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Abstract—Estimating bounds for the execution or re-
sponse times of a task is a central concern for real-time
designers. Several solutions exist, and probabilistic ap-
proaches estimate such bounds by building appropriate
probability distributions. Those methods are safe, but
they may be pessimistic and rely on strong hypothesis
such as independence between tasks.

The worst case execution times of tasks are hard
to estimate because their measurements are usually
disturbed by the system itelf. In general measures are
done in isolation, however dependencies between tasks
are rarely modeled in that case. By isolation, we mean
that a task (or program) is executed without any type
of interference coming from other executed tasks.

In this paper we propose a statistical analysis of
measured response times based on clustering analysis,
i.e., building classes of response times that may identify
executing modes for a given set of tasks. This work is
a first step towards a multivariate analysis that may
explicitly identify dependence structures.

Index Terms—Gaussian mixtures, real-time systems,
timing analysis.

I. Introduction
The natural design process of a real-time system is based

on building the schedules of its tasks. A schedule is a
sequence of tasks instances for which the execution instants
are defined. These instances are activated according to some
time constraints. If there exists at least one schedule with
all time constraints satisfied, then the set of tasks is said
schedulable.

In this work, we consider a system proven to be schedu-
lable and in which tasks share some resources and some
global variables. Their executions are not independent, and
they interfere with each other. Indeed, a task instance
leaves the cache memory in a certain state, and that state
will generate a certain amount of cache misses for the other
tasks instances. In the same way, the operating system
overhead can act differently in various configurations of
the system. In this work, we consider all those interferences
as noise.

The contribution of this paper is to provides a method
to build classes of noise, each corresponding to a state of
the system. We believe that our method could be use to
adapt deadlines and/or execution times to each mode of
the system.

More formally, for a given mode m , we want to be able
to decompose an execution/response time x in term of a
statistical mode µ(m) i.e., the value that appears most often,
and a noise Bm , allowing to write

x = µ(m) +Bm

where Bm follows a normal distribution with zero mean
and deviation parameterized by σ(m).

We call execution mode or mode a state of a real-time
system, in which there is a relevant general behavior. The
relevant term have no formal definition yet, nevertheless
model-based clustering provides some tools that we intend
to use later to give more intuition on how we can measure
this relevance.

For example, when a drone is in a take-off mode, the
tasks defining a flight management functionality use the
same values for global variables defining that particular
state of the systems, and, as consequence, a certain joint
behavior in that state. Unlike the given definitions in [1],
[2], a mode is more of an abstract state, in the sense that
it may not always correspond to a physical state, neither a
criticality level. It can for example correspond to a certain
configuration in which cache misses are high, or in which
operating systems are more invasive.

We think that modes can be well described by the
execution times associated. Thus, our goal is to provide
a method to identify modes of a real-time system just
by looking at response times. Our purpose is to extract,
represent and exploit those sequences of execution modes,
and to show that supposing dynamic behavior is a way to
model dependencies and introduce predictability in real-
time systems.

II. Related work

An important step in building a schedule of a system is
estimating the execution times of its tasks. In this section,
we provide a review of the main results of probabilistic
timing analysis on estimating such bounds.

The existing work is mainly concentrated on bounding
estimators of worst case execution times, or response
times of independent tasks, and their evolution while some
parameters change.



In [3], the authors show that a probabilistic approach
may approximate cache miss rates, on both single core and
multicore systems. Cache miss being a factor of randomness,
one has to take it into account when studying a system built
on processors with cache memories. Our study does not
model those as [4], but current results provide arguments
to introduce them later.

The cited analyses are static. By static we mean that the
analysis consider models for the program and the processor
without measuring any execution of the programs on the
processors.

Some other methods referred to as measurement-based
probabilistic time analysis, e.g. [5]–[10], find the best-fitted
parameters for extreme value distributions, computing
maximum likelihood estimators and non-parametric tests
to do so. One may find a complete survey of these results
in [11], while open problems are underlined in [12].

