From triangles to curves

Monique Teillaud

To cite this version:

Monique Teillaud. From triangles to curves. EuroCG 2006-22nd European Workshop on Computational Geometry, Mar 2006, Delphi, Greece. hal-02934805

HAL Id: hal-02934805

https://hal.inria.fr/hal-02934805
Submitted on 9 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

From triangles to curves

Monique Teillaud

VI N sormanitaus

22nd European Workshop on Computational Geometry March 2006- $\Delta \varepsilon \lambda \varphi 0 i ́$

Warning

- focus on practical methods
- non exhaustive, biased
mostly (not only)

Warning

- focus on practical methods
- non exhaustive, biased
mostly (not only)

"Commercial": ECG book coming out soon...

Warning

- focus on practical methods
- non exhaustive, biased
mostly (not only)

Advice to people having some knowledge of Computer Algebra: you may leave the room

- non technical, superficial...

Circles are never far from triangles

Construction of curves from lines

Parabola: smooth connection between line segments

II. - Tracer, paralletement ì une droite donnée RR', une tangente a la parabote (fig. 107).

Abaisser du foyer F une perpendiculaire FM sur RR^{\prime}, puis elever une perpendiculaire QS au milieu de MF.
§ 93 . Raccord obtemu par un arede parabole. - Décrire ume parabole, el mener deux tangentes QC et QC^{\prime} (fig. 408); tracer la corde des contacts CO ', soit ED une tangente queleonque. Porter CD en QD_{1}, et joindre $\mathrm{D}_{1} \mathrm{E}$; constater que $\mathrm{D}_{1} \mathrm{E}$ est
 parallele is SC .

De cette constatation nous tirons la conclusion suivante:

$$
\frac{\mathrm{QD}_{1}}{\mathrm{QC}}=\frac{\mathrm{QE}}{\mathrm{QC}^{\prime}},
$$

que nous pouvons énoncer ainsi:
Les points d'intersection D et E partagent les tangentes QC et QG en segments proportionnels inversement placés par rapport au point Q .
Proposons-nous de raccorder par un are de parabole les deux directrices concourantes QC et QC^{\prime} (fg . 109) :
Partager les distances QC et QC' en un méme nombre de parties égales, cing par exemple, ef numéroter les points de division de

Construction of curves from lines

Parabola: smooth connection between line segments

248 GHADITRE II.

lune à partir du sommet, et de l'autre à partir du raccord ; joindre les points portant le même numéro.

Toutes les droites ainsi tracées seront tangentes à lare de parabole, et chaque contact se trouvera au milieu de la portion de
 raccord présentel'nvantage de ne pas offrir de brusque changement de direction, la courbure variant graduel-
lement du sommet aux points de raccordement.
Les cintres constituent de véritables raccordementss opérés entre deux pieds-droits, au moyen d'une courbe. Quand les pieds-droits ont même hauteur, on emploie un demi-cercle, ou une moitié d'ellipse donnée par le grand axe si le cintre est surhaussé, el par le petit, s'il est surbaissé. Quand les pieds-droits sont inégaux et paralleles, on se sert pour l'are pampant d'une demi-ellipse donnée par deux diamètres conjugués, mais si les pieds-droits ne sont ni égaux ni paralleles, le raccordement se fait suivant un are de parabole tracé comme il vient d'etre indiqué ci-dessus.

Construction of curves from lines

Triangles and curves

[Florence, 1997] Triangular period

Curves already appear for linear input

Bisecting curve
2D line segments arcs of parabolas

Curves already appear for linear input

Voronoi diagram
2D line segments arcs of parabolas
(C)Karavelas - CGAL

Curves already appear for linear input

Voronoi diagram
3D line segments
patches of quadric surfaces

More generally:
manipulations of algebraic curves and surfaces

More generally:

manipulations of algebraic curves and surfaces

Only considered here Exact Geometric Computation
[Yap][...]

Why we should not be afraid of Computer Algebra

- useful
- interesting
- not so hard to understand

Why we should not be afraid of Computer Algebra

- useful
- interesting
- not so hard to understand
- people are nice

Why we should not be afraid of Computer Algebra

 trying to convice myself...- useful
- interesting
- not so hard to understand (?)
- some people are nice

One tool: Resultant

Resultant of a system of polynomial equations
= necessary and sufficient condition such that it has a root.

