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Abstract

We consider a location-dispersion regression model for heavy-tailed distributions

when the multidimensional covariate is deterministic. In a first step, nonparametric

estimators of the regression and dispersion functions are introduced. This permits, in a

second step, to derive an estimator of the conditional extreme-value index computed on

the residuals. Finally, a plug-in estimator of extreme conditional quantiles is built using

these two preliminary steps. It is shown that the resulting semi-parametric estimator is

asymptotically Gaussian and may benefit from the same rate of convergence as in the

unconditional situation. Its finite sample properties are illustrated both on simulated

and real tsunami data.

Keywords: Semi-parametric estimation, regression and dispersion functions, tail-

index, extreme conditional quantile.
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1 Introduction

The modeling of extreme events arises in many fields such as finance, insurance or environ-

mental science. A recurrent statistical problem is then the estimation of extreme quantiles

associated with a random variable Y , see the reference books [1, 13, 24]. In many situations,

Y is recorded simultaneously with a multidimensional covariate x ∈ Rd, the goal being to
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describe how tail characteristics such as extreme quantiles or small exceedance probabilities

of the response variable Y may depend on the explanatory variable x. Motivating exam-

ples include the study of extreme rainfall as a function of the geographical location [17], the

assessment of the optimal cost of the delivery activity in postal services [7], the analysis of

longevity [30], the description of the upper tail of claim size distributions [1], the modeling

of extremes in environmental time series [37], etc.

Here, we focus on the challenging situation where Y given x is heavy-tailed. Without

additional assumptions on the pair (Y, x), the estimation of extreme conditional quantiles

is addressed using nonparametric methods, see for instance the recent works of [9, 19, 21].

These methods may however suffer from the curse of dimensionality which is compounded in

distribution tails by the fact that observations are rare by definition. These difficulties can

be partially overcome by considering parametric models [11, 5]. Semi-parametric methods

have also been considered for trend modeling in extreme events [10, 27]: A nonparametric

regression model of the trend is combined with a parametric model for extreme values.

Our approach belongs to this second line of works. We assume that the response variable

and the covariate are linked by a location-dispersion regression model Y = a(x) + b(x)Z,

see [39], where Z is a heavy-tailed random variable. This model is flexible since (i) no

parametric assumptions are made on a(·), b(·) and Z, (ii) it allows for heteroscedasticity via

the function b(·). Moreover, another feature of this model is that Y inherits its tail behavior

from Z and thus does not depend on the covariate x. We propose to take profit of this

important property to decouple the estimation of the nonparametric and extreme structures.

As a consequence, we shall show that the resulting semi-parametric estimators of extreme

conditional quantiles of Y given x are asymptotically Gaussian and may benefit from the same

rate of convergence as in the unconditional situation. A similar idea is implemented in [29]:

An extreme-value distribution with constant extreme-value index is fitted to standardized

rainfall maxima. The theoretical study of heteroscedastic extremes has been initiated in [26]

and further developed in [12, 15] through the introduction of a proportional tails model. The

results were applied to trend detection in rainfalls and stock market returns.

This paper is organized as follows. The location-dispersion regression model for heavy-

tailed distributions is presented in more details in Section 2. The associated inference meth-

ods are described in Section 3: Estimation of the regression and dispersion functions, esti-

mation of the conditional tail-index and extreme conditional quantiles. Asymptotic results

are provided in Section 4 while the finite sample behavior of the estimators is illustrated in

Section 5 on simulated data and in Section 6 on tsunami data. Proofs are postponed to the

Appendix.
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2 Location-dispersion regression model for heavy-tailed

distributions

We consider the class of location-dispersion regression models, where the relation between a

random response variable Y ∈ R and a deterministic covariate vector x ∈ Π ⊂ Rd, d ≥ 1 is

given by

Y = a(x) + b(x)Z. (1)

The real random variable Z is assumed to be heavy-tailed. Denoting by F̄Z its survival

function, one has

F̄Z(z) = z−1/γL(z), z > 0. (2)

Here, γ > 0 is called the conditional tail-index and L is a slowly-varying function at infinity

i.e. for all t > 0,

lim
z→∞

L(tz)

L(z)
= 1.

F̄Z is said to be regularly varying at infinity with index −1/γ. This property is denoted for

short by F̄Z ∈ RV−1/γ, see [3] for a detailed account on regular variations. Model (1) has

been introduced by [39] in the random design setting where the location function a : Π→ R
and the scaling function b : Π → R+ \ {0} are referred to as the regression and dispersion

functions respectively. Combining (1) and (2) yields

F̄Y (y | x) := P(Y > y | x) = F̄Z

(
y − a(x)

b(x)

)
=

(
y − a(x)

b(x)

)−1/γ

L

(
y − a(x)

b(x)

)
, (3)

for y ≥ y0(x) > a(x) where the functions a(·), b(·) and the conditional tail-index γ are

unknown. We thus obtain a semi-parametric location-dispersion regression model for the

(heavy) tail of Y given x. The main assumption is that the conditional tail-index γ is

independent of the covariate. On the one hand, the proposed semi-parametric heteroscedastic

modeling offers more flexibility than purely parametric approaches. On the other hand,

the location-dispersion structure may circumvent the curse of dimensionality and assuming

a constant conditional tail-index γ should yield more reliable estimates in small sample

contexts than purely nonparametric approaches. Let us also note that, from (2) and (3),

the regular variation property yields F̄Y (y | x)/F̄Z(y) → b(x)1/γ as y → ∞. The location-

dispersion regression model can thus be interpreted as a particular case of the proportional

tails model [12] with scedasis function b(·)1/γ. The practical consequences of this point are

further discussed in Section 5.

Starting with an independent n-sample {(Y1, x1), . . . , (Yn, xn)} from (1), it is clear that,

since Z is not observed, a(·) and b(·) may only be estimated up to additive and multiplica-

tive factors. This identifiability issue can be fixed by introducing some constraints on the
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distribution of Z. To this end, for all α ∈ (0, 1) consider qZ(α) = inf{z ∈ R; F̄Z(z) ≤ α} the

αth quantile of Z and let (µ1, µ2, µ3) ∈ (0, 1)3 such that µ3 < µ1 and

qZ(µ2) = 0 and qZ(µ3)− qZ(µ1) = 1. (4)

Let us note that the constraint (3) can always be fulfilled with i.e. µ3 = 1/4, µ2 = 1/2 and

µ1 = 3/4 up to an affine transformation of a(·), b(·) and Z such that (1) holds. From (1), for

all α ∈ (0, 1), the conditional quantile of Y given x ∈ Π is

qY (α | x) = a(x) + b(x)qZ(α), (5)

and therefore the regression and dispersion functions are defined in an unique way by

a(x) = qY (µ2 | x) and b(x) = qY (µ3 | x)− qY (µ1 | x), (6)

for all x ∈ Π. This remark is the starting point of the inference procedure described hereafter.

