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Abstract—Discovering disjointness axioms is a very important
task in ontology learning and knowledge base enrichment. To
help overcome the knowledge-acquisition bottleneck, we propose
a grammar-based genetic programming method for mining OWL
class disjointness axioms from the Web of data. The effectiveness
of the method is evaluated by sampling a large RDF dataset for
training and testing the discovered axioms on the full dataset.
First, we applied Grammatical Evolution to discover axioms
based on a random sample of DBpedia, a large open knowl-
edge graph consisting of billions of elementary assertions (RDF
triples). Then, the discovered axioms are tested for accuracy on
the whole DBpedia. We carried out experiments with different
parameter settings and analyze output results as well as suggest
extensions.

Index Terms—Ontology Learning, OWL Axiom, Disjointness
Axiom, Grammatical Evolution

I. INTRODUCTION

There is a significant increase in research interest about de-

tecting disjointness between concepts in knowledge bases. In

terms of an ontology [1], [2], viewed as a formal representation

of a shared domain of knowledge, the incompatibility between

pairs of concepts may be defined in the form of particular types

of axioms, namely class disjointness axioms. An ontology

can be defined as a quadruple O = 〈C,R, I,A〉, where C
is the set of concepts represented in the form of classes; R
is the set of relations, i.e., properties or predicates between

classes; I is the set of all assertions, i.e. instances, in which

two or more concepts are related to each other; A is the set

of axioms. Like other types of axioms, the class disjointness

axioms are formalized in the form of logical assertions and

play an essential role in enhancing and constraining the

information contained in the ontology, thus allowing to check

its correctness or derive new information. For example, if

there is a constraint of disjointness between the two concepts

Animal and FloweringPlant, a reasoner will be able to reveal

an error in the modeling of a knowledge base whenever the

class Animal is associated to a resource related to the class

FloweringPlant. As a consequence, logical inconsistencies

of facts can be detected and excluded—thus improving the

quality of ontologies, called ontology enrichment.

On the other hand, the manual acquisition of axioms is

exceedingly time-consuming and expensive because of the

requirement of involving domain specialists and knowledge

engineers. Therefore, instead of applying top-down approaches

where axioms will be generated based on schema-level in-

formation built by domain experts, bottom-up approaches,

should be adopted, whereby learning methods rely on instances

from several existing knowledge and information resources

to suggest axioms. These methods can go under the name

axiom learning and can be considered as one task of ontology

learning, which can help alleviate the overall cost of extracting

axioms in general. Ontology learning comprises the sets of

methods and machine learning techniques referring to the au-

tomatic discovery and creation of ontological knowledge from

scratch or the enrichment or adaptation of an existing ontology

in a semi-automatic fashion using several sources [3]–[5].

One important point of the learning process is defining

the type of input data sources. The use of dynamic data

sources where the facts will be updated or changed in time is

preferable, if one wants to achieve scalability and evolution,

instead of only focusing on mostly small and uniform data

collections. Such dynamic information can be extracted from

various data resources on the Web, which constitute an open

world of information. Indeed, the Web of data, also called the

Semantic Web (SW, detailed in Section II), whose data model

is the Resoure Data Framework (RDF) and whose the Linked

Open Data (LOD) is a prominent implementation, has become

a giant real-world data resource for learning axioms. The

advantages of LOD with respect to learning described in [6] is

that it is publicly available, highly structured, relational, and

large compared with other resources.

As a consequence of the general lack of class disjointness

axioms in existing ontologies, learning implicit knowledge

in terms of axioms from a LOD repository in the context

of the Semantic Web has been the object of research using

several different methods. Prominent research towards the

automatic creation of class disjointness axioms from RDF

facts include supervised classifiers in the LeDA system [7],

statistical schema induction via associative rule mining in

the GoldMiner system [8], learning general class descriptions

(including disjointness) from training data based in the DL-

Learner framework, as pointed out in [9]. To these, we can add

recent contributions relevant to class disjointness discovery.

For instance, Reynaud et al. [10] use Redescription Mining

(RM) to learn class equivalence and disjointness axioms with

the ReReMi algorithm. RM is about extracting a category

definition in terms of a description shared by all the instances



of a given class, i.e. equivalence axioms, and finding incom-

patible categories which do not share any instance, i.e. class

disjointness axioms. Their method, based on Formal Concept

Analysis (FCA), a mathematical framework mainly used for

classification and knowledge discovery, aims at searching for

data subsets with multiple descriptions, like different views of

the same objects. While category redescriptions, i.e., equiva-

lence axioms, refer to complex types, defined with the help

of relational operators like A ≡ ∃r.C or A ≡ B ⊓ ∃r.C,

in the case of incompatible categories, the redescriptions are

only based on the set of attributes with the predicates of

dct:subject, i.e. axioms involving atomic classes only.