One tool: Resultant

Resultant of a system of polynomial equations
$=$ necessary and sufficient condition
such that it has a root.

How to compute the resultant?
hard problem

Sylvester resultant

Univariate case

$$
\left\{\begin{aligned}
P & =a_{0} x^{m}+\cdots+a_{m} \\
Q & =b_{0} x^{n}+\cdots+b_{n}
\end{aligned}\right.
$$

$a_{0} \neq 0, b_{0} \neq 0, m>n$, coefficients in a field \mathbb{K} (algebraically closed).

Sylvester resultant

$\left\{\begin{array}{l}P=a_{0} x^{m}+\cdots+a_{m} \\ Q=b_{0} x^{n}+\cdots+b_{n} \\ Q\end{array}\left|\begin{array}{cccccccccc}a_{0} & & & & & & b_{0} & & & \\ a_{1} & a_{0} & & & & & b_{1} & b_{0} & & \\ & a_{1} & \ddots & & & & & b_{1} & \ddots & \\ & & \ddots & \ddots & & & & & \ddots & b_{0} \\ \vdots & & & \ddots & \ddots & & \vdots & & & b_{1} \\ & \vdots & & & \ddots & a_{0} & & \vdots & & \\ \vdots & & \vdots & & & a_{1} & \vdots & & \vdots & \\ a_{m} & & \vdots & & \vdots & & \vdots & & \vdots & \\ & a_{m} & & \vdots & & \vdots & & \vdots & & \vdots \\ & & \ddots & & \vdots & & b_{n} & & \vdots & \\ & & & \ddots & & \vdots & & b_{n} & & \vdots \\ & & & & \ddots & & & & \ddots & \\ & & & & & a_{m} & & & & b_{n}\end{array}\right|\right.$

Sylvester resultant

Demystifying Resultant - I

$$
\left\{\begin{array}{l}
a x+b y-c=0 \\
d x+e y-f=0
\end{array}\right.
$$

seen as: x unknown, y parameter

Demystifying Resultant - I

$$
\left\{\begin{array}{l}
a x+b y-c=0 \\
d x+e y-f=0
\end{array}\right.
$$

seen as: x unknown, y parameter

$$
\text { Sylvester Resultant }=\left|\begin{array}{cc}
a & d \\
\text { by }-c & \text { ey }-f
\end{array}\right|
$$

Demystifying Resultant - I

$$
\left\{\begin{array}{l}
a x+b y-c=0 \\
d x+e y-f=0
\end{array}\right.
$$

seen as: x unknown, y parameter

$$
\begin{aligned}
\text { Sylvester Resultant } & =\left|\begin{array}{cc}
a & d \\
b y-c & e y-f
\end{array}\right| \\
& =a(e y-f)-d(b y-c)
\end{aligned}
$$

Boils down to eliminate x

Demystifying Resultant - II

p, q, s three points in the plane, t a fourth point.

Is t lying on the circle $\mathcal{C}_{\text {pqs }}$?

Demystifying Resultant - II

t on $\mathcal{C}_{p q s}$

$\mathcal{C}_{\text {pqs }}$ center $\left(x_{c}, y_{c}\right)$ radius r

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=r^{2}
$$

$$
\text { iff }\left\{\begin{array}{l}
2 x_{p} x_{c}+2 y_{p} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{p}^{2}+y_{p}^{2}\right)=0 \\
2 x_{q} x_{c}+2 y_{q} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{q}^{2}+y_{q}^{2}\right)=0 \\
2 x_{s} x_{c}+2 y_{s} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{s}^{2}+y_{s}^{2}\right)=0 \\
2 x_{t} x_{c}+2 y_{t} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{t}^{2}+y_{t}^{2}\right)=0
\end{array}\right.
$$

Demystifying Resultant - II

t on $\mathcal{C}_{\text {pqs }}$

$$
\text { iff }\left\{\begin{array}{l}
2 x_{p} X+2 y_{p} Y+R-\left(x_{p}^{2}+y_{p}^{2}\right) Z=0 \\
2 x_{q} X+2 y_{q} Y+R-\left(x_{q}^{2}+y_{q}^{2}\right) Z=0 \\
2 x_{s} X+2 y_{s} Y+R-\left(x_{s}^{2}+y_{s}^{2}\right) Z=0 \\
2 x_{t} X+2 y_{t} Y+R-\left(x_{t}^{2}+y_{t}^{2}\right) Z=0
\end{array}\right.
$$

has a non-trivial solution (X, Y, R, Z) and

$$
\begin{aligned}
& X / Z=x_{c} \\
& Y / Z=y_{c} \\
& R / Z=r^{2}-x_{c}^{2}-y_{c}^{2}
\end{aligned}
$$