3 Inference

Let us denote by λ the Lebesgue measure and ‖ · ‖ a norm on Rd, d ≥ 1. Consider

{(Y1, x1), . . . , (Yn, xn)} a n-sample from (1): Yi = a(xi) + b(xi)Zi, i = 1, . . . , n where

Z1, . . . , Zn are independent and identically distributed (iid) from the heavy-tailed distri-

bution (2). We assume that the design points xi, i = 1, . . . , n are all distinct from each

other and included in Π, a compact subset of Rd whose Lebesgue measure of the boundary

is zero. Let {Πi, i = 1, . . . , n} be a partition of Π such that xi ∈ Πi. A three-stage inference

procedure is adopted: The regression and dispersion functions are estimated nonparametri-

cally in Paragraph 3.1, and the conditional tail-index is then computed from the residuals in

Paragraph 3.2. Finally, the extreme conditional quantiles are derived by combining a plug-in

method with Weissman’s extrapolation device [40] in Paragraph 3.3.

3.1 Estimation of the regression and dispersion functions

The proposed procedure relies on the choice of a smoothing estimator for the conditional

quantiles. Here, a kernel estimator for F̄Y (y | x) is considered (see for instance [33, 34]). For

all (x, y) ∈ Π× R let

ˆ̄Fn,Y (y | x) =
n∑
i=1

1{Yi>y}

∫
Πi

Kh(x− t)dt, (7)

where 1{·} is the indicator function, Kh(·) := K(·/h)/hd with K a density function on Rd

called a kernel. The associated smoothing parameter h = hn → 0 as n→∞ is a nonrandom
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sequence called the bandwidth. The corresponding estimator of qY (α | x) is defined for all

(x, α) ∈ Π× (0, 1) by

q̂n,Y (α | x) = ˆ̄F←n,Y (α | x) := inf{y; ˆ̄Fn,Y (y | x) ≤ α}. (8)

Nonparametric regression quantiles obtained by inverting a kernel estimator of the conditional

distribution function have been extensively investigated, see, for example [2, 35, 38], among

others. In view of (6), the regression and dispersion functions are estimated by

ân(x) = q̂n,Y (µ2 | x) and b̂n(x) = q̂n,Y (µ3 | x)− q̂n,Y (µ1 | x), (9)

for all x ∈ Π.

3.2 Estimation of the conditional tail-index

The non-observed Z1, . . . , Zn are estimated by the residuals

Ẑi = (Yi − ân(xi))/b̂n(xi), (10)

for all i = 1, . . . , n where ân(·) and b̂n(·) are given in (9). In practice, nonparametric

estimators can suffer from boundary effects [6, 31] and therefore only design points suffi-

ciently far from the boundary of Π are considered. More specifically, consider Π̃(n) = {x ∈
Rd, such that B(x, h) ⊂ Π} the erosion of the set Π by the ball B(0, h) centered at 0 and

with radius h, see [36] for further details on mathematical morphology. Denote by In the set

of indices associated with such design points In = {i ∈ {1, . . . , n} such that xi ∈ Π̃(n)} and

let mn = card(In). It can be shown that mn = n(1 +O(h)), see Lemma 3 in the Appendix.

Finally, let (kn) be an intermediate sequence of integers, i.e. such that 1 < kn ≤ n,

kn → ∞ and kn/n → 0 as n → ∞. The (kn + 1) top order statistics associated with the

pseudo-observations Ẑi, i ∈ In are denoted by Ẑmn−kn,mn ≤ · · · ≤ Ẑmn,mn . The conditional

tail-index is estimated using a Hill-type statistic [28]:

γ̂n =
1

kn

kn−1∑
i=0

log Ẑmn−i,mn − log Ẑmn−kn,mn , (11)

built on non iid pseudo-observations.

3.3 Estimation of extreme conditional quantiles

Clearly, the purely nonparametric estimator (8) cannot estimate consistently extreme quan-

tiles of levels αn arbitrarily small. For instance, when nαn → 0, the extreme quantile is likely
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to be larger than the maximum observation. In such a case, an extrapolation technique is

necessary to estimate the so-called extreme conditional quantile qY (αn | x). To this end,

we propose to take profit of the structure of the location-dispersion regression model (5) to

define the plugin estimator

q̃n,Y (αn | x) = ân(x) + b̂n(x)q̂n,Z(αn), (12)

where ân(x) and b̂n(x) are given in (9) and q̂n,Z(αn) is the Weissman type estimator [40]:

q̂n,Z(αn) = Ẑmn−kn,mn

(
αnmn

kn

)−γ̂n
. (13)

Again, it should be noted that q̂n,Z(αn) is computed from the non iid pseudo-observations

Ẑi, i ∈ In. Finally, by construction, the semi-parametric estimator (12) cannot suffer from

quantile crossing, a phenomenon which can occur with quantile regression techniques.

4 Main results

The following general assumptions are required to establish the asymptotic behavior of the

estimators. The first one gathers all the conditions to define a location-dispersion regression

model for heavy-tailed distributions in a multidimensional fixed design setting.

(A.1) (Y1, x1), . . . , (Yn, xn) are independent observations from the location-dispersion re-

gression model for heavy-tailed distributions defined by (1), (2) and (4) and such that

max
i=1,...,n

∣∣∣∣λ(Πi)−
λ(Π)

n

∣∣∣∣ = o(1/n), (14)

max
i=1,...,n

sup
(s,t)∈Π2

i

‖s− t‖ = O(n−1/d). (15)

We refer to [33, 34] for this definition of the multidimensional fixed design setting.

The second assumption is a regularity condition.

(A.2) The functions a(·) and b(·) are twice continuously differentiable on Π, b(·) is lower

bounded on Π, b(t) ≥ bm > 0 for all t ∈ Π, and the survival function F̄Z(·) is twice

continuously differentiable on R.

Under (A.1) and (A.2), the quantile function qZ(·) and the density fZ(·) = −F̄ ′Z(·) exist

and we let HZ(·) := 1/fZ(qZ(·)) the quantile density function and UZ(·) = qZ(1/·) the tail

quantile function of Z. Moreover, the conditional survival function of Y is twice continuously

differentiable with respect to its second argument. The next assumption is standard in the

nonparametric kernel estimation framework.
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(A.3) K is a bounded and even density with symmetric support S ⊂ B(0, 1) the unit ball

of Rd and verifying the Lipschitz property: There exists cK > 0 such that

|K(u)−K(v)| ≤ cK‖u− v‖,

for all (u, v) ∈ S2.

Under (A.3), let ‖K‖∞ = supt∈SK(t) and ‖K‖2 =
(∫

S
K2(t)dt

)1/2
. Finally, the so-called

second-order condition is introduced (see for instance [24, eq (3.2.5)]:

(A.4) For all t > 0, as z →∞,

UZ(tz)

UZ(z)
− tγ ∼ A(z)tγ

tρ − 1

ρ
,

where γ > 0, ρ < 0 and A is a positive or negative function such that A(z) → 0 as

z →∞.