Another procedure for extracting disjointness axioms [11]

requires a Terminological Cluster Tree (TCT) to search for

a set of pairwise disjoint clusters. A decision tree is built

and each node in it corresponds to a concept with a logical

formula. The tree is traversed to create concept descriptions

collecting the concepts installed in the leaf-nodes. Then, by

exploring the paths from the root to the leaves, intensional

definitions of disjoint concepts are derived. Two concept

descriptions are disjoint if they lie on different leaf nodes.

An important limitation of the method is the time-consuming

and computationally expensive process of growing a TCT. A

small change in the data can lead to a large change in the

structure of the tree. Also, like other intensional methods,

that work relies on the services of a reasoning component,

but suffers from scalability problems for the application to

large datasets, like the ones found on the LOD, caused by the

excessive growth of the decision tree. In [9], [12], we applied

a heuristic method by using Grammatical Evolution (GE) to

generate class disjointness axioms from an RDF repository.

Extracted axioms include both atomic and complex axioms,

i.e., defined with the help of relational operators of intersection

and union; in other words, axioms like Dis(C1, C2), where

C1 and C2 are complex class expressions including ⊓ and

⊔ operators. The use of a grammar allows great flexibility:

only the grammar needs to be changed to mine different

data repositories for different types of axioms. However, the

dependence on SPARQL endpoints (i.e., query engines) for

testing mined axioms against facts, i.e. instances, in large

RDF repositories limits the performance of the method. In

addition, evaluating the effectiveness of the method requires

the participation of experts in specific domains, i.e. the use

of a Gold Standard, which is proportional to the number

of concepts. Hence, the extracted axioms are limited to the

classes relevant to a small scope of topics, namely the Work

topic of DBpedia.1 Also, complex axioms are defined with the

help of relational operators of intersection and union, which

can also be mechanically derived from the known atomic

axioms.

Along the lines of extensional (i.e. instance-based) methods

and expanding on the GE method proposed in [9], we propose

a new approach to overcome its limitations as well as to en-

hance the diversity of discovered types of axioms. Specifically,

1https://wiki.dbpedia.org/

a set of axioms with more diverse topics is generated from a

small sample of an RDF dataset which is randomly extracted

from the full RDF repository, more specifically, DBpedia.

Also, the type of class disjointness axioms is extended to

include the existential quantification ∃r.C and value restriction

operators ∀r.C, where r is a property and C a class, which

cannot be mechanically derived from a given set of atomic

axioms. The grammar is updated to suit these changes. A set

of candidate axioms is improved in the evolutionary process

through the use of evolutionary operators of crossover and

mutation. Finally, the final population of generated axioms

is evaluated on the full RDF dataset, specifically the whole

DBpedia, which can be considered as the objective bench-

mark eliminating the need of domain experts to evaluate the

ability of generating axioms on a wider variety of topics.

The evaluation of generated axioms in each generation of

the evolutionary process is thus performed on a reasonably

sized data sample, which alleviates the computational cost of

query execution and enhances the performance of the method.

Following [9], we apply a method based on possibility theory

to score candidate axioms. It is important to mention that, to

the best of our knowledge, no other method has been proposed

so-far in the literature to mine the Web of data for class

disjointness axioms involving complex class expressions with

existential quantifications and value restrictions in addition to

conjunctions.

The rest of the paper is organized as follows: some back-

ground notions are provided in Section II. The method to

discover class disjointness axioms with a GE approach is pre-

sented in Section III. Section IV-C describes the experimental

settings. Results are presented and analyzed in Section V.

Conclusions and directions for future research are given in

Section VI.

II. PRELIMINARIES

The Semantic Web2 (SW) is an extension of the World

Wide Web (WWW) and it can be considered as the movement

from the Web of documents to the Web of data. In fact, a huge

amount of data on the Web is maintained in human-readable

form only. The aim of the SW is to provide information

in a structured form that machines too can understand.