Some work refers to mode changes as [1], [2], however
to our best knowledge, no existing work refers to the
identification of execution modes of the studied real-time
system by using statistical analysis.

III. Task model
In this section we define our model of tasks (Sec-

tion III-A) and a motivation of clustering methods on
response time measurements (Section III-B) .

A. Response time measurements
We consider a set of N tasks, scheduled on one processor

according to a preemptive fixed priority policy, Rate
Monotonic. We consider n measurement points. For any
task τj ,∀j ∈ {1, · · · , N}, we denote by ri,j the measured
value of the response time of τj at a measurement point i
with 1 ≤ i ≤ n. This notation is possible by keeping track
of the schedule of all tasks.

A reader may notice that our notation is placing the
number i of the measurement points in first position within
the index of the response time ri,j and the number j of the
task in the second position. This notation is explained by
the fact that we group the response time values within our
solution by measurement points presented in Section IV.

We provide an example in Fig. 1, where the evolution
(i.e., variation over time) of three response times is pre-
sented (the tasks belong to the case study described in
Section III-B).The green curve corresponds to the highest
priority task and the red to the lowest priority task.
The horizontal axis indicates the time evolution from left
(beginning of the schedule) to right (the end of the schedule).
The vertical axis indicates the value of the response time.

B. Motivational case study
We motivate our proposed solution by using response

time measurements of programs of an autopilot. More
precisely, in this paper the measurements are done on
a modified version of the autopilot PX4 v1.9.2 1 in

1https://github.com/PX4/Firmware/tree/v1.9.2
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Fig. 1: Evolution of response times in a drone’s autopilot.

the context of the CEOS2 project. The programs are
executed on the micro-controller Pixhawk 3, running
on the operating system NuttX. Its CPU is a single
core processor ARM Cortex M4. The studied data
corresponds to hardware in the loop simulations of drone
flights.

For the sake of the presentation we select four tasks
(a.k.a, modules within the autopilot context): sensors, fmu,
io and attitude 4. Fig. 1 corresponds to the response times
of three tasks of PX4 over a small interval of time, Fig. 2
corresponds to the whole flight for one task (attitude), Fig. 3
corresponds to the distribution of the module altitude and
Fig. 4 corresponds to a projection of the four modules.

From these figures and especially Fig. 2, we may notice
a mixture of several distributions, and an evolution in
what we may consider to be three clusters. We chose the
term mode because it has both a statistical and a real-
time systems meaning. It describes the same concept, even
though the statistics provide a more abstract representation
of its real-time equivalent. Obviously our work make these
two concepts converge. Modes describe several types of
interference and backlogs, quantifying dependencies, and
more generally evolution of tasks in a joint behavior.

Our purpose is to study the multiple causes of this
evolution and we want our method to be as general as
possible. In order to obtain such generality, different sources
of variability will be considered as one noisy variable. In
the next section we propose a possible approximation for
the observed distributions associated to modes.

IV. Gaussian mixture models
The purpose of clustering is to classify the response time

measurements into several abstract classes corresponding to
execution modes, without requiring any additional informa-
tion. For that, we consider as a first possible approximation
the log-normal distribution, i.e., log-response times are
considered normally distributed for each execution mode.

2https://www.ceos-systems.com/
3https://docs.px4.io/v1.9.0/en/flight controller/pixhawk.html
4https://dev.px4.io/master/en/middleware/modules main.html
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(a) log-Response times against activation times.
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(b) Distribution of log-response times and GMM estimation.

Fig. 2: Variation of the response time of a the attitude task, and its distribution.

Assuming that each of these distributions can be approx-
imated by Gaussian mixture (thus multimodal), several
models may indicate to which component of the mixture a
measurement is more likely to belong to. We use here the
Gaussian mixture model (GMM).