From [3, Theorem 1.5.12], property (2) is equivalent to UZ ∈ RV γ, that is UZ(tz)/UZ(z)→ tγ

as z → ∞ for all t > 0. The role of the second-order condition (A.4) is thus to control the

rate of the previous convergence thanks to the function A(·). Moreover, it can be shown

that |A| is regularly varying with index ρ, see [24, Lemma 2.2.3]. It is then clear that ρ,

referred to as the (conditional) second-order parameter, is a crucial quantity, tuning the rate

of convergence of most extreme-value estimators, see [24, Chapter 3] for examples. A list of

distributions satisfying (A.4) is provided in Table 1 together with the associated values of

γ and ρ. Similarly to [34], the dimension d = 4 plays a special role and we thus introduce

for all d ≥ 1:

κ(d) =

∣∣∣∣∣ 4 if d ≤ 4

2d/(d− 2) if d ≥ 4.

Our first result states the joint asymptotic normality of the estimators (9) of the regression

and dispersion functions.

Theorem 1. Assume (A.1), (A.2), (A.3) hold and fZ(qZ(µj)) > 0 for j ∈ {1, 2, 3}. If

nhd →∞ and nhd+κ(d) → 0 as n→∞ then, for all sequence (tn) ⊂ Π̃(n),

√
nhd

b(tn)

(
ân(tn)− a(tn)

b̂n(tn)− b(tn)

)
d−→ N

(
0R2 , λ(Π)‖K‖2

2 Σ
)
,

where the coefficients of the matrix Σ are given by

Σ1,1 = µ2(1− µ2)H2
Z(µ2),

Σ1,2 = Σ2,1 = µ2(1− µ1)HZ(µ1)HZ(µ2)− µ3(1− µ2)HZ(µ2)HZ(µ3),

Σ2,2 = µ1(1− µ1)H2
Z(µ1)− 2µ3(1− µ1)HZ(µ1)HZ(µ3) + µ3(1− µ3)H2

Z(µ3).

7



Distribution Density function γ ρ

(parameters)

Generalised Pareto σ−1 (1 + ξt/σ)−1−1/ξ ξ −ξ
(σ, ξ > 0) (t > 0)

Burr αβtα−1 (1 + tα)−β−1 1/(αβ) −1/β

(α, β > 0) (t > 0)

Fréchet αt−α−1 exp (−t−α) 1/α −1

(α > 0) (t > 0)

Fisher
(ν1/ν2)ν1/2

B(ν1/2, ν2/2)
tν1/2−1(1 + ν1t/ν2)−(ν1+ν2)/2 2/ν2 −2/ν2

(ν1, ν2 > 0) (t > 0)

Inverse Gamma
βα

Γ(α)
t−α−1 exp(−β/t) 1/α −1/α

(α, β > 0) (t > 0)

Student
1√
νπ

Γ
(
ν+1

2

)
Γ
(
ν
2

) (1 +
t2

ν

)− ν+1
2

1/ν −2/ν

(ν > 0)

Table 1: A list of heavy-tailed distributions satisfying (A.4) with the associated values of

γ and ρ. Γ(·) and B(·, ·) denote the Gamma and Beta functions respectively.

A uniform consistency result can also be established:

Theorem 2. Assume (A.1), (A.2) and (A.3) hold. If, moreover, nhd/ log n → ∞ and

nhd+κ(d)/ log n→ 0 as n→∞, then,√
nhd

log n
max
i∈In

∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣ = OP(1) and

√
nhd

log n
max
i∈In

∣∣∣∣∣ b̂n(xi)− b(xi)
b(xi)

∣∣∣∣∣ = OP(1).

As a consequence of Theorem 2, one can prove that the residuals Ẑi = (Yi − ân(xi))/b̂n(xi),

see (10), are close to the unobserved Zi, i = 1, . . . , n.

Corollary 1. Under the assumptions of Theorem 2, for all i ∈ In,

|Ẑi − Zi| ≤ Rn,i(1 + |Zi|), where max
i∈In

Rn,i = OP

(√
log n

nhd

)
= oP(1).

Our next main result provides the asymptotic normality of the conditional tail-index estima-

tor (11) and the Weissman estimator (13) computed on the residuals.
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Theorem 3. Assume (A.1)-(A.4) hold. Let (kn) be an intermediate sequence of integers

such that nhd/(kn log n) → ∞, nhd+κ(d)/ log n → 0 and
√
knA(n/kn) → β ∈ R as n → ∞.

Then,

(i)
√
kn(γ̂n − γ)

d−→ N (β/(1− ρ), γ2).

(ii) For all sequence (αn) ⊂ (0, 1) such that nαn/kn → 0 and log(nαn)/
√
kn → 0 as n→∞,

√
kn

log
(

kn
nαn

)( log q̂n,Z(αn)− log qZ(αn)

)
d−→ N (β/(1− ρ), γ2).

It appears that, in the location-dispersion regression model, the tail-index can be estimated

at the same rate 1/
√
kn as in iid case, see [22] for a review. As expected, this semi-parametric

framework is a more favorable situation than the purely nonparametric one for the estimation

of the conditional tail-index where the rate of convergence 1/
√
knhd is impacted by the

covariate, see for instance [9, Corollary 1 & 2], [8, Theorem 3] and [21, Theorem 2]. To

be more specific, remark first that conditions nhd/(kn log n) → ∞ and nhd+κ(d)/ log n → 0

imply that kn = o
(
(n/ log n)κ(d)/(d+κ(d))

)
. Second, following [24, Eq. (3.2.10)], if A is a power

function, then condition
√
knA(n/kn) → β as n → ∞ yields kn = O

(
n−2ρ/(1−2ρ)

)
. As a

conclusion, up to logarithmic factors, possible choices of sequences are then

hn = n−1/(d+κ(d)) and kn = n1/(1+max{d/κ(d),−1/(2ρ)}). (16)

If ρ ≥ −κ(d)/(2d), the rate of convergence of γ̂n is thus nρ/(1−2ρ) up to logarithmic factors

which is the classical rate for estimators of the tail-index, see for instance [25, Remark 3].

For instance, in the situation where the dimension of the covariate is d ≤ 2, then the nρ/(1−2ρ)

rate is reached as soon as ρ ≥ −1. This corresponds to the challenging situation where a high

bias is expected in the estimation which may occur for most usual distributions, depending

on their shape parameters, see Table 1.

Theorem 4 states the asymptotic normality of the estimator (12) of extreme conditional

quantiles of Y | x.

Theorem 4. Assume (A.1)-(A.4) hold and fZ(qZ(µj)) > 0 for j ∈ {1, 2, 3}. Let (kn)

be an intermediate sequence of integers. Suppose nhd/(kn log n) → ∞, nhd+κ(d) → 0 and
√
knA(n/kn)→ β ∈ R as n→∞. Then, for all sequences (tn) ⊂ Π̃(n) and (αn) ⊂ (0, 1) such

that nαn/kn → 0 and log(nαn)/
√
kn → 0 as n→∞,

√
kn

qZ(αn) log
(

kn
nαn

) ( q̃n,Y (αn | tn)− qY (αn | tn)

b(tn)

)
d−→ N (β/(1− ρ), γ2). (17)

9



Remark that b(tn)qZ(αn) ∼ a(tn) + b(tn)qZ(αn) = qY (αn | tn) and therefore (17) can be

rewritten as √
kn

log
(

kn
nαn

) ( q̃n,Y (αn | tn)

qY (αn | tn)
− 1

)
d−→ N (β/(1− ρ), γ2).