Machine-readable information combined with automated

reasoning mechanisms can improve the capability of finding,

retrieving, and exploiting much information not explicitly

stated. For instance, only a few results of the thousands

of matches typically returned by search engines carry truly

relevant content. Some contents are hidden within the

identified pages as well as classification and generalization

of identifiers are irrelevant to the searching context. To solve

this problem, semantic information containing machine-

processable information called metadata—a fundamental

component of the SW—is embedded within Web content.

Among the metadata, URIs (Uniform Resource Identifiers),

defined in the RFC3986 standard3 are used to identify

2https://www.w3.org/standards/semanticweb/
3http://www.ietf.org/rfc/rfc3986.txt



abstract or physical resources. A URI consisting of a string

of characters can be identified as a locator (URL—Uniform

Resource Locator), a name (URN—Uniform Resource

Name) or both. A URI that provides a means of locating

the resource by describing its primary access mechanism is

referred to as a URL. Meanwhile, a URI used as a URN refers

to providing a globally unique name for a resource. Also,

according to RFC3987,4 an upgraded version of URIs are IRIs

(International Resource Identifiers), which extend the ASCII

characters of the URI version to a wide range of characters

from the Universal Character Set (Unicode), including many

special characters in different languages. Compared with the

traditional WWW, we can summarize some differences in

the structure of the SW. Specifically, the SW uses a common

syntax for understandable machine statements, i.e., RDF

statements, and common vocabularies for easy distribution

and reuse. Also, the SW relies on a logical representation

of metadata with decidable logical languages to make it

possible for reasoners to deduce implicit information. The

Resource Description Framework (RDF)5 [13] is mainly

a data model of the SW for describing machine-processable

semantics of data. RDF uses as statements triples of the form

〈subject predicate object〉. E.g., the content of the sentence

“The 1997 film Titanic was directed by James Cameron”

can be expressed in machine-accessible form as an RDF

statement as follow: the subject is Film Titanic 1997; the

predicate is hasDirector; the object is James Cameron.

The statement can be described in the triple of IRIs and in

the shorter representation associated with the prefix aliases,6

PREFIX dbr: http://dbpedia.org/resource/ PREFIX dbo:

http://dbpedia.org/ontology/ 〈dbr:Titanic (1997 film)

dbo:director dbr:James Cameron〉.

The query language for RDF is SPARQL,7 which can be used

to express queries across diverse data sources, whether the

data is stored natively as RDF or viewed as RDF via some

middleware.

Linked Data (LD)8 is a method to create a Web of Data,

i.e., SW, by linking datasets to one another on the Web; in this

case, we talk about RDF datasets. Linked Data comprises a

set of principles for sharing machine-readable interlinked data

on the Web as follows: HTTP URIs (or IRIs) are used to name

things, so that these things can be looked up and linked to other

things; useful information is provided in standard format such

as RDF on look up.

Linked Open Data9 (LOD) is an association of LD and

Open Data where data can be linked while being freely

available for sharing and reuse. One of the prominent rep-

resentatives of the LOD is DBpedia,10 which comprises

a rather rich collection of facts extracted from Wikipedia.

4http://www.ietf.org/rfc/rfc3987.txt
5https://www.w3.org/RDF/
6https://docs.microsoft.com/en-us/windows/desktop/winrm/uri-prefixes
7https://www.w3.org/TR/rdf-sparql-query/
8http://linkeddata.org/
9https://lod-cloud.net/
10https://wiki.dbpedia.org/

DBpedia covers a broad variety of topics, which makes it a

fascinating object of study for a knowledge extraction method.