Let {ri}n
i=1 be a N -multivariate data set obtained, in our

case, by grouping the response time values of the tasks by
measurement points. We use GMM to identify M Gaussian
distributions for which our data are more likely to be fitted.
More formally, we are looking for weight coefficients {πm}m,
modes 5 {µm}m, and covariance matrices {Σm}m such that
the likelihood

L ({πm,µm,Σm}m) =
n∏

i=1

M∑
m=1

πmφ(ri; µm,Σm) (1)

is maximal for a fixed sample {ri}n
i=1, and where

φ(ri; µm,Σm) is the density function of a multivariate
Gaussian distribution defined by

(2π)−N
2 det(Σm)− 1

2 exp
{
−1

2(ri − µm)>Σ−1
m (ri − µm)

}
Such parameters are called maximum likelihood estimators.
They are, by construction, the optimal parameters provid-
ing a Gaussian mixture such that we could simulate another
sample without doing any measures, see Fig. 2b and Fig. 3b.
We compute them by using the Expectation-Maximization
algorithm on (1). See [13] for more details.

In our case, this previous definition supposes that the
observations ri are conditionally independent. By that,
we mean that if we know which task is activated at
measurement i, there is statistical independence. Though, it
does not imply that we require the tasks to be functionally
independent.

An example is shown in Fig.1. Each step i correspond to
a jump of one of the curves, each j to a particular curve,
meaning that ri,j corresponds to a constant step of the

5In this case, we will refer to the statistical definition of modes.

task j, and ri = [r̃i,1, . . . , r̃i,N ]>, where r̃i,j = log(ri,j). In
other words, we see a response time as if it was a signal.

An example of a task set composed of only one task is
given in Fig. 3. Each color represents a mode identified
by GMM. The histogram and the dotted lines represent
the empirical distributions, while the continuous ones
represent the estimated distributions of each cluster. The
frame on the right shows that our estimators are tight
to the data, meaning that our Gaussian assumption is
reasonable on this case. To get a more precise idea of the
representation in multivariate analysis, a 3d-projection of
the modes identified by the GMM is provided in Fig. 4.
This representation is a projection : normally the estimated
distribution lives in a N = 4 dimensional space.

V. Conclusions and future work
In this paper we present first encouraging results con-

firming that capturing in Σm the dependencies between
consecutive executions of tasks may be possible by identi-
fying execution modes. We propose a first statistical model
of such modes by assuming that the distribution associated
to each mode is Gaussian and estimated their parameters
with maximum likelihood estimators. By applying this
reasoning to response time measurements of an autopilot
drone, we validate our initial hypothesis of associating
Gaussian distributions to execution modes response times.

One challenge underlined by this paper is the identifica-
tion of the best number M of modes from measurements
analysis and the skeleton of the programs, which will indeed
show that the cluster are relevant. Including the values for
the input variables of each task may, also help to identify
the number of nodes. This latter working hypothesis is
currently under study for our data from drone flights.

Applying GMM opens the way to a fair amount of
new analyses. Our long term objective is quantifying
dependencies using copulas (see some insight in [14]),
that may encapsulate the dependence structures of each
mode. This solution could allow to make more accurate
estimations of response times.
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(a) Classified log-response times histograms normalized for
each mode.
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Fig. 3: Univariate 4-clustering on the attitude task. Each color corresponds to a mode.

Fig. 4: Gaussian mixture 3d-representation of four pro-
grams’ log-response times.

Another long term objective is the usage of modes to
describe the system’s state in a dynamical way. We believe
that Markov models on modes space states can be used to
encapsulate the statistical behavior of each mode.

Last and not least, estimating worst case response times
by applying the measurement-based probabilistic timing
analysis method remains possible. The distribution of the
maximum of a normal distribution can be approximated
by a Gumbel distribution, and indeed, using the classical
method coupled with a Gaussian copula for each mode
could be interesting to propagate those dependencies to
existing results.
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