As a comparison, the rate of convergence of purely nonparametric methods involves an extra

hd/2 factor, see for instance [18, Theorem 3] or [8, Theorem 3]. The location-dispersion

regression model allows to dampen this vexing effect of the dimensionality.

Finally, a uniform consistency result is also available:

Theorem 5. Assume (A.1)-(A.4) hold. Let (kn) be an intermediate sequence of integers.

Suppose nhd/(kn log n) → ∞, nhd+κ(d)/ log n → 0 and
√
knA(n/kn) → β ∈ R as n → ∞.

Then, for all sequence (αn) ⊂ (0, 1) such that nαn/kn → 0 and log(nαn)/
√
kn → 0 as n→∞,

√
kn

qZ(αn) log
(

kn
nαn

)max
i∈In

∣∣∣∣ q̃n,Y (αn | xi)− qY (αn | xi)
b(xi)

∣∣∣∣ = OP(1).

5 Illustration on simulations

5.1 Experimental design

We propose to illustrate the finite-sample performance of the estimators of the conditional

tail-index and the extreme conditional quantiles on simulated data from the location-dispersion

regression model. For that purpose, set d = 2, Π = [0, 1]2 and define the regression and dis-

persion functions respectively by a(x) = 1 − cos(π(x(1) + x(2))) and b(x) = exp(−(x(1) −
0.5)2 − (x(2) − 0.5)2), for x = (x(1), x(2)) ∈ Π. Let µ1 = 3/4, µ2 = 1/2 and µ3 = 1/4. Two

distributions are considered for the heavy-tailed random variable Z:

• Let Z0 be a standard Student-tν random variable where ν ∈ {1, 2, 4} denotes the

degrees of freedom (df) and introduce Z = Z0/(2qZ0(µ3)) the associated rescaled Stu-

dent random variable. Symmetry arguments yield qZ(µ2) = 0, qZ(µ1) = −qZ(µ3) and

qZ(µ3) = qZ0(µ3)/(2qZ0(µ3)) = 1/2 by construction. Therefore (4) holds. This choice

also ensures that Z is heavy-tailed with conditional tail-index γ = 1/ν and that the

second-order condition (A.4) holds with ρ = −2/ν, see Table 1.

• Let Z0 be a Burr random variable with parameters α ∈ {1, 2, 4} and β = 1. We then

introduce the translated and rescaled random variable

Z =
Z0 −

(
µ−1

2 − 1
)1/α(

µ−1
3 − 1

)1/α −
(
µ−1

1 − 1
)1/α

,
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such as (4) holds. The second-order condition (A.4) is also fulfilled with γ = 1/α and

ρ = −1, see Table 1.

The design points xi, i = 1, . . . , n are chosen on a regular grid on the unit square Π. The

kernel function K is the product of two quartic (or biweight) kernels:

K(u, v) =

(
15

16

)2 (
1− u2

)2 (
1− v2

)2
1{|u|≤1}1{|v|≤1},

where (u, v) ∈ R2. We set ‖x‖ = max(|x(1)|, |x(2)|) so that Π̃(n) = [h, 1− h]2. The bandwidth

is fixed to h∗n = σn−1/6 following [4] and in accordance with (16), where σ = 12−1/2 is the

standard deviation of the coordinates of the design points. This choice is optimal for density

estimation in the Gaussian case, but is also known to provide good results in other settings.

5.2 Graphical illustrations

In all the experiments, N = 100 replications of a dataset of size n = 10, 000 are considered.

The estimation results for the regression and dispersion functions are depicted respectively

on Figure 1 and Figure 2 in the situation where Z is Student-tν distributed for ν ∈ {1, 2, 4}.
The results are visually satisfying and seem independent from the degrees of freedom. This

conclusion was expected since both estimators of a(·) and b(·) are based on non-extreme

quantiles, they are thus robust with respect to heavy tails.

As already noticed in Section 2, in the context of proportional tails, both random variables

Y and Z share the same conditional tail-index γ. This parameter can thus be estimated

either by (11) (computed on the residuals Ẑi) or by the classical Hill estimator (computed

on the response variables Yi). The associated estimation results are displayed on Figure 3 as

functions of the sample fraction kn. It first appears that working on the residuals provides

much better results in terms of bias than working on the initial response variable. Second, the

tail-index estimator (11) has a stronger bias for larger values of ν. These empirical results are

in line with the properties of the Student distribution. Indeed, the second-order parameter

ρ = −2/ν being increasing with ν, the bias of the Hill-type estimator increases as well.

In practice, the estimation of the conditional tail-index and extreme conditional quantiles

require the selection of the sample fraction kn. This parameter is selected using a mean-

squared error criterion. Assuming that A(t) = ctρ, the optimal value of kn is given by

k∗n =

(
γ2(1− ρ)2

−2ρc2

) 1
1−2ρ

n−
2ρ

1−2ρ ,

see [24, Section 3.2]. Since ρ may be difficult to estimate in practice, a miss-specified value

ρ = −1 is considered in several works dealing with bias reduction of tail-index estimators,
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n Student, ν = 1 Student, ν = 2 Student, ν = 4

400 0.547 (0.890, 0.976) 0.129 (0.643, 0.630) 0.062 (0.442, 0.458)

1, 600 0.138 (0.867, 0.893) 0.065 (0.533, 0.458) 0.020 (0.284, 0.352)

3, 600 0.145 (0.855, 0.837) 0.048 (0.477, 0.431) 0.012 (0.226, 0.306)

6, 400 0.061 (0.845, 0.776) 0.032 (0.456, 0.454) 0.011 (0.206, 0.253)

10, 000 0.045 (0.820, 0.723) 0.026 (0.425, 0.435) 0.013 (0.184, 0.222)

n Burr, α = 1, β = 1 Burr, α = 2, β = 1 Burr, α = 4, β = 1

400 0.525 (0.746, 0.588) 0.197 (0.329, 0.285) 0.104 (0.129, 0.176)

1, 600 0.182 (0.796, 0.637) 0.068 (0.348, 0.260) 0.038 (0.124, 0.168)

3, 600 0.157 (0.825, 0.625) 0.056 (0.333, 0.264) 0.023 (0.118, 0.149)

6, 400 0.096 (0.827, 0.591) 0.054 (0.311, 0.271) 0.020 (0.107, 0.122)

10, 000 0.070 (0.845, 0.563) 0.030 (0.301, 0.262) 0.023 (0.102, 0.107)

Table 2: Relative median squared errors associated with the estimation of the extreme con-

ditional quantile qY (1/n | ·). Results obtained with the semi-parametric estimator q̃n,Y and

comparison with the purely nonparametric ones (q̂~n,Y , q̂⊕n,Y ) .

see for instance [14] or [23]. Letting moreover c =
√

2 and restricting ourselves to integer

values, we end up with k∗n = b(γ̌n)2/3c where γ̌ is a prior naive estimation of γ computed

with kn = bn1/2c and where b·c denotes the floor function. Such a choice of k∗n fulfils the

assumptions of Theorem 3–5 for all three considered Burr distributions and for Student-

tν distributions with ν ∈ {1, 2}. The constraints are violated in case of the Student-t4

distribution in order to examine the robustness of the method with respect to the choice of

the pair (h, kn) which may be challenging in practice. The estimated conditional quantiles

qY (1/n | ·) of extreme level αn = 1/n are displayed on Figure 4. As expected, the estimated

extreme conditional quantiles all share the same shape despite different variation ranges.