DBpedia owes to the collaborative nature of Wikipedia the

characteristic of being incomplete and ridden with inconsis-

tencies and errors. Also, the facts in DBpedia are dynamic,

because they can change in time. DBpedia has become a

giant repository of RDF triples and, therefore, it looks like

a perfect testing ground for the automatic extraction of new

knowledge. OWL11 (Web Ontology Language) and RDFS12

(RDF schema) are data modeling languages for describing

RDF data. Nevertheless, OWL is much more expressive when

it comes to the description of classes and properties. OWL

not only comprises all the vocabulary from RDFS such as

rdfs:subPropertyOf, rdfs:domain, rdfs:range but also pro-

vides further sophisticated terms to use in data modeling

and reasoning. For example, OWL contains the constructors

of complex class descriptions such as owl:UnionOf (⊔),

owl:IntersectionOf (⊓), owl:ComplementOf (¬) and can

express relations between class descriptions by means of class

axioms such as rdfs:SubClassOf (⊑), owl:equivalentClass

(≡), and owl:disjointWith. We are interested not only in

extracting new knowledge from an existing knowledge base

expressed in RDF, but also in being able to inject such

extracted knowledge into an ontology in order to be able

to exploit it to infer new logical consequences. While the

former objective calls for a target language, used to express

the extracted knowledge, which is as expressive as possible,

lest we throttle our method, the latter objective requires using

at most a decidable fragment of first-order logic and, possibly,

a language which makes inference problems tractable. OWL

strikes a good compromise between these two objectives. In

addition, OWL is standardized and promotes interoperability

with different applications. Furthermore, depending on the

applications, it is possible to select an appropriate profile

(corresponding to a different language fragment) exhibiting the

desired trade-off between expressiveness and computational

complexity.

III. GRAMMATICAL EVOLUTION FOR AXIOM LEARNING

We apply GE [14] to detect disjointness between class

expressions, i.e. class disjointness axioms, from a training

RDF dataset. Class disjointness axioms here are phenotypes

which are mapped from integer strings, i.e. genotypes, based

on a given BNF grammar. An evolutionary process is per-

formed on the population of candidate axioms to extract

credible and general axioms. Then, the discovered axioms are

evaluated on a test dataset. In this section, we first briefly

present the grammar structure used for generating OWL class

disjointness axioms, then we describe the main ingredients of

the evolutionary process. After that, the possibilistic evaluation

of the generated candidates is introduced.

11https://www.w3.org/TR/owl-ref/
12https://www.w3.org/TR/rdf-schema/



A. BNF Grammar Construction

The grammar for generating well-formed OWL class

disjointness axioms13 is designed based on the functional-style

grammar in the extended BNF notation used by the W3C.14

In the functional-style syntax of OWL,15 class disjointness

axioms have the form DisjointClasses(C1, C2, ..., Cn)
where C1, C2,...,Cn are class expressions which can be

atomic classes, i.e. single class identifiers or complex

classes involving relational operators and possibly including

more than one single class identifier. Like in [9], [12]

and without loss of generality, we only consider the

case of binary axioms such as DisjointClasses(C1, C2)
where C1 and C2 can be atomic or complex classes like

DisjointClasses(Building,ObjectSomeValuesFrom(hasWings,

Animals)). In addition, the structure of the BNF grammar

here refers to mining well-formed axioms expressing the facts

contained in a given RDF triple store. Hence, only resources

that actually occur in the RDF dataset should be generated.

We follow the approach proposed by [9], [12] to organize the

structure of a BNF grammar which ensures that changes in

the contents of RDF repositories will not require the grammar

to be rewritten. Accordingly, the BNF grammar is split into

a static and a dynamic part.

In the static part, the production rules define the types of

axioms that need to be extracted and their syntax. The content

of this part is loaded from a hand-crafted text file. Unlike [9],

[12], we specify it to mine only disjointness axioms involving

at least one complex axiom, containing a relational operator

of existential quantification ∃ or value restriction ∀, i.e., of the

form ∃r.C or ∀r.C, where r is a property and C is an atomic

class. The remaining class expression can be an atomic class

or a complex class expression involving an operator out of ⊓,

∃ or ∀. The static part of the grammar is thus structured as

follows:

The dynamic part contains production rules for the low-level

non-terminals, called primitives in [9], [12]. These production

rules are automatically filled at run-time by querying the

SPARQL endpoint of the RDF data source at hand. The data

source here is a training RDF dataset and the primitives are

Class and ObjectPropertyOf.
The production rules for these two primitives are filled by

SPARQL queries

SELECT ?class WHERE { ?instance rdf:type ?class.}

13https://www.w3.org/TR/owl2-syntax/#Disjoint Classes
14https://www.w3.org/TR/owl2-syntax/
15https://www.w3.org/TR/owl2-syntax/#Functional-Style Syntax

to extract atomic classes (represented by their IRI) and

SELECT ?property WHERE { ?subject ?property ?object.

