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Medical image information representation: 
Gabor Filter solution for the Big Data.    

N. Bourkache, Sahbi Sidhom., and M. Laghrouche. 

 
Abstract—In the health field, several thousand images are generated every day in medical imaging establishments. The 
volume of information involved is still far from being fully controlled. On the other hand, the development of machine learning 
tools today opens the way to a new generation of image analysis in this context of "BigData". Moreover, our approach is part of 
this research dynamic. In order to test the robustness of our algorithm and its degree of adaptation to BigData, we tested, in a 
first phase of analysis, our algorithm on an image-database containing 320 mammograms. The precision obtained is estimated 
at 75% for a recall of 33%. In a second analysis phase, we performed the test on an image data-base containing 1000 medical 
images. The precision obtained is estimated at nearly 70% for a recall of 33%. Although the precision obtained in this first step 
is far from perfect, our processing algorithm remains promising and shows a good adaptation to the management of "Digdata 
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——————————      —————————— 

1 INTRODUCTION

URRENTLY, the number of medical imaging exams is 
estimated to be close to 4 billion per year worldwide. 

If we take the example of cancer, we see that imaging is 
closely linked, even essential, in all phases: Diagnosis, 
treatment and follow-up after treatment. In this area, the 
interest of imagery is paramount. Because, early detection 
(by imaging) may well reveal anomalies that predict im-
minent cancer! in such cases, and in order for appropriate 
measures to be taken early, it is desirable that the conclu-
sion of the radiologist is as precise as possible. In this 
context, Computer Aided Diagnosis (CAD) systems are 
essential and then help in decision-making. In this article, 
we will present our medical imagery analysis tool based 
on Gabor wavelets. 

2 RELATED WORKS 
Since the 1980s, image analysis tools have been con-

stantly evolving. Particularly, the CBIRS (Content-Based 
Image Retrieval System) take an important place and 
involves the interest of the scientific community since the 
90s. In this type of systems, the image analysis is based on 
the extraction of the morphological features of the image 
namely: Color, shape, or texture. In the medical field (es-
pecially in cancer screening), recent work is mainly ori-
ented towards diagnostic assistance and decision-making. 
We find in [1] [2] [3] Classification algorithms of Lung 
Nodules into Benign or Malignant represented in a CBIR 
System. in CT scans (Computed Tomography) several 

methods in images classification and analysis are pro-
posed.  For example, [4] propose a classification and 
analysis of pulmonary nodules in CT images using ran-
dom forest. In prostate cancer diagnosis, [5] offers a can-
cer classification based in genetic algorithm. In breast 
cancer, [6] present a new method based on the expert 
annotation and automatic selection of cell types by their 
transcriptome profiles. [7] offers a similarity measure 
method for mammogram retrieval. For large data vol-
umes of the order of BigData, several approaches are 
proposed [8] [9] [10]. 

3 RESEARCH WORK 
 
in this paper we represent our image analysis algorithm 
based on the extraction of morphological features (digital 
signature) from medical images. the objective of this work 
is to provide a learning tool and diagnostic aid in breast 
cancer. 

 
3.1 Gabor Filter Algorithm in image processing: 

Texture representation 
 

In this approach, we had chosen to study the texture pa-
rameter to be able to construct the digital component of 
images. Parameters will be collected in the form of a vec-
tor, called "texture vector" or "digital signature" This one 
should be not sensitive to image transformations: particu-
larly for translation and rotation of the image.  For this 
important reason, we have chosen in our study the coding 
by Gabor wavelets. 
As illustration cf. Fig. 1, the main algorithm for image 
indexing applying the Gabor filter Model. 
This architecture represents the principal steps of features 
image representation.  

———————————————— 
• N.B. is with the University of Mouloud Mammeri (Tizi-Ouzou) & LAMPA 

Lab., Algeria. E-mail: nourbourkache@yahoo.fr 
• S.S. is with the University of Lorraine (Nancy) & LORIA Lab., France. E-

mail: sahbi.sidhom@loria.fr 
• M.L. is with the University of Mouloud Mammeri (Tizi-Ouzou) & LAM-

PA Lab., Algeria. E-mail: larouche_67@yahoo.fr 
 

 

C



2  

 

 
Practically, the Gabor wavelet proves to be an interest-

ing tool for texture analysis applied to image and it is 
largely adopted in performance measures. 
 