5.3 Quantitative assessment

In this section, we propose to highlight the performances of the extreme conditional quantile

estimator (12) thanks to a comparison with a purely nonparametric one. The nonparametric

estimator is based on the ideas of the moving window approach introduced in [16]. For each

x ∈ Π̃(n), a subsample {(Y ~
i , x

~
i )}i=1,...,n~ = {(Yi, xi), 1 ≤ i ≤ n, s.t. ‖x− xi‖ < h} of size

n~ = n~(x, h) is extracted from the initial sample. Letting k~n = b
√
n~c, the conditional

12



Figure 1: Simulation results obtained on a Student-tν distribution. From top to bottom, left

to right : Theoretical function a(·), and means over N = 100 replications of estimates ân(·)
computed on n = 10, 000 observations for ν ∈ {1, 2, 4}. X-axis and y-axis range between 0

and 1, z-axis range between 0 and 2.
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Figure 2: Simulation results obtained on a Student-tν distribution. From top to bottom, left

to right : Theoretical function b(·), and means over N = 100 replications of estimates b̂n(·)
computed on n = 10, 000 observations for ν ∈ {1, 2, 4}. All three coordinates range between

0 and 1.
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Figure 3: Simulation results obtained on a Student-tν distribution for ν = 1 (left), ν = 2

(middle) and ν = 4 (right). Mean estimate of the conditional tail-index (11) (continuous black

line), associated 95% empirical confidence intervals (dotted lines) and mean Hill estimate

computed on the response variable (continuous blue line), as functions of the sample fraction

kn. The true value γ = 1/ν is depicted by a red horizontal line.

tail-index is estimated by the (local) Hill-type statistic

γ̂~n (x) =
1

k~n

k~n−1∑
i=0

log Y ~
n~−i,n~ − log Y ~

n~−k~n ,n~ ,

and the extreme conditional quantile qY (αn |x) is estimated by the associated Weissman-type

statistic:

q̂~n,Y (αn |x) = Y ~
n~−k~n ,n~

(
αnn

~

k~n

)−γ̂~n (x)

.

Another option is to re-estimate γ and qY (αn |x) by taking k⊕n = b(γ̂~n (x)n~)2/3c in the above

two estimators. The associated estimator of the extreme quantile is denoted by q̂⊕n,Y (αn |x).

The comparison between the true and estimated extreme conditional quantiles is based on

a relative median-squared error (RMSE) computed on the N = 100 replications and the mn

design points in the square Π̃(n):

median

median


(
q̂

[r]
n,Y (αn |xi)
qY (αn |xi)

− 1

)2

, xi ∈ Π̃(n)

 , r ∈ {1, . . . , N}

 ,

where q̂
[r]
n,Y (αn | ·) denotes either q̃n,Y (αn | ·), q̂~n,Y (αn | ·) or q̂⊕n,Y (αn | ·) computed on the rth

replication. Here, both Student-tν and Burr distributions are considered with ν ∈ {1, 2, 4},
α ∈ {1, 2, 4}, β = 1, αn = 1/n and n ∈ {202, 402, 602, 802, 1002}. The RMSE are reported in

Table 2. For all estimators, it appears that the main driver of the relative error is the tail
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Figure 4: Simulation results obtained on a Student-tν distribution for ν = 1 (top), ν = 2

(middle) and ν = 4 (bottom). Left panels: Theoretical quantiles qY (1/n | ·). Right panels:

Means over N = 100 replications of estimates q̃n,Y (1/n | .) computed on n = 10, 000 obser-

vations. X-axis and y-axis range between 0 and 1, the scale of the z-axis is the same for

theoretical and estimated quantiles.
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heaviness. Unsuprisingly, the semi-parametric estimator q̃n,Y provides much better results

than the nonparametric ones q̂~n,Y and q̂⊕n,Y : Its RMSE is smaller and converges towards 0 at

a faster rate when the sample size n increases.

6 Tsunami data example

The proposed illustration is based on the ”Tsunami Causes and Waves” dataset, available

at https://www.kaggle.com/noaa/seismic-waves. The data include the maximum wave

height recorded at several stations in the world where a tsunami occured. We focus on the

2011 Tohoku tsunami, in Japan. This earthquake was the cause of the Fukushima Daiichi

nuclear disaster. Indeed, a wave height greater than 15 meters (around 50 feet) flooded

the nuclear plant, protected by a seawall of only 5.7 meters (19 feet). In this context, the

estimation of return levels of wave heights associated with small probability is a crucial

issue. Figure 5 (top-left panel) displays the maximum wave heights Y1, . . . , Yn (in meters)

recorded the 03/11/2011 at n = 5, 364 stations with respective latitudes x
(1)
1 , . . . , x

(1)
n and

longitudes x
(2)
1 , . . . , x

(2)
n . Note that the values of Y are ranging from 0 to 55.88 meters (blue to

red points). We propose to estimate an extreme quantile of the wave height at each station,

following the methodology introduced in Section 3. The assumption of a constant conditional

tail-index can be checked thanks to the test statistic T4,n introduced in [12]:

T4,n =
1

m

m∑
i=1

(
γ̂pi
γ̂H
− 1

)2

.

The idea is to compare the Hill estimate γ̂H computed on the response variables with partial

ones γ̂pi computed on non-overlapping blocks indexed by i = 1, . . . ,m. Under the hypothesis

that the conditional tail-index is constant (and additional technical assumptions), it is then

shown that knT4,n
d−→ χ2

m−1, see [12] for details. Following the ideas of Paragraph 5.3, we set

kn = k⊕n = 72 and we choose m = 4 blocks as in [12], leading to T4,n ≈ 2.14 and a p−value

around 0.54. The hypothesis of a constant conditional tail-index cannot be rejected, and our

semi-parametric approach can thus be applied on these data.

To this end, a bandwidth has to be selected. Noticing that the standard deviations of

x(1) and x(2) are respectively 1.63 and 1.16, we fixed h∗n = 1.63 × n−1/6 ' 0.4. We also

set µ1 = 3/4, µ2 = 1/2 and µ3 = 1/4, these choices having no consequence in practice.

The regression and dispersion functions are then estimated via (9) and depicted on the bi-

dimensional map (Figure 5, top-right and bottom-left panels) and along the one-dimensional

first principal axis (Figure 6, top panels). Note that the principal axis has been obtained by

computing the eigenvector associated with the largest eigenvalue of the covariance matrix of
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the coordinates (x
(1)
i , x

(2)
i ), i = 1, . . . , n. It appears that ân(·) and b̂n(·) have a similar shape

with a peak in the neighbourhood of the epicenter, indicating a strong heteroscedasticity of

the observed phenomenon.