FILTER (isIRI(?object))}

to extract properties (represented by their IRI) from the RDF
dataset. The following is an example representing a small
excerpt of an RDF dataset:

PREFIX dbr: http://dbpedia.org/resource/

PREFIX dbo: http://dbpedia.org/ontology/

PREFIX dbprop: http://dbpedia.org/property/

PREFIX rdf: http://www.w3.org/1999/02/22\-rdf-syntax-ns\#

dbr:Cavacoa rdf:type dbo:Plant.

dbr:Mussaenda_erythrophylla rdf:type dbo:FloweringPlant.

dbr:The_Times rdf:type dbo:WrittenWork.

dbr:Chai_Ling dbprop:spouse dbr:Feng_Congde.

dbr:Revolution_Radio_Tour dbprop:artist dbr:Green_Day

and options for the Class and ObjectPropertyOf non-
terminals are represented as follows:

(r.9) Class := dbo:Plant (0)

| dbo:FloweringPlant (1)

| dbo:WrittenWork (2)

(r.10) ObjectPropertyOf := dbprop:spouse (0)

| dbprop:artist (1)

B. Evolutionary Process

Like in [9], our approach to axiom learning relies on a quite

standard implementation of GE, whose pseudo-code is shown

in Algorithm 1. In particular, we have adopted the reference

implementation in the GEVA framework [15]. In this section,

we focus on the specific adaptations of the standard algorithm

to the problem at hand.

Algorithm 1 - GE for discovering axioms from an RDF datasets

Input: T: RDF Triples data; Gr: BNF grammar; popSize: the size of the population;

initlenChrom: the initialized length of chromosome ;

maxWrap: the maximum number of wrapping; pElite: elitism propotion

pselectSize: parent selection propotion; pCross: the probability of crossover;

pMut: the probability of mutation;

Output: Pop: a set of axioms discovered based on Gr

1: Initialize a list of chromosomes L of length initlenChrom.

Each codon value in chromosome are integer.

2: Create a population P of size popSize mapped from list of chromosomes L

on grammar Gr

3: Compute the fitness values for all axioms in Pop.

4: Initialize current generation number ( currentGeneration = 0 )

5: while( currentGeneration ¡ maxGenerations) do

6: Sort Pop by descending fitness values

7: Create a list of elite axioms listElites with the propotion pElite of the number

of the fittest axioms in Pop

8: Add all axioms of listElites to a new population newPop

9: Select the remaining part of population after elitism selection

Lr ← Pop\listElites

10: Eliminate the duplicates in Lr

Lr ← Distinct (Lr)

11: Create a a list of axioms listCrossover used for crossover operation

with the propotion pselectSize of the number of

the fittest individuals in Lr

11: Shuffle(listCrossover)

12: for (i=0,1....listCrossover.length-2) do

10: parent1 ← listCrossover[i]

13: parent2 ← listCrossover[i+1]

14: child1, child2 ← CROSSOVER(parent1,parent2) with the probability pCross

15: for each offspring {child1,child2} do MUTATION(offspring)

16: Compute fitness values for child1, child2

17: Select w1, w2 - winners of competition between parents and offsprings

w1,w2 ← CROWDING((parent1, parent2, child1, child2)

18: Add w1, w2 to new population newPop

19: Pop= newPop

20: Increase the number of generation curGeneration by 1

21: return Pop



1) Initialization: The initial population is seeded with pop-

Size random chromosomes of initlenChrom codons uniformly

distributed over {0, . . . ,maxValCodon − 1}.

2) Genotype-to-Phenotype Mapping: The standard

genotype-to-phenotype mapping is used, with at most

maxWrap wrapping events. In case of an unsuccessful

mapping (because after the maximum allowed number of

wrapping events the individual is not yet completely mapped),

the individual is assigned a fitness of zero, i.e., the lowest

possible fitness.

3) Parent selection: To prevent the loss of the best axioms

due to the application of the variation operators, a small pro-

portion pElite of elite individuals is first selected and directly

copied into the next generation (line 7–8 of Algorithm 1). A

candidate list for parent selection is established by removing

the duplicates from the remaining part of the population to pro-

mote diversity. The parent selection mechanism is then carried

out using truncation selection. In particular, the top proportion

pselectSize of the distinct individuals in the candidate list is

replicated until the size popSize of population is reached. The

list of selected parents is shuffled and the individuals are paired

in order from the beginning to the end of the list to undergo

recombination.

4) Variant operators: Unlike in [9], where single-point

crossover is applied to genotypes, we use the sub-tree

crossover operators at the phenotypic level, with probability

pCross. The standard mutation operators are also applied with

probability pMut.