3.2 Gabor Filter analysis 
 
For an image I(x, y) having dimensions MxN, its con-

version into discrete Gabor Wavelet is given by the fol-
lowing convolution formula:  
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After applying the Gabor filter to the image with vari-
ous orientations and levels of filtering, we get two com-
puted formula of σmn (average) and μmn (standard de-
viation): 
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The values of σmn and μmn represent the components 
of the characteristics vector (V).  Thus, for four orienta-
tions and five scales, this vector V had the following for-
mula: 

( )3,43,41,01,00,00,0 ,,......,,,, σμσμσμ=V  (6) 

At this level, images are represented by the characteris-
tic vectors in the space of numeric attributes.  

3.3 Searching step  
The research phase, the similarity measure between 

images is defined by a set of distances in the same defined 
space. 

The similarities are computed with the image-query Q 
and the image-targets T (Stored in the image-database) 
using for each vector values the distance D(Q,T) using the 
formula:  
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m n
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  where: 
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               The fig. 2, illustrates the various steps of the 
search process.  The extraction of image characteristics is 
always carried out by the Gabor Filter Model applied to 
the query image. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flowchart of the main algorithm for image indexing applying
the Gabor (filter) Model. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Principal steps of the Information Retreival (IR) process 
by image content: application of the Gabor Filter Model. 
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4   CORPUS D'ANALYSE ET RÉSULTATS. 
Dans notre première phase de test, nous avons réalisé 

une analyse sur 320 Mammographies. L’étude de perfor-
mances basée sur l’estimation de la précision en fonction 
du rappel a donné les résultats obtenus sont illustrés dans 
la table 1 et la figure.3  

4.1 Analysis Corpus and results. 
In our first test phase, we performed an analysis on 320 

mammograms. The performance study based on the es-
timation of precisions according to the recall. the results 
obtained are illustrated in table 1 and fig. 3. 

 

In the second test phase, we performed an analysis on a 
corpus of 1000 medical images. The results obtained are 
illustrated in Table. 2 and Fig 4. 

 
 
 
 
 
 
 
 
 
 

From results we note that the transition from our 1st 
corpus of images (320 mammograms) to the 2nd corpus 
(1000 medical images) has relatively affected the average 
values of the precision obtained. If we take for example 
the three reference values given in table 2, we see that the 
values of the average precisions have dropped a little 
compared to those obtained in table 1. However, we also 
find that tripling the corpus of images (going from 320 
images to 1000 images) has not weakened the perfor-
mance of our system too much. This encourages us to 
process a larger corpus or even the transition to pro-
cessing Big Data. 

 

5 CONCLUSION AND PERSPECTIVES 
In this work, we were able to apply the Gabor filter to 

different corpora of images (on the number side as well as 
the homogeneity side) the performances obtained are not 
perfect at this level. On the other hand, the observations 
made allow us to take a correct path in the treatment of 
Bigdata. Moreover, since the low-level analysis of an image 
by the Gabor filter is carried out pixel by pixel, the pro-
cessing time is relatively considerable for large image cor-
pora. Even if major processing is done offline, the transition 
to BigData can, a priori, impose a more demanding compu-
ting time! to overcome this requirement, we are thinking of 

TABLE 2 
AVERAGE REFERENCE VALUES OBTAINED IN THE SECOND 

TEST PHASE 

 
 
 
 
 

 
 
 

 
 

 

TABLE 1 
AVERAGE REFERENCE VALUES OBTAINED IN THE FIRST 

TEST PHASE 

 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3. Representation of the average values of the precisions 
according to the recall of the 1st test phase 

 

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. Representation of the average values of the precisions 
according to the recall of the 2nd test phase 
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carrying out the processing on supercomputers (clusters) 
where each node of the cluster is responsible for pro-
cessing, in parallel with the other nodes, a well-defined 
part of the global corpus. We then envisage carrying out 
this task in other work to come. 
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