The residuals Ẑ1, . . . , Ẑn are then computed from (10). The common practice is to use a

graphical diagnosis to check whether these residuals have a heavy-tailed behavior. Here, a

quantile-quantile plot is adopted, see the bottom-right panel of Figure 6. The log-excesses

log(Ẑn−i+1,n/Ẑn−k∗n+1,n) are plotted versus the quantiles log(k∗n/i) of the standard exponential

distribution, i = 1, . . . , k∗n. Note that the number of upper order statistics k∗n = 82 is chosen

following the approach described in Paragraph 5.2. It appears that the resulting set of

points is close to the line of slope γ̂n (computed with k∗n = 82), which confirms that the

heavy-tailed assumption is reasonable in this case. The proposed estimator (11) computed

on the residuals as well as the Hill estimator computed on the output variables are both

depicted as functions of kn on the bottom-left panel of Figure 6. The first one features

a nice stable behavior, confirming the heavy-tail assumption, and pointing towards a tail-

index close to 0.25. As a comparison, the Hill estimator computed on the original output

variables is less stable and yields smaller results, in accordance with the negative bias observed

on simulated data (Section 5). Finally, the extreme conditional quantile estimator (12)

is evaluated at each station with the level αn = 10/n. The results are reported in the

bottom-right panel of Figure 5. The estimated quantiles of the maximum wave height are

ranging from 0 to 60.53 meters, with largest values close to the epicenter. Note that such

a quantile level means that the observed values Y1, . . . , Yn should exceed the return levels

q̃n,Y (αn | x1), . . . , q̃n,Y (αn | xn) approximately 10 times in the sample. In this particular

example, there are 15 waves exceeding the return levels, this empirical result does not deviate

too much from the expected number of exceedances.

7 Appendix: Proofs

Technical lemmas are collected in Paragraph 7.1 while preliminary results of general interest

are provided in Paragraph 7.2. Finally, the proofs of the main results are given in Para-

graph 7.3.

7.1 Auxiliary lemmas

The first result is an adaptation of Bochner’s lemma (for twice differentiable functions) to

the multidimensional fixed design setting.
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Figure 5: Results on tsunami data. Top-left: Maximum wave height recorded at each sta-

tion. Top-right: Regression function estimate ân(·) at each station. Bottom-left: Dispersion

function estimate b̂n(·) at each station. Bottom-right: Quantile estimate q̃n,Y (10/n | ·) at

each station. On all the maps, smallest and largest values are respectively depicted in blue

and red. The straight line is the principal axis x(2) = 1.64x(1) + 80.35 computed on the

coordinates of the stations, and ∗ represents the epicenter of the earthquake.
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Figure 6: Results on tsunami data. Top: Regression (left) and dispersion (right) function

estimates ân(·) and b̂n(·) along the principal axis x(2) = 1.64x(1) + 80.35. The estimates at

each station (black +) are smoothed (red dashed line) for the visualization sake. The vertical

black line displays the projection of the epicenter on the principal axis. Bottom left: Hill

estimator (11) computed on the residuals (black line) and on the original output variables

(blue line) as a function of kn. Bottom right: Log-excesses log(Ẑn−i+1,n/Ẑn−k∗n+1,n) of the

residuals versus log(k∗n/i), 1 ≤ i ≤ k∗n = 82. The straight line has slope γ̂n ' 0.25.
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Lemma 1. Let ψ(· | ·) : Rp × Π → R+ be a positive, twice differentiable (with respect to its

second argument) function. Let us denote by H2[ψ](·, ·) the Hessian matrix of ψ(· | ·) with

respect to its second argument, and assume that H2[ψ](·, ·) is continuous on Rp × Π. Let C

be a compact subset of Rp. For all sequences (tn) ⊂ Π̃(n) and (yn) ⊂ C, define

ψn(yn | tn) :=
n∑
i=1

ψ(yn | xi)
∫

Πi

Qh(tn − s)ds,

where xi ∈ Πi such that (14) and (15) hold, and Qh(·) = Q(·/h)/hd, where Q is an even

measurable positive function with symmetric support S ⊂ B(0, 1). Then, as n→∞,

ψn(yn | tn) = ‖Q‖1ψ(yn | tn) +O
(
n−1/d

)
+O(h2),

where ‖Q‖1 =
∫
S
Q(u)du.

Proof. Consider the expansion

ψn(yn | tn)− ‖Q‖1ψ(yn | tn) =
n∑
i=1

ψ(yn | xi)
∫

Πi

Qh(tn − s)ds− ‖Q‖1ψ(yn | tn)

=

∫
Π

ψ(yn | s)Qh(tn − s)ds− ‖Q‖1ψ(yn | tn)

+
n∑
i=1

ψ(yn | xi)
∫

Πi

Qh(tn − s)ds−
∫

Π

ψ(yn | s)Qh(tn − s)ds

=: Tn,1 + Tn,2.

and let us first focus on Tn,1. The change of variable u = (tn − s)/h yields

Tn,1 =

∫
(tn−Π)/h

ψ(yn | tn − uh)Q(u)du− ‖Q‖1ψ(yn | tn).

Let us remark that x ∈ B(0, 1) implies tn − xh ∈ B(tn, h) ⊂ Π since tn ∈ Π̃(n) and by

definition of the erosion. As a consequence, S ⊂ B(0, 1) ⊂ (tn − Π)/h and therefore

Tn,1 =

∫
S

[ψ(yn | tn − uh)− ψ(yn, tn)]Q(u)du.

Let ∇2[ψ](·, ·) denote the gradient of ψ(· | ·) with respect to its second argument and let 〈·, ·〉
be the usual dot product on Rd. A second order Taylor expansion yields, for all yn ∈ C,

ψ(yn | tn − uh)− ψ(yn | tn) = h〈∇2[ψ](yn, tn), u〉+O(h2),

since H2[ψ](·, ·) is bounded on compact sets. Remarking that
∫
S
uQ(u)du = 0 shows that

Tn,1 = O(h2). (18)
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Let us now turn to the second term

Tn,2 =
n∑
i=1

∫
Πi

[ψ(yn | xi)− ψ(yn | s)]Qh(tn − s)ds.

Since ψ(· | ·) is continuously differentiable with respect to its second argument, there exists

cψ > 0 such that

|Tn,2| ≤
n∑
i=1

∫
Πi

|ψ(yn | xi)− ψ(yn | s)|Qh(tn − s)ds ≤ cψ

n∑
i=1

∫
Πi

‖xi − s‖Qh(tn − s)ds.

Moreover, under assumption (15),

|Tn,2| =
n∑
i=1

∫
Πi

Qh(tn − s)ds O
(
n−1/d

)
=

∫
Π

Qh(tn − s)ds O
(
n−1/d

)
= O

(
n−1/d

)
. (19)

Finally, collecting (18) and (19), the conclusion follows.

As a consequence of Lemma 1, the asymptotic bias and variance of the estimator (7) of the

conditional survival function can be derived.

Lemma 2. Suppose (A.1), (A.2) and (A.3) hold. Let (tn) ⊂ Π̃(n) and (yn) ⊂ C be two

nonrandom sequences with C a compact subset of R.

(i) Then,

E
(

ˆ̄Fn,Y (yn | tn)
)

= F̄Y (yn | tn) +O
(
n−1/d

)
+O(h2).