5) Survival selection: Like in [9], we use the Deterministic

Crowding method of Mahfoud [16] to improve the diversity

of the population. However, there is an innovation in mea-

suring the difference between two individuals, the DISTANCE

function in Algorithm 2. Specifically, each offspring competes

with its most similar peers, based on a phenotypic comparison

instead of a genotypic one as in [9], to be selected for inclusion

in the population of the next generation. The phenotypic

distance between individuals is computed as their Levenshtein

distance (Edit distance), with the expectation of obtaining

more accurate results.

Algorithm 2 - Crowding(parent1, parent2, offspring1, offspring2)

Input: parent1, parent2, child 1, child 2: a crowd of individual axioms;

Output: A: ListWinners- a list containing two winners of individual axioms

1: d1 ← DISTANCE(parent1,child1) +DISTANCE (parent2,child2)

d2 ← DISTANCE(parent1, child2) + DISTANCE(parent2, child1)

in which DISTANCE(parent, child) - the number of distinct codons between

parent and child.

2: if(d1 >d2)

ListWinners[0]← COMPARE(parent1,child1)

ListWinners[1]← COMPARE(parent2,child2)

else

ListWinners[0]← COMPARE(parent1,child2)

ListWinners[1]← COMPARE(parent2,child1)

in which COMPARE(parent, child) - defines which individual in (parent,child)

has higher fitness value.

3: return ListWinners

6) Determining the Fitness Value: We follow the evalua-

tion framework, based on possibility theory, presented in [12],

which was enhanced from [9] to determine the fitness value of

generated axioms in each generation, i.e. the credibility and

generality of axioms. To make the paper self-contained, we

recall the most important aspects of the approach.

The incompleteness and noise of some missing and erro-

neous facts (instances) in the RDF datasets as a result of the

heterogeneous and collaborative characters of the Web of data

justify adopting an axiom scoring heuristic based on possibility

theory [17], which is well-suited to incomplete knowledge.

A candidate axiom φ is viewed as a hypothesis that has to

be tested against the evidence contained in an RDF dataset.

Its content φ is defined as a finite set of logical consequences

content(φ) = {ψ : φ |= ψ}, (1)

obtained through the instantiation of φ to the vocabulary of

the RDF repository; every ψ ∈ content(φ) may be readily

tested by means of a SPARQL ASK query. The support of

axiom φ, uφ is defined as the cardinality of content(φ). The

support, together with the number of confirmations u+φ (i.e.,

the number of ψ for which the test is successful) and the

number of counterexamples u−φ (i.e., the number of ψ for

which the test is unsuccessful), are used to compute a degree

of possibility Π(φ) for axiom φ, defined, for u(φ) > 0, as

Π(φ) = 1−

√

√

√

√1−

(

uφ − u−φ

uφ

)2

.

Alongside Π(φ), the dual degree of necessity N(φ) could

normally be defined. However, for reasons explained in [12],

the necessity degree of a formula would not give any useful

information for scoring class disjointness axioms against real-

world RDF datasets. Possibility alone is a reliable measure of

the credibility of a class disjointness axiom.

In terms of the generality scoring, an axiom is the more

general the more facts are in the extension of its components.

In [9], the generality of an axiom is defined as the cardinality

of the sets of the facts in the RDF repository reflecting the

support of each axioms, i.e. uφ. However, in case one of

the components of an axiom is not supported by any fact,

its generality will be zero. Hence, the generality of an axiom

should be measured by the minimum of the cardinalities of

the extensions of the two class expressions involved, i.e.

gφ = min||[C]||, ||[D]|| where C, D are class expressions.

For the above reasons, instead of the fitness function in [9],

f(φ) = uφ ·
Π(φ) +N(φ)

2
, (2)

we resorted to the following improved definition, proposed

in [12]:

f(φ) = gφ ·Π(φ). (3)

IV. EXPERIMENTAL SETUP

In our experimental protocol, two phases are distinguished:

(1) mining class disjointness axioms with the GE framework

introduced in Section III from a training RDF dataset, i.e., a

random sample of DBpedia 2015-04, and (2) testing the re-

sulting axioms against the test dataset, i.e., the entire DBpedia

2015-04, which can be considered as an objective benchmark



to evaluate the effectiveness of the method. Before diving into

those details, we first describe how we further prepare the

training dataset.