Demystifying Resultant - II

$$
\text { iff }\left\{\begin{array}{l}
2 x_{p} x_{c}+2 y_{p} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{p}^{2}+y_{p}^{2}\right)=0 \\
2 x_{q} x_{c}+2 y_{q} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{q}^{2}+y_{q}^{2}\right)=0 \\
2 x_{s} x_{c}+2 y_{s} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{s}^{2}+y_{s}^{2}\right)=0 \\
2 x_{t} x_{c}+2 y_{t} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{t}^{2}+y_{t}^{2}\right)=0
\end{array}\right.
$$

$$
\text { iff }\left|\begin{array}{cccc}
x_{p} & y_{p} & 1 & x_{p}^{2}+y_{p}^{2} \\
x_{q} & y_{q} & 1 & x_{q}^{2}+y_{q}^{2} \\
x_{s} & y_{s} & 1 & x_{s}^{2}+y_{s}^{2} \\
x_{t} & y_{t} & 1 & x_{t}^{2}+y_{t}^{2}
\end{array}\right|=0
$$

Demystifying Resultant - II

$$
\text { iff } \begin{cases}2 x_{p} x_{c}+2 y_{p} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{p}^{2}+y_{p}^{2}\right) & =0 \\ 2 x_{q} x_{c}+2 y_{q} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{q}^{2}+y_{q}^{2}\right)=0 \\ 2 x_{s} x_{c}+2 y_{s} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{s}^{2}+y_{s}^{2}\right) & =0 \\ 2 x_{t} x_{c}+2 y_{t} y_{c}+\left(r^{2}-x_{c}^{2}-y_{c}^{2}\right)-\left(x_{t}^{2}+y_{t}^{2}\right) & =0\end{cases}
$$

$$
\text { iff }\left|\begin{array}{llll}
x_{p} & y_{p} & 1 & x_{p}^{2}+y_{p}^{2} \\
x_{q} & y_{q} & 1 & x_{q}^{2}+y_{q}^{2} \\
x_{s} & y_{s} & 1 & x_{s}^{2}+y_{s}^{2} \\
x_{t} & y_{t} & 1 & x_{t}^{2}+y_{t}^{2}
\end{array}\right|=0
$$

= resultant of the system
Allows to eliminate x_{c}, y_{c}, r^{2}

Resultant

- Resultant often used in simple cases without noticing

Resultant

- Resultant often used in simple cases without noticing
- Linear algebra helps solve non-linear problems

Digression on algebraic degree

One measure of efficiency and precision of a predicate: algebraic degree

Digression on algebraic degree

If predicate $=$ sign of a resultant
Resultant has minimal degree \Longrightarrow optimal predicate?

Digression on algebraic degree

If predicate $=$ sign of a resultant
Resultant has minimal degree \Longrightarrow optimal predicate?
No:

- methods often return a multiple of the resultant \longrightarrow resultant hard to compute

Digression on algebraic degree

If predicate = sign of a resultant
Resultant has minimal degree \Longrightarrow optimal predicate?
No:

- methods often return a multiple of the resultant
\longrightarrow resultant hard to compute
- the resultant may be factored
\longrightarrow predicate can have a lower degree

Digression on algebraic degree

If predicate = sign of a resultant
Resultant has minimal degree \Longrightarrow optimal predicate?
No:

- methods often return a multiple of the resultant \longrightarrow resultant hard to compute
- the resultant may be factored
\longrightarrow predicate can have a lower degree
- a factor may be $P^{2}+Q^{2}$
\longrightarrow the degree does not mean so much

Digression on algebraic degree

- filtering techniques used for efficiency
\longrightarrow maybe not such an interesting measure ?

Digression on algebraic degree

- Degree of a predicate
\longrightarrow not trivial
- Degree of an algorithm
\longrightarrow depends on the algebraic expressions of predicates
- Degree of a geometric problem
\longrightarrow ?

Digression \mapsto thread

Another tool: Sturm sequences

$$
\mathcal{P}=P_{0}, P_{1}, \ldots, P_{d} \in \mathbb{R}[X]
$$

$$
\alpha, \beta \in \mathbb{R} \cup\{-\infty,+\infty\}
$$

$\operatorname{Var}(\mathcal{P} ; \alpha)=$ number of sign variations in the sequence $P_{0}(\alpha), P_{1}(\alpha), \ldots, P_{d}(\alpha)$

$$
\operatorname{Var}(\mathcal{P} ; \alpha, \beta)=\operatorname{Var}(\mathcal{P} ; \alpha)-\operatorname{Var}(\mathcal{P} ; \beta)
$$

Sturm sequences

$P, Q \in \mathbb{K}[X]$ signed remainder sequence of P and $Q=$ sequence $\mathcal{S}(P, Q)$: $P_{0}, P_{1}, \ldots, P_{k}$

$$
\begin{aligned}
P_{0} & =P \\
P_{1} & =Q \\
P_{2} & =-\operatorname{Rem}\left(P_{0}, P_{1}\right) \\
& \vdots \\
P_{k} & =-\operatorname{Rem}\left(P_{k-2}, P_{k-1}\right) \\
P_{k+1} & =-\operatorname{Rem}\left(P_{k-1}, P_{k}\right)=0
\end{aligned}
$$

where
$\operatorname{Rem}(A, B)=$ remainder of the Euclidean division of A by B

Sturm sequences

Sturm sequence of $P=$ sequence $\mathcal{S}\left(P, P^{\prime}\right)$ of signed reminders of P and P^{\prime}

$$
\operatorname{Var}\left(\mathcal{S}\left(P, P^{\prime}\right) ; \alpha, \beta\right)
$$

is the number of roots of P in the interval $[\alpha, \beta]$

Sturm sequences for dummies

Sturm sequences for dummioc by a dummy

$$
P=a X^{2}+b X+c
$$

$$
\begin{aligned}
& P^{\prime}=2 a X+b \\
& P=P^{\prime} \cdot\left(\frac{X}{2}+\frac{b}{4 a}\right)-\left(\frac{b^{2}}{4 a}-c\right)
\end{aligned}
$$

Sturm sequences fordummios by a dummy

$$
P=a X^{2}+b X+c
$$

$$
\begin{aligned}
& P^{\prime}=2 a X+b \\
& P=P^{\prime} \cdot\left(\frac{X}{2}+\frac{b}{4 a}\right)-\left(\frac{b^{2}}{4 a}-c\right) \\
& P_{0}=P, P_{1}=P^{\prime}, P_{2}=\Delta \\
& \text { if } \Delta>0 \quad \\
& \qquad \begin{array}{l}
\alpha=-\infty, \beta=+\infty \\
\\
\quad \operatorname{Var}(\mathcal{P} ; \alpha)=2 \\
\operatorname{Var}(\mathcal{P} ; \beta)=0
\end{array}
\end{aligned}
$$

2 roots

Sturm sequences

Sequence $\mathcal{S}\left(P, P^{\prime} Q\right)$ of signed reminders of P and $P^{\prime} Q$ counts the number of roots of P at which Q is positive

Sturm sequences allow to compare roots of P and Q

Comparing intersection points

signs of
polynomial expressions

Comparing intersection points

signs of polynomial expressions

comparison of
algebraic numbers

Comparing intersection points

signs of polynomial expressions

comparison of
algebraic numbers
Sturm sequences
signs of
polynomial expressions

Practical efficiency

Arithmetic filters for sign computations:

> Approximate evaluation $P^{a}(x)$ + Error ε

Exact geometric computation \neq Exact arithmetics

Practical efficiency

Comparison of algebraic numbers of degree 2 :

polynomial expressions pre-computed static Sturm sequences

Algebra is not just "computations"

it has a meaning...!

$K=0 \Longleftrightarrow I_{1}, r_{1}, I_{2}, r_{2}$ harmonic division

Algebra is not just "computations"

it has a meaning...!

$K=0 \Longleftrightarrow I_{1}, r_{1}, I_{2}, r_{2}$ harmonic division

- Geometric interpretation in more complicated cases...?

Algebra is not just "computations"

it has a meaning...!

$K=0 \Longleftrightarrow I_{1}, r_{1}, I_{2}, r_{2}$ harmonic division

- Geometric interpretation in more complicated cases...?
- Optimal degree...?

Computational Geometry -Algorithoms Library
Open Source Project
www.cgal.org

Computational Geometry -Algorithoms Library
Open Source Project
www.cgal.org

Release 3.2 soon

Computational Geometry -Algorithoms Library
Open Source Project
www.cgal.org

Release 3.2 soon
Exclusive news: Out before Microsoft new OS!

Computational Geometry -Algorithoms Library
Open Source Project
www.cgal.org

Release 3.2 soon

- new: 2D Circular Kernel manipulations of circular arcs

Computational Geometry -Algorithoms Library
Open Source Project
www.cgal.org

Release 3.2 soon

- new: 2D Circular Kernel manipulations of circular arcs
- Arrangement package redesigned
- ...

VLSI - CAD

Intersection of two quadrics Q_{S} and Q_{T}

Levin's pencil method

- find a "good" quadric in the pencil $Q_{R(\lambda)=\lambda S-T}$ λ root of degree 3 pol.
- Diagonalize $R(\lambda)$.

Eigenvalues $=$ roots of degree 2 pol. $\in \mathbb{Q}(\lambda)$. Normalize eigenvectors.

- Plug the parameterization of $Q_{R}(\lambda)$ in Q_{T}.
Degree 2 in one of the parameters. Solve
"good" = simple ruled

principal subdeterminant $=0$

Intersection of two quadrics Q_{S} and Q_{T}

Levin's pencil method

- find a "good" quadric in the pencil $Q_{R(\lambda)=\lambda S-T}$ λ root of degree 3 pol.
- Diagonalize $R(\lambda)$.

Eigenvalues $=$ roots of degree 2 pol. $\in \mathbb{Q}(\lambda)$. Normalize eigenvectors.

- Plug the parameterization of $Q_{R}(\lambda)$ in Q_{T}.
Degree 2 in one of the parameters. Solve

Improvement

- work in \mathbb{P}^{3}
- Relax the constraint on
$Q_{R(\lambda)}$
Rational, ruled.
- Apply Gauss reduction of the quadratic form:
$P^{T} R P$ diagonal.
Rational transformation.
- Plug the parameterization in Q_{T}.
Degree 2 in one of the parameters. Solve

Intersection of quadrics

Levin's pencil method
$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{V}}}}}$
New parameterization - rational when it exists, involves $\sqrt{\text { pol. otherwise. }}$

- quasi-optimal in $\sqrt{ }$.

Implemented

(C) Dupont et al

Arrangement of quadrics

Projection approach

Planar arrangement of curves of degree 4
a curve can have 6 singular points
Sort out (upper, lower) \rightarrow arrangement on each quadric
Surfacic approach

Arrangement of quadrics

Sweeping approach

Sweeping plane:
Trapezoidal map of evolving conics

Volumic approach: vertical decomposition

Arrangement of quadrics

Sweeping approach

Events:

- new quadric
- features in the map intersect

Arrangement of quadrics

Sweeping approach

Events:

- new quadric
- features in the map intersect
worst-case

x solution of
$\exists y, z_{1}, z_{2}$ s.t. $\left\{\begin{array}{l}Q_{i}\left(x, y, z_{1}\right)=0 \\ Q_{j}\left(x, y, z_{1}\right)=0\end{array}\right.$ and $\left\{\begin{array}{l}Q_{k}\left(x, y, z_{2}\right)=0 \\ Q_{l}\left(x, y, z_{2}\right)=0\end{array}\right.$
x in an extension field of degree 16

Arrangement of quadrics

Sweeping approach

Events:

- new quadric
- features in the map intersect
worst-case

x solution of
$\exists y, z_{1}, z_{2}$ s.t. $\left\{\begin{array}{l}Q_{i}\left(x, y, z_{1}\right)=0 \\ Q_{j}\left(x, y, z_{1}\right)=0\end{array}\right.$ and $\left\{\begin{array}{l}Q_{k}\left(x, y, z_{2}\right)=0 \\ Q_{l}\left(x, y, z_{2}\right)=0\end{array}\right.$
x in an extension field of degree 16
Comparison of events: difference of events in an extension field of degree 256...
- Optimal degree...?

Apollonius diagram

Additively weighted Voronoi diagram
Weighted points $\sigma_{i}=\left(p_{i}, r_{i}\right), p_{i} \in \mathbb{R}^{2}, r_{i} \in \mathbb{R}$

$$
\delta_{i}(x)=\left\|x-p_{i}\right\|-r_{i}
$$

Apollonius diagram

Additively weighted Voronoi diagram
Weighted points $\sigma_{i}=\left(p_{i}, r_{i}\right), p_{i} \in \mathbb{R}^{2}, r_{i} \in \mathbb{R}$

\[

\]

Apollonius diagram

Additively weighted Voronoi diagram
Weighted points $\sigma_{i}=\left(p_{i}, r_{i}\right), p_{i} \in \mathbb{R}^{2}, r_{i} \in \mathbb{R}$

\[

\]

Apollonius diagram = lower envelope of the half-cones.
Bisector of σ_{i} and $\sigma_{j}=$ projection of a plane conic section $C_{i} \cap C_{j}$.

Apollonius diagram

Additively weighted Voronoi diagram
Weighted points $\sigma_{i}=\left(p_{i}, r_{i}\right), p_{i} \in \mathbb{R}^{2}, r_{i} \in \mathbb{R}$

\[

\]

Apollonius diagram = lower envelope of the half-cones.
Bisector of σ_{i} and $\sigma_{j}=$ projection of a plane conic section $C_{i} \cap C_{j}$.
Σ_{i} sphere $\subset \mathbb{R}^{3}$, center $\left(p_{i}, r_{i}\right)$ radius $\sqrt{2} r_{i}$

Apollonius diagram

Additively weighted Voronoi diagram
Weighted points $\sigma_{i}=\left(p_{i}, r_{i}\right), p_{i} \in \mathbb{R}^{2}, r_{i} \in \mathbb{R}$

\[

\]

Apollonius diagram = lower envelope of the half-cones.
Bisector of σ_{i} and $\sigma_{j}=$ projection of a plane conic section $C_{i} \cap C_{j}$.
Σ_{i} sphere $\subset \mathbb{R}^{3}$, center $\left(p_{i}, r_{i}\right)$ radius $\sqrt{2} r_{i}$
X_{i} projection of x onto C_{i}

$$
\left.x \in A\left(\sigma_{i}\right) \text { iff }\left\|x-p_{i}\right\|-r_{i}<\left\|x-p_{j}\right\|-r_{j}\right)
$$

Apollonius diagram

Additively weighted Voronoi diagram
Weighted points $\sigma_{i}=\left(p_{i}, r_{i}\right), p_{i} \in \mathbb{R}^{2}, r_{i} \in \mathbb{R}$

\[

\]

Apollonius diagram = lower envelope of the half-cones.
Bisector of σ_{i} and $\sigma_{j}=$ projection of a plane conic section $C_{i} \cap C_{j}$.
Σ_{i} sphere $\subset \mathbb{R}^{3}$, center $\left(p_{i}, r_{i}\right)$ radius $\sqrt{2} r_{i}$
$A\left(\sigma_{i}\right)=$ projection of the intersection of the half-cone C_{i} with the power region of Σ_{i}

Tricky predicates Degree 16

Tricky predicates
Degree 16

- Implementation degree 20: degree 16 requires ~ 100 times as many arithmetic operations...
- Optimal degree...?

Challenges

- theoretical: questions on degree...

Challenges

- theoretical: questions on degree...
- Robust (Exact?) computation on higher degree curves and surfaces

Challenges

- theoretical: questions on degree...
- Robust (Exact?) computation on higher degree curves and surfaces
- Improvement of practical efficiency for low degree curves CAD-VLSI (circular arcs):
~ 10 times slower than industrial non-robust code good start!

Challenges

- Applications to Structural biology Manipulations of a large number of spheres (low degree surfaces...)

(C) Halperin et al.

$\varepsilon v \chi \alpha \rho \iota \sigma \tau \omega$

Material taken from:

- Greece

National University of Athens
University of Crete

- Germany

Max-Planck Institut für Informatik Universität des Saarlandes

- Israel

Tel-Aviv University

- France

Loria
INRIA Sophia Antipolis

$\varepsilon v \chi \alpha \rho \iota \sigma \tau \omega$

Par Pachacamactie soleil /uiobejif. Vitelvitelqu'onles deivre \dot{d} Yinstant!