(ii) If, moreover, nhd →∞ as n→∞ and lim inf FY (yn | tn)F̄Y (yn | tn) > 0, then

var
(

ˆ̄Fn,Y (yn | tn)
)
∼ λ(Π)‖K‖2

2

nhd
FY (yn | tn)F̄Y (yn | tn),

where FY is the conditional cumulative distribution function associated with F̄Y .

Proof. (i) Clearly,

E
[

ˆ̄Fn,Y (yn | tn)
]

=
n∑
i=1

F̄Y (yn | xi)
∫

Πi

Kh(tn − s)ds,

and the conclusion follows from Lemma 1 applied with p = 1.

(ii) As a consequence of the independence assumption,

var
(

ˆ̄Fn,Y (yn | tn)
)

=
n∑
i=1

F̄Y (yn | xi)Sn,i −
n∑
i=1

F̄ 2
Y (yn | xi)Sn,i =: Tn,1 − Tn,2,
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where

Sn,i :=

(∫
Πi

Kh(tn − s)ds
)2

=
1

h2d

∫
Πi

∫
Πi

K

(
tn − s1

h

)
K

(
tn − s2

h

)
ds1ds2. (20)

Let us write

K

(
tn − s2

h

)
= K

(
tn − s1

h

)
+

[
K

(
tn − s2

h

)
−K

(
tn − s1

h

)]
,

with, under (A.3) and (15),∣∣∣∣K (tn − s2

h

)
−K

(
tn − s1

h

)∣∣∣∣ ≤ cK‖s2 − s1‖
h

= O

(
1

n1/dh

)
,

uniformly on (s1, s2) ∈ Π2
i and i = 1, . . . , n. It thus follows from (14) that

Sn,i =
1

h2d

∫
Πi

∫
Πi

[
K2

(
tn − s1

h

)
+K

(
tn − s1

h

)
O

(
1

n1/dh

)]
ds1ds2

=
λ(Π)

nh2d

∫
Πi

K2

(
tn − s
h

)
ds (1 + o(1)) +O

(
1

n1+1/dh2d+1

)∫
Πi

K

(
tn − s
h

)
ds

=
λ(Π)‖K‖2

2

nhd

∫
Πi

Mh(tn − s)ds (1 + o(1)) +O

(
1

n1+1/dhd+1

)∫
Πi

Kh (tn − s) ds,(21)

where we have defined M(·) = K2(·)/‖K2‖1 = K2(·)/‖K‖2
2. Replacing in Tn,1 yields

Tn,1 =
λ(Π)‖K‖2

2

nhd

{
n∑
i=1

F̄Y (yn | xi)
∫

Πi

Mh(tn − s)ds (1 + o(1))

+ O

(
1

n1/dh

) n∑
i=1

F̄Y (yn | xi)
∫

Πi

Kh(tn − s)ds

}
.

Applying Lemma 1 with p = 1 twice and recalling that nhd →∞ as n→∞ entail

Tn,1 =
λ(Π)‖K‖2

2

nhd

(
F̄Y (yn | tn) (1 + o(1)) +O(h2) +O

(
1

n1/d

))
=

λ(Π)‖K‖2
2

nhd
F̄Y (yn | tn) (1 + o(1)),

under the assumption lim inf FY (yn | tn)F̄Y (yn | tn) > 0. Similarly,

Tn,2 =
λ(Π)‖K‖2

2

nhd
F̄ 2
Y (yn | tn) (1 + o(1)) ,

and the conclusion follows:

Tn,1 − Tn,2 =
λ(Π)‖K‖2

2

nhd
F̄Y (yn | tn)FY (yn | tn) (1 + o(1)),

under the assumption lim inf FY (yn | tn)F̄Y (yn | tn) > 0.
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Finally, Lemma 3 is an adaptation of [20, Lemma 3]. It permits to derive the error made on

the estimation of the order statistics Zmn−i,mn , i = 0, . . . ,mn− 1 from the error made on the

unsorted Zi, i ∈ In.

Lemma 3. Recall that In = {i ∈ {1, . . . , n} such that xi ∈ Π̃(n)} and mn = card(In).

Assume nhd →∞ as n→∞.

(i) Then, mn = n(1 +O(h)).

(ii) Consider (kn) an intermediate sequence of integers. If, for all i ∈ In, |Ẑi − Zi| ≤
Rn,i (1 + |Zi|) , with maxi∈In Rn,i

P−→ 0, then

max
0≤i≤kn

∣∣∣∣∣log
Ẑmn−i,mn
Zmn−i,mn

∣∣∣∣∣ = OP

(
max
i∈In

Rn,i

)
.

Proof. (i) Let Cn = Π \ Π̃(n), Jn = {i ∈ {1, . . . , n} such that xi ∈ Cn} and Nn := card(Jn).

For all i ∈ Jn, xi ∈ Cn and nhd → ∞ together with (15) entail that Πi ⊂ Cn, for n large

enough. Therefore, as the sets Πi are disjoint:∑
i∈Jn

λ(Πi) ≤ λ(Cn) = λ(Π)− λ(Π̃(n)) = O(h),

in view of the absolute continuity of the erosion with respect to Lebesgue measure, see [32].

From (14), λ(Πi) ∼ λ(Π)/n uniformly on i = 1, . . . , n and thus Nn = O(nh). Therefore,

mn = n−Nn = n(1 +O(h)) as n→ +∞.
(ii) The conclusion follows by remarking that in view of (2) the distribution of Z has an

infinite upper endpoint and by applying [20, Lemma 3].

7.2 Preliminary results

Let ∨ (resp. ∧) denote the maximum (resp. the minimum). The next proposition provides

a joint asymptotic normality result for the estimator (7) of the conditional survival function

evaluated at points depending on n.

Proposition 1. Assume (A.1), (A.2) and (A.3) hold. Let (tn) ⊂ Π̃(n) and (αj)j=1,...,J a

strictly decreasing sequence in (0, 1). For all j ∈ {1, . . . , J}, define yj,n = qY (αj | tn) +

b(tn)εj,n, where εj,n → 0 as n→∞. If nhd →∞ and nhd+κ(d) → 0 as n→∞, then{
√
nhd

[
ˆ̄Fn,Y (yj,n | tn)− F̄Y (yj,n | tn)

]}
j=1,...,J

d−→ N
(
0RJ , λ(Π)‖K‖2

2B
)
,

where Bk,l = αk∨`(1− αk∧`) for all (k, `) ∈ {1, . . . , J}2.
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Proof. Let us first remark that, for all j ∈ {1, . . . , J}, in view of (5), the sequence yj,n =

a(tn) + b(tn)(qZ(αj) + εj,n) is bounded since a(·) and b(·) are continuous functions defined

on compact sets and because εj,n → 0 as n → ∞. Besides, from (3), FY (yj,n | tn) =

FZ(qZ(αj) + εj,n) → 1 − αj > 0 as n → ∞ and thus the assumptions of Lemma 2(i,ii) are

satisfied. Now, let β 6= 0 in RJ , J ≥ 1 and consider the random variable

Γn =
J∑
j=1

βj

{
ˆ̄Fn,Y (yj,n | tn)− F̄Y (yj,n | tn)

}
=

J∑
j=1

βj

{
ˆ̄Fn,Y (yj,n | tn)− E

(
ˆ̄Fn,Y (yj,n | tn)

)}
+

J∑
j=1

βj

{
E
(

ˆ̄Fn,Y (yj,n | tn)
)
− F̄Y (yj,n | tn)

}
=: Γn,1 + Γn,2.

The random term can be expanded as

Γn,1 =
n∑
i=1

∫
Πi

Kh(tn − s)ds
J∑
j=1

βj
{
1{Yi>yj,n} − E

(
1{Yi>yj,n}

)}
=:

n∑
i=1

Ti,n.

By definition, E(Γn,1) = 0, and by independence of Y1, . . . , Yn,

var(Γn,1) =
n∑
i=1

(∫
Πi

Kh(tn − s)ds
)2

var

(
J∑
j=1

βj1{Yi>yj,n}

)
=: βtC(n)β,

where C(n) is the matrix whose coefficients are defined for all (k, `) ∈ {1, . . . , J}2 by

C
(n)
k,` =

n∑
i=1

Sn,i cov
(
1{Yi>yk,n},1{Yi>y`,n}

)
, (22)

with Sn,i being defined in (20) and expanded as (21):

Sn,i =
λ(Π)‖K‖2

2

nhd

∫
Πi

Mh(tn − s)ds (1 + o(1)) +O

(
1

n1+1/dhd+1

)∫
Πi

Kh(tn − s)ds,

see the proof of Lemma 2. Straightforward calculations yield

cov
(
1{Yi>yk,n},1{Yi>y`,n}

)
= F̄Y (yk,n ∨ y`,n | xi)− F̄Y (yk,n | xi)F̄Y (y`,n | xi)

= F̄Y (yk,n ∨ y`,n | xi)− F̄Y (yk,n ∨ y`,n | xi)F̄Y (yk,n ∧ y`,n | xi)

= F̄Y (yk,n ∨ y`,n | xi)FY (yk,n ∧ y`,n | xi)

=: ϕ(yk,n, y`,n | xi), (23)
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where ϕ is the function R2 × Π → [0, 1] defined by ϕ(·, · | .) = F̄Y (· ∨ · | ·)FY (· ∧ · | ·).
Replacing in (22) yields

C
(n)
k,` =

λ(Π)‖K‖2
2

nhd

n∑
i=1

ϕ(yk,n, y`,n | xi)
∫

Πi

Mh(tn − s)ds (1 + o(1))

+ O

(
1

n1+1/dhd+1

) n∑
i=1

ϕ(yk,n, y`,n | xi)
∫

Πi

Kh(tn − s)ds

=
λ(Π)‖K‖2

2

nhd
[
ϕ(yk,n, y`,n | tn) +O(h2) +O(n−1/d)

]
(1 + o(1))

+ O

(
1

n1+1/dhd+1

)[
ϕ(yk,n, y`,n | tn) +O(h2) +O(n−1/d)

]
=

λ(Π)‖K‖2
2

nhd
[ϕ(yk,n, y`,n | tn)(1 + o(1)) +O(h2) +O(n−1/d)], (24)

from Lemma 1 applied twice with p = 2 and recalling that nhd →∞. Besides, let us remark

that, in view of (5),

yk,n − y`,n = b(tn)(qZ(αk)− qZ(α`) + εk,n − ε`,n) = b(tn)(qZ(αk)− qZ(α`))(1 + o(1)),

as n→∞. Therefore, assuming for instance k < ` implies αk > α` and thus qZ(αk) < qZ(α`)

leading to yk,n < y`,n for n large enough. More generally, yk,n ∨ y`,n = yk∨`,n and yk,n ∧ y`,n =

yk∧`,n for n large enough and thus ϕ(yk,n, y`,n | tn) = F̄Y (yk∨`,n | tn)FY (yk∧`,n | tn). From (3)

and (5), we have

F̄Y (yk,n | tn) = F̄Z

(
yk,n − a(tn)

b(tn)

)
= F̄Z (qZ(αk) + εk,n) = αk + o(1),

in view of the continuity of F̄Z . As a result,

ϕ(yk,n, y`,n | tn)→ Bk,` = αk∨`(1− αk∧`) as n→∞. (25)

Collecting (24) and (25), one has

C
(n)
k,` =

λ(Π)‖K‖2
2

nhd
Bk,`(1 + o(1))

and therefore

var(Γn,1) ∼ λ(Π)‖K‖2
2

nhd
βtBβ, (26)

where B is the matrix defined by the Bk,` coefficients. The proof of the asymptotic normality

of Γn,1 is based on Lyapounov criteria for triangular arrays of independent random variables:

n∑
i=1

E|Ti,n|3
/

(var(Γn,1))3/2 → 0 (27)
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as n→∞. Let us highlight that the random variables Ti,n, i = 1, . . . , n, are bounded:

|Ti,n| ≤
∫

Πi

Kh(tn − s)ds
J∑
j=1

βj
∣∣1{Yi>yj,n} − E

(
1{Yi>yj,n}

)∣∣
≤ λ(Π)‖K‖∞

nhd

J∑
j=1

|βj| (1 + o(1)) =: ζn (28)

in view of (A.3) and (14). As a consequence, one has

n∑
i=1

E|Ti,n|3 ≤ ζn

n∑
i=1

E(T 2
i,n) = ζn

n∑
i=1

var(Ti,n) = ζn var(Γn,1),

leading to
n∑
i=1

E|Ti,n|3
/

(var(Γn,1))3/2 = O
(
(nhd)−1/2

)
,

from (26) and (28). It is thus clear that (27) holds under the assumption nhd →∞ and

√
nhdΓn,1

d−→ N
(
0, λ(Π)‖K‖2

2 β
tBβ

)
. (29)

Let us now turn to the nonrandom term. Lemma 2(i) together with the assumptions nhd →
∞ and nhd+κ(d) → 0 as n→∞ entail

√
nhd|Γn,2| ≤

√
nhd

J∑
j=1

|βj|
∣∣∣E( ˆ̄Fn,Y (yj,n | tn)

)
− F̄Y (yj,n | tn)

∣∣∣ = O(
√
nhd+κ(d)) = o(1).

(30)

Finally, collecting (29) and (30),
√
nhdΓn converges to a centered Gaussian random variable

with variance λ(Π)‖K‖2
2 β

tBβ, and the result follows.

The following proposition provides the joint asymptotic normality of the estimator (8) of

conditional quantiles. It can be read as an adaptation of classical results [2, 35, 38] to the

location-dispersion regression model in the multivariate fixed design setting.

Proposition 2. Assume (A.1), (A.2) and (A.3) hold. Let (tn) ⊂ Π̃(n) and (αj)j=1,...,J

a strictly decreasing sequence in (0, 1) such that fZ(qZ(αj)) > 0 for all j ∈ {1, . . . , J}. If

nhd →∞ and nhd+κ(d) → 0 as n→∞, then{√
nhd

b(tn)

[
q̂n,Y (αj | tn)− qY (αj | tn)

]}
j=1,...,J

d−→ N
(
0RJ , λ(Π)‖K‖2

2 C
)
,

where C is the covariance matrix defined by Ck,` = αk∨`(1