A. Training Dataset Preparation

We randomly collect 1% of the RDF triples from DBpedia

2015-04 in English version (which contains 665,532,306 RDF

triples) to create the Training Dataset (TD).16 Specifically, a

small linked dataset is generated where RDF triples are inter-

linked with each other and the number of RDF triples accounts

for 1% of the triples of DBpedia corresponding to each type

of resource, i.e. subjects and objects. A demonstration of this

mechanism to extract the sample training dataset is illustrated

in Fig. 1. Let r be an initial resource for the extraction process,

e.g., http://dbpedia.org/ontology/Plant; 1% of the RDF triples

having r as subject, of the form 〈r p r′〉, and 1% of the triples

having r as object, of the form 〈r′′ p′ r〉, will be randomly

extracted from DBpedia. Then, the same will be done for every

resource r′ and r′′ mentioned in the extracted triples, until the

size of the training dataset reaches 1% of the size of DBpedia.

If the number of triples to be extracted for a resource is less

than 1 (following the 1% proportion), we round it to 1 triple.

We applied the proposed mechanism to extract a training

dataset containing 6,739,240 connected RDF triples with a

variety of topics from DBpedia.

Fig. 1. An illustration of the Training Dataset sampling procedure

B. Parameters Settings for GE runs

We use the BNF grammar introduced in Section III-A.

Given how the grammar was constructed, the mapping of any

chromosome of length ≥ 6 will always be successful. Hence,

we can set maxWrap = 0.

In order to investigate the ability of the method to discover

class disjointness axioms for different parameter settings, we

ran our algorithm in 20 different runs for each of 4 distinct

population sizes, namely 1,000; 2,000; 5,000 and 10,000

individuals, respectively. In addition, to make fair comparisons

possible, a set of milestones of total effort k (defined as

the total number of fitness evaluations) corresponding to

each population size are also recorded for each run, namely

100,000; 200,000; 300,000 and 400,000, respectively. The

maximum numbers of generations maxGenerations (used as

the stopping criterion of the algorithm) are automatically

16Available for download at http://bit.ly/2Kl36wB.

TABLE I
PARAMETER VALUES FOR GE.

Parameter Value

Total effort k 100,000; 200,000; 300,000; 400,000

initLenChrom 6

pCross 80%

pMut 1%

popSize 1000; 2000; 5000; 10000

determined based on the values of the total effort k so

that popSize · maxGenerations = k. The parameters are

summarized in Table I.

C. Performance Evaluation

We measure the performance of the method using the

entire DBpedia 2015-04 as a test set, measuring possibility

and generality for every distinct axiom discovered by our

algorithm. To avoid overloading DBpedia’s SPARQL endpoint,

we set up a local mirror using the Virtuoso Universal Server.17

V. RESULT ANALYSIS

Running our method 20 times with the parameters shown in

Table I yielded the number of distinct axioms involving com-

plex expressions listed in Fig. 2. Together with the mandatory

class expression containing the ∀ or ∃ operators, most ex-

tracted disjointness axioms contain an atomic class expression.

This may be due to the fact that the support of atomic classes is

usually larger than the support of a complex class expression.

Table II contains some examples of discovered axioms. Full

results are available online.18 The axioms are presented in

short form using prefixes dbo: http://dbpedia.org/ontology

and dbprop: http://dbpedia.org/property.

We also have statistically compared the number of distinct

valid axioms, i.e., axioms φ such that Π(φ) > 0 and gφ > 0,

discovered using different settings of popSize and total effort k.

Overall, we can see a trend whereby the number of discovered

axioms increases steadily during the early stage of evolution,

i.e. for low values of k, before gradually decaying at the

end of the process. This trend is most clearly visible when

popSize = 2, 000 and popSize = 5, 000. This phenomenon

may be due to the prevalence of exploration in the early

phases of the evolutionary process, as opposed to exploitation,

when the population, despite our efforts to preserve diversity,

begins to converge towards few axioms with particularly high

fitness. Depending on the population size, this may happen

before reaching the first milestone of total effort k = 100, 000
(as it is the case for popSize = 1000) or in the generations

following the last milestone, as one could expect to observe for

popsize = 10, 000, if the evolutionary process were allowed

to continue. For measuring the accuracy of our results, given

that the discovered axioms come with an estimated degree of

possibility, which is essentially a fuzzy degree of membership,

we propose to use a fuzzy extension of the usual definition of

17https://virtuoso.openlinksw.com/
18http://bit.ly/2pisZWB



TABLE II
EXAMPLES OF ACQUIRED AXIOMS

1. DisjointClasses(dbo:Factory ObjectSomeValuesFrom(dbpprop:artist dbo:Organisation)
(possibility= 1.0 ; generality= 385)

2. DisjointClasses(dbo:Airline ObjectSomeValuesFrom(dbpprop:party dbo:Organisation)
(possibility= 1.0; generality= 3687)

3. DisjointClasses(dbo:MountainPass ObjectAllValuesFrom(dbprop:surface dbo:Place))
(possibility = 1.0; generality= 329)

4. DisjointClasses(ObjectIntersectionOf(dbo:ArtistDiscography dbo:MusicalWork) ObjectSomeValuesFrom(
dbprop:debutagainst dbo:SportsTeam))
(possibility = 1.0; generality= 1362)

TABLE III
AVERAGE PRECISION PER RUN (±std)

P
P
P

P
PP

k

popSize
1,000 2,000 5,000 10,000

100,000 0.981± 0.019 0.999± 0.002 0.998± 0.002 0.998± 0.003

200,000 0.973± 0.024 0.979± 0.011 0.998± 0.001 0.998± 0.002

300,000 0.972± 0.024 0.973± 0.014 0.993± 0.007 0.998± 0.001

400,000 0.972± 0.024 0.969± 0.018 0.980± 0.008 0.998± 0.001

TABLE IV
POSSIBILITY AND GENERALITY DISTRIBUTION OF THE DISCOVERED AXIOMS FOR DIFFERENT POPULATION SIZES (COLUMNS) AND TOTAL EFFORTS

k = 100, 000, . . . , 400, 000 (ROWS).

1,000 2,000 5,000 10,000

precision, based on the most widely used definition of fuzzy

set cardinality, introduced in [18] as follows: given a fuzzy set

F defined on a countable universe set ∆,

‖F‖ =
∑

x∈∆

F (x), (4)

In our case, we may view Π(φ) as the degree of membership of

axiom φ in the (fuzzy) set of the “positive” axioms. The value

of precision can thus be computed against the test dataset, i.e.

DBpedia 2015-04 according to the formula

precision =
‖true positives‖

‖discovered axioms‖
=

∑

φ ΠDBpedia(φ)
∑

φ ΠTD(φ)
, (5)

where ΠTD and ΠDBpedia are the possibility measures com-

puted on the training dataset and DBpedia, respectively.

The results in Table III confirm the high accuracy of our

axiom discovery method with a precision ranging from 0.969

to 0.998 for all the different considered sizes of population and

different numbers of generations (reflected through the values

of total effort). We also see that the accuracy remains stable



across different values of total effort k in the case of large

populations like popSize = 10, 000, whilst there is an opposite

trend in the case of smaller populations, where the values

decrease slightly as the total effort k increases. This surprising

behavior suggests that the method tends to overfit individuals

in the population after a high number of generations (reflected

by the values of total effort). This overfitting may be the only

way to achieve higher fitness values (as computed against the

training set), whereas the evaluated axioms actually turn out

to be incorrect when evaluated against the test dataset, i.e the

full DBpedia. We can witness this phenomenon more clearly

from the plots illustrating the distribution of axioms in terms

of possibility and generality shown in Table IV. Even though

most discovered axioms are highly possible (Π(φ) close to

1), the number of highly general axioms possessing a lower

possibility increases slightly as total effort k increases. This

suggests that the evolutionary process should be stopped early

before axioms begin overfitting the training dataset. Indeed,

with the same value of total effort, the larger populations,

which correspond to a lower number of generations, as it is

the case for popSize = 10, 000, allow the method to discover

axioms that correctly generalize to the full DBpedia and the

evidence of the precision values in Table III seems to confirm

this hypothesis.

Fig. 2. Number of axioms discovered over 20 runs.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented an extension of the use of

GE to discover disjointness axioms involving complex class

expressions. The study aims at mining axioms containing the

relational operators of existential quantification ∃ and value

restriction ∀ on a wide variety of topics from DBpedia. A

training-testing approach is also implemented to solve current

limitations of performance and obtain a fair and objective

assessment of its accuracy. The experimental results show that

the approach is highly accurate and competitive with related

approaches.

As future work, we will focus on three directions: (1)

approach axiom discovery as a two-objective optimization

problem to treat axiom credibility and generality as two

independent criteria; (2) mine complex axioms involving ad-

ditional relational operators like owl:hasValue, owl:oneOf ; (3)

take some complexity measurement of class expressions into

account for evaluating the fitness of axioms.
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