ ‖dδ(s)δ‖dδ ≤ c =⇒ sup
‖x̃‖dx=1

‖f(x̃,dδ(s)δ)− f(x̃, 0)‖ ≤ a

2b

=⇒ 〈DV (x), f(x, δ)〉 ≤ −a
2
‖x‖µ+kdx

,

which due to (6) proves the ISS property of the system (1). If µ < 0, by applying the
arguments as before we deduce that the system (1) is FTISS.

3.2. Robustness of locally homogeneous systems

In this subsection, the robust stability will be investigated for a system, which admits
a homogeneous approximation either at 0 or at∞, and whose approximation dynamics
satisfy the assumptions H1,H2 and H3.

Theorem 3.3. Assume that ∀δ ∈ Rm, f(·, δ) is homogeneous in 0-limit with associ-
ated triple (ν0,d, f0(·, δ)) where f0 satisfies the assumptions H1,H2 and H3. Then,

(1) if ν0 ∈ R, the system (1) is uniformly AS for small inputs;
(2) if ν0 < 0, the system (1) is uniformly FTS for small inputs.

Proof. (1) We assume that the function f(·, δ) : Rn → Rn has a homogeneous
approximation f0(·, δ), i.e.

lim
s→−∞

‖e−ν0sd(−s)f(d(s)x, δ)− f0(x, δ)‖ = 0, ∀x ∈ S, ∀δ ∈ Rm. (12)

The function f0 satisfies the assumptions H1,H2 and H3. Similarly to the proof
of Theorem 3.1, there exists d-homogeneous Lyapunov function V of degree
k > max{−ν0, 0} and two positive constant a and c such that

〈DV (x), f0(x, δ)〉 ≤ −a‖x‖k+ν0d + c‖x‖k+ν0d ‖δ‖, ∀x ∈ Rn, ∀δ ∈ Rm.

Below we will use the coordinate transformation x = d(s)y with s = ln(‖x‖d),
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which connects any x ∈ Rn \ {0} with corresponding point y ∈ S, leading to

〈DV (x), f(x, δ)〉 = 〈DV (d(s)y), f(d(s)y, δ)〉
=

〈
eksd(−s)DV (y), f(d(s)y, δ)

〉
= e(k+ν0)s 〈DV (y), e−ν0sd(−s)f(d(s)y, δ)〉
= e(k+ν0)s 〈DV (y), f0(y, δ)〉
+ e(k+ν0)s 〈DV (y), (e−ν0sd(−s)f(d(s)y, δ)− f0(y, δ))〉
≤ ‖x‖k+ν0d (−a+ c‖δ‖)
+ ‖x‖k+ν0d 〈DV (y), (e−ν0sd(−s)f(d(s)y, δ)− f0(y, δ))〉 .

It is clear that s→ −∞ when ‖x‖d → 0 and the property (12) holds uniformly
on S, then it implies that we can define an open set containing the origin V =
{x ∈ Rn : x = d(s)y,∀y ∈ S,∀s < εa} such that εa ∈ R satisfies:〈

∂V

∂y
(y),

(
e−ν0sd(−s)f(d(s)y, δ)− f0(y, δ)

)〉
≤ a

2
, ∀y ∈ S, ∀s < εa.

Thus,

〈DV (x), f(x, δ)〉 ≤ −a
2
‖x‖k+ν0d + c‖x‖k+ν0d ‖δ‖, ∀x ∈ V, ∀δ ∈ Rm.

Therefore, for δ ∈ Rm such that ‖δ‖ ≤ a
4c we have

〈DV (x), f(x, δ)〉 ≤ −a
4
‖x‖k+ν0d , ∀x ∈ V.

This implies that the system (1) in V is uniformly AS for small inputs and for
any ν0 ∈ R.

(2) Note that if ν0 < 0 and the inputs are small (i.e., δ ∈ Rm, ‖δ‖ ≤ a
4c), then by

using (10), one gets

〈DV (x), f(x, δ)〉 ≤ −a
4
‖x‖k+ν0d ≤ − a

4vα2
V (x)α, ∀x ∈ V,

with 0 < α = k+ν0
k < 1. Then, the system preserves a uniform finite-time

rate of convergence to the origin locally.
That was necessary to prove.

Clearly, considering homogeneous approximation at 0 leads to a local version of
results established in Theorem 3.1. Less intuitive conclusions can be obtained for
approximation at ∞:

Theorem 3.4. Assume that ∀δ ∈ Rm, f(·, δ) is homogeneous in ∞−limit with respect
to the triple (ν∞,d, f∞(·, δ)) , where the function f∞ satisfies the assumptions H1,H2

and H3. Then,

(1) if ν∞ ∈ R, the system (1) is uniformly GFTS with respect to the set A =
{x ∈ Rn : ‖x‖d ≤ A} for some A > 0 and small inputs;

(2) if ν∞ < 0, the set A is iISS;
(3) if ν∞ > 0, the rate of convergence to the set A is uniform (independent on initial

conditions) for small inputs.
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Proof. (1) Repeating the arguments of Theorem 3.3, there is a Lyapunov function
V such that

〈DV (x), f(x, δ)〉 ≤ ‖x‖k+ν∞d (−a+ c‖δ‖)
+ ‖x‖k+ν∞d 〈DV (y), (e−ν∞sd(−s)f(d(s)y, δ)− f∞(y, δ))〉 .

Using the definition of f∞ and the fact that the limit of
〈DV (y), (e−ν∞sd(−s)f(d(s)y, δ)− f∞(y, δ))〉 goes to zero when s tends to
+∞, we deduce that there exists a positive constant A such that for all x ∈ Rn
and ∀δ ∈ Rm

‖x‖d > A, ‖δ‖ ≤ a

4c
=⇒ 〈DV (x), f(x, δ)〉 ≤ −a

4
‖x‖k+ν∞d .

This implication substantiates that the system (1) is uniformly GFTS with
respect to A = {x ∈ Rn : ‖x‖d ≤ A} for small inputs for all ν∞ ∈ R.

(2) If ν∞ < 0, we use the same Lyapunov function W (x) = ln(1 + V (x)) as above,
and we get

‖x‖d > A =⇒ 〈DW (x), f(x, δ)〉 ≤ −
a‖x‖k+ν∞d

2(1 + V (x))
+ c̃‖δ‖, c̃ > 0.

Then the system (1) is iISS with respect to A = {x ∈ Rn : ‖x‖d ≤ A} .
(3) If ν∞ > 0, one gets the relation:

‖x‖d > A, ‖δ‖ ≤ a

4c
=⇒ 〈DV (x), f(x, δ)〉 ≤ − a

4v
k+ν∞
k

2

V (x)
k+ν∞
k .

Recall that in this case k+ν∞
k > 1, denote V0 = V (x(0)), then we obtain the

following estimate on the trajectory of V (x(t)):

‖x‖d > A, ‖δ‖ ≤ a
4c =⇒ V (x(t)) ≤ 1V − ν∞k0 +

av

k+ν∞
k

2
4

ν∞
k
t

 k
ν∞
, for all V0,

=⇒ V (x(t)) ≤ 1 av

k+ν∞
k

2
4

ν∞
k
t

 k
ν∞
.

Define the ball B =
{
x ∈ Rn : V (x) ≤ v1Ak

}
, which means that B ⊂ A. Obvi-

ously, for small inputs the time of convergence to the set A is upper bounded by
T = 4k

aν∞v
ν∞
k

1 v
k+ν∞
k

2 Aν∞
and it is uniform (independent on initial conditions).

Example 3.5. Consider the system (1) with the vector field f given by

f((x, y), (δ1, δ2)) =

(
0 −yx2
x3 + y4 −y3 + x4

)[(
1
1

)
+

(
δ1
δ2

)]
,

for any δ ∈ Rm it is homogeneous in 0-limit with associated triple (2,d, f0) with
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d(s) =

(
es 0
0 es

)
and f0((x, y), (δ1, δ2)) =

(
0 −yx2
x3 −y3

)[(
1
1

)
+

(
δ1
δ2

)]
. For

the homogeneous Lyapunov function V (x, y) = 1
2x

2 + 1
2y

2, we get

〈DV (x, y), f0((x, y), (0, 0))〉 = −y4.

It follows that the origin for the system (ẋ, ẏ) = f0((x, y), (0, 0)) is GAS (using
Lasalle invariance principle). Then, according to Theorem 3.3 the system (ẋ, ẏ)T =
f((x, y), (δ1, δ2)) is uniformly GAS for small inputs.

Theorems 3.3 and 3.4 show that if a system has a homogeneous approximation,
which satisfies the assumptions H1,H2 and H3, then it preserves some finite-time
convergence even in the presence of exogenous inputs. These results will be used in
Section 4.

3.3. Robustness of finite-time stability of cascade

Now we will evaluate robustness of two serially connected systems, which are homo-
geneous with different degrees of homogeneity:

ẋ(t) = f(x(t), y(t)), (13)

ẏ(t) = g(y(t), δ(t)), (14)

where x(t) ∈ Rn, y(t) ∈ Rm are the state components and δ(t) ∈ Rp represents an
external input, δ ∈ L∞. Before studying the cascade (13), (14), we introduce the
following lemma, which gives the conditions for forward existence of solutions for the
system (13) with bounded inputs.

Lemma 3.6. If the system (13) satisfies the conditions H1,H2 with ν ≤ 0 and the
input y does not blow up in a finite time, then the solutions of the system (13) are
well-defined for all t ≥ 0.

Proof. By the imposed conditions f(x, y) = f1(x) + f2(x)y with d-homogeneous
vector fields f1 and f2 of degree ν. Select any positive definite and continuously dif-
ferentiable d-homogeneous function V of degree k > max{−ν, 0}, then the relations
(10) are satisfied. For any x ∈ Rn define s = ln(‖x‖d) and x̃ ∈ S such that x = d(s)x̃,
then by homogeneity of the function f2 we derive the estimates:

−‖y‖ sup
‖x̃‖d=1

‖f2(x̃)TDV (x̃)‖ ≤
〈
f2(x̃)TDV (x̃), y

〉
≤ ‖y‖ sup

‖x̃‖d=1
‖f2(x̃)TDV (x̃)‖.
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From this we obtain

〈DV (x), f(x, y)〉 = 〈DV (x), f1(x)〉+ 〈DV (x), f2(x)y〉
= 〈DV (d(s)x̃), f1(d(s)x̃)〉+ 〈DV (d(s)x̃), f2(d(s)x̃)y〉
= e(ν+k)s 〈DV (x̃), f1(x̃)〉+ e(ν+k)s 〈DV (x̃), f2(x̃)y〉
= ‖x‖ν+kd 〈DV (x̃), f1(x̃)〉+ ‖x‖ν+kd

〈
f2(x̃)TDV (x̃), y

〉
≤ ‖x‖ν+kd sup

‖x̃‖d=1
[〈DV (x̃), f1(x̃)〉]

+‖x‖ν+kd ‖y‖ sup
‖x̃‖d=1

‖f2(x̃)TDV (x̃)‖

= ‖x‖ν+kd (a+ c‖y‖) ,

(15)

and

〈DV (x), f(x, y)〉 = ‖x‖ν+kd

(
〈DV (x̃), f1(x̃)〉+

〈
f2(x̃)TDV (x̃), y

〉)
≥ ‖x‖ν+kd

(
inf
‖x̃‖d=1

[〈DV (x̃), f1(x̃)〉]

− ‖y‖ sup
‖x̃‖d=1

‖f2(x̃)TDV (x̃)‖

)
= ‖x‖ν+kd (a′ − c‖y‖) ,

(16)

where

a = sup
‖x̃‖d=1

[〈DV (x̃), f1(x̃)〉] , a′ = inf
‖x̃‖d=1

〈DV (x̃), f1(x̃)〉 ,

c = sup
‖x̃‖d=1

‖f2(x̃)TDV (x̃)‖.

From (15) and (16), the derivative of V for the system (13) satisfies the following
relations:

‖x(t)‖k+νd

(
a′ − c‖y‖[0,t)

)
≤ V̇ (t) = 〈DV (x(t)), f(x(t), y(t))〉 ≤ ‖x(t)‖k+νd

(
a+ c‖y‖[0,t)

)
,

on the time interval [0, t) for any finite t ≥ 0 for which the solution x(t) exists. Hence,
if ν < 0 then an upper estimate on the behavior of V (x(t)) can be obtained:

V̇ (x(τ)) ≤ (v−11 V (x(τ)))α
(
a+ c‖y‖[0,t)

)
for all τ ∈ [0, t) and for α = k+ν

k , or equivalently

V 1−α(x(t)) ≤ V 1−α(x0) + v−α1 (1− α)
(
a+ c‖y‖[0,t)

)
t, x0 ∈ Rn.

Note that the right-hand side is bounded for all t ≥ 0 provided that ‖y‖[0,t) is finite
(which is assumed in the conditions of the lemma). Therefore, V (t) is well-defined and
the solutions exists for any t ≥ 0.

Lemma 3.6 shows that if the degree of homogeneity ν is negative, then the solutions
of the system (13) can be extended to all t ≥ 0 provided that the system (14) possesses
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the same property.

Remark 1. For the system (13) as in Lemma 3.6, if the degree of homogeneity ν is
positive, then solutions of the system (13) may escape to infinity in a finite time for
some inputs y.

The main result of this subsection given bellow characterizes the robustness proper-
ties of the interconnection (13),(14) when the vector field f of the system (13) satisfies
the assumptions H1, H2, H3 and y represents filtered by (14) bounded exogenous
perturbation δ.

Theorem 3.7. If

(a) the vector field f satisfies the assumptions H1, H2 and H3 for ν < 0,
(b) the vector field g is chosen such that

e−µsdy(−s)g(dy(s)y,dδ(s)δ) = g(y, δ),

∀s ∈ R, ∀y ∈ Rm, ∀δ ∈ Rp and some µ ∈ R, where diag{dy(s),dδ(s)} forms a
generalized dilation,

(c) ẏ = g(y, 0) is GAS.

Then, the system (13),(14) is

• strongly iISS for every µ ∈ R,
• if µ < 0 FTISS for small inputs.

Proof. Since (b) and (c) are verified, by using Theorem 3.2, we conclude that (14)
is ISS for every µ ∈ R, and if µ < 0, then (14) is FTISS. According to (a) and using
theorems 3.1 and 2.10, we deduce that the system (13), (14) is strongly iISS.

To prove global FTISS property for small inputs if µ < 0, select any (x0, y0) ∈
Rn × Rm, and denote by z(t, z0) =

(
xT (t, x0, y), yT (t, y0, δ)

)T
the common solution

of the cascade for initial conditions z0 = (xT0 , y
T
0 )T . Theorem 3.1 implies that for

ν < 0 the system (13) is uniformly GFTS for small inputs, i.e., there exist m > 0 and
βx ∈ GKL such that

‖y‖[0,Tx(x0)) ≤ m =⇒ ‖x(t, x0, y)‖ ≤ βx(‖x0‖, t)
=⇒ lim

t→Tx(x0)
‖x(t, x0, y)‖ = 0

for all x0 ∈ Rn, where Tx : Rn → R+ is the settling-time function of the system (13).
The system (14) is FTISS if µ < 0, i.e., there exist βy ∈ GKL and σ ∈ K such that

‖y(t, y0, δ)‖ ≤ βy(‖y0‖, t) + σ(‖δ‖[0,t)) =⇒ supt≥Ty(y0) ‖y(t, y0, δ)‖ ≤ σ(‖δ‖∞)

for all y0 ∈ Rm and δ ∈ L∞, where Ty : Rn → R+ is the settling-time function of the
system (14).
Assume that ‖δ‖∞ ≤ σ−1(m2 ).
First case: If βy(‖y0‖, 0) ≤ m

2 , this implies that ‖y(t, y0, δ)‖ ≤ m, ∀t ≥ 0, then

lim
t→Tx(x0)

‖x(t, x0, y)‖ = 0.
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Consequently,

lim
t→max{Tx(x0),Ty(y0)}

‖z(t, z0)‖ ≤ lim
t→max{Tx(x0),Ty(y0)}

(‖x(t, x0, y)‖+ ‖y(t, y0, δ)‖)

≤ σ(‖δ‖∞).

Second case: Let βy(‖y0‖, 0) > m
2 , since βy ∈ GKL there exists Ty0 > 0 such that

t ≥ Ty0 =⇒ βy(‖y0‖, t) ≤
m

2
,

which implies that

‖y(t)‖ ≤ m, ∀t ≥ Ty0 ,

and, consequently, x(t, x0, y) will converges to zero provided that it is well defined for
t ∈ [0, Ty0 ]. Using the result of Lemma 3.6 we substantiate that the value x(Ty0 , x0, y)
is finite for any x0 ∈ Rn (see the estimate obtained in the proof), then

‖x(t, x(Ty0), y)‖ ≤ βx (‖x(Ty0)‖, t− Ty0) =⇒ lim
t→Tx(x(Ty0 ))+Ty0

‖x(t, x(Ty0), y)‖ = 0.

Which leads to

lim
t→max{Tx(x(Ty0 ))+Ty0 ,Ty(y0)}

‖z(t, z0)‖

≤ lim
t→max{Tx(x(Ty0 ))+Ty0 ,Ty(y0)}

(‖x(t, x0, y)‖+ ‖y(t, y0, δ)‖)

≤ σ(‖δ‖∞),

and the finite-time convergence is proven for small inputs. Applying the same argu-
ments the global boundedness of all trajectories can be established. Then we deduce
that the system (13),(14) is FTISS for small inputs for the case ν < 0 and µ < 0.

In the above theorem we also have shown that in the latter case the system (13),(14)
is uniformly globally FTS for small inputs.

The following corollary extends the above stability result to the interconnected
system (13),(14) when the vector field f of the system (13) has a homogeneous ap-
proximation.

Corollary 3.8. Assume that conditions (b) and (c) of Theorem 3.7 are satisfied, while
the condition (a) is replaced with

• f(·, y) is homogeneous in 0-limit (resp., ∞−limit) with associated triple
(ν0,d, f0(·, y)) (resp., (ν∞,d, f∞(·, y))), where d is a generalized linear dilation
and ν0 < 0 (resp., ν∞ < 0), and f0 (resp., f∞) satisfies the assumptions H1,H2

and H3.

Then, for µ < 0 the interconnected system (13),(14) is locally FTISS (resp., is FTISS
with respect to B = {(x, y) ∈ Rn × Rm : ‖x‖dx ≤ A, y = 0} for some A > 0) for small
inputs.

Proof. By using the conditions of Corollary 3.8 and Theorem 3.7 we deduce that the
system (14) is ISS. If ν0 < 0, from Theorem 3.3, the system (13) is uniformly FTS for
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small inputs. By using the same method as in the Step II of the proof of Theorem
3.7, we prove that if µ < 0, the interconnected system (13),(14) is locally FTISS for
small inputs.

Theorem 3.4 implies that, if we choose A > 0 sufficiently big, for all ‖x0‖ > A,
if ν∞ < 0, the system (13) is uniformly GFTS for small inputs to the set A =
{x ∈ Rn : ‖x‖dx ≤ A} . Using the same method as in the proof of Theorem 3.7 one
deduces that the set B is FTISS for small inputs for the interconnected system
(13),(14) when µ < 0.

Remark 2. Let instead of (14), we have

ẏ = g(y), (17)

where g is dy−homogeneous function with degree of homogeneity µ and the system
(17) is GAS. Then if ν < 0, the dynamical system (13),(17) is GAS for all µ ∈ R. If
ν < 0 and µ < 0 in the conditions of Theorem 3.7, then the system (13),(17) is GFTS.

In the next section, to illustrate the utility of these results we are going to analyze
the robustness of a finite-time observer with respect to time variations of its gains.

4. Application

In (Perruquetti et al., 2008) a finite-time observer is proposed for a nonlinear system
of the form:

ż = Az + f(ψ, u),
ψ = Cz,

where z ∈ Rn is the state, u ∈ Rm in a known input and ψ ∈ R is the measured
output, and the matrices

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 . . .
. . . 1

0 0 . . . . . . 0

 , C = (1, 0, · · · , 0)

are in a canonical representation. An observer for this system is designed as

˙̂z = Aẑ + f(ψ, u) +


k1|z1 − ẑ1|α1sign(z1 − ẑ1)
k2|z1 − ẑ1|α2sign(z1 − ẑ1)

...
kn|z1 − ẑ1|αnsign(z1 − ẑ1)

 ,

where ẑ ∈ Rn is an estimate of z, αi is a constant power and ki is a constant observer
gain for 1 ≤ i ≤ n. The dynamics of the estimation error e = z − ẑ can be written as
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follows: 

ė1 = e2 − k1|e1|α1sign(e1)
ė2 = e3 − k2|e1|α2sign(e1)
...
ėn−1 = en−1 − kn−1|e1|αn−1sign(e1)
ėn = −kn|e1|αnsign(e1)

(18)

To guarantee FTS of the system (18), the homogeneity framework is used (Perruquetti
et al., 2008) resulting in the choice αi = 1 + iα, 1 ≤ i ≤ n, where α > − 1

n is a tuning
parameter that represents the homogeneity degree of the system, for the dilation

dx(s) = diag[es, es(1+α), . . . , es(1+(n−1)α)].

The gains ki, 1 ≤ i ≤ n should be selected to form a Hurwitz polynomial.

4.1. Homogeneous affine nonlinear dynamical system

Our goal is to study the same problem with multiplicative disturbances introduced as
follows:

˙̂z = Aẑ + f(ψ, u) +


(k1 + y1)|z1 − ẑ1|1+αsign(z1 − ẑ1)
(k2 + y2)|z1 − ẑ1|1+2αsign(z1 − ẑ1)

...
(kn + yn)|z1 − ẑ1|1+nαsign(z1 − ẑ1)

 , (19)

where all symbols keep their meaning, and yi ∈ R, 1 ≤ i ≤ n represent variations of
the gains ki, 1 ≤ i ≤ n occurred due to an additional on-line tuning (via adaptation
algorithms) or due to an auxiliary measurement information (usually the values of ki
are related with the amplitude of uncertainty to compensate).

It is straightforward to verify that the error dynamics for (19) satisfies the hypothe-
ses H1 and H2 for f(e, y) = f1(e) + f2(e)y with

f1(e) =


−k1|e1|1+αsign(e1) + e2
−k2|e1|1+2αsign(e1) + e3

...
−kn|e1|1+nαsign(e1)

 ,

and

f2(e) = −diag[|e1|1+αsign(e1), . . . , |e1|1+nαsign(e1)],

and the functions f1 and f2 are dx-homogeneous with the same degree of homogeneity
α. Using the method proposed in (Perruquetti et al., 2008) it is possible to show that
AssumptionH3 is also verified for α sufficiently close to zero (of both signs). Therefore,
Theorem 3.1 allows us to conclude that the estimation error dynamics for the observer
(19) is uniformly GAS for small inputs for any α > − 1

n and it is strongly finite-time

iISS and uniformly GFTS for small inputs if α ∈ (− 1
n , 0).
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Figure 1. The solutions of the system (19) with the initial condition (x1,0, x2,0, x3,0) = (−1, 2, 1), y(t) =
(cos(t), t

1+t2
+ 2, 200 t

1+t2
+ cos(1 + t2))T and α = 1.

Let n = 3 and select k1 = 1000, k2 = 240, k3 = 24, then figures 1 and 2 show the
uniform GAS and GFTS of the state of the system (19) for different degrees α and
sufficiently small inputs y.

4.2. Interconnected system

In order to illustrate the results of Theorem 3.7 we will consider also the system (19)
in a cascade with

ẏ = g(y, δ), (20)

which may represent the adaptation algorithm influenced by a measurement noise or
a disturbance δ ∈ Rp (a stable filter).

For simulation with n = 3 let

g(y, δ) =

 y
1

3

2 − |y1|
1

2 sign(y1)

y3 − y1 − y
2

3

2 sign(y2)

−y
1

3

2 − |y3|
1

2 sign(y3) + δ

 ,

where g : R3×R 7−→ R3 is continuous and d-homogeneous with degree of homogeneity

µ = −1
3 , d(s) =


e

2

3
s 0 0 0

0 es 0 0

0 0 e
2

3
s 0

0 0 0 e
1

3
s

 and the system ẏ(t) = g(y(t), 0) is GAS.
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Figure 2. The solutions of the system (19) with the initial condition (x1,0, x2,0, x3,0) = (−1, 2, 1), y(t) =
(cos(t), t

1+t2
+ 2, 200 t

1+t2
+ cos(1 + t2))T and α = 0.7.

Then, if 1
n < α < 0, Theorem 3.7 implies that the systems (19), (20) in cascade are

finite-time ISS for small inputs and finite-time strongly iISS. From Figure 3 we see
that the state is bounded when inputs are bounded.

5. Conclusion

In this paper, we studied the robustness features of finite-time stable homogeneous
dynamical systems with respect to additive perturbations. Some extensions are estab-
lished for the systems admitting homogeneous approximations at the origin and at
infinity. Influence on robustness of additional dynamics in the input channel is also
investigated. The efficiency and practicality of the obtained conditions are demon-
strated by considering a homogeneous observer with the gains dependent on functions
of time, i.e., on additional measured information or adaptive tuning. Simulation results
and academic examples are included for illustration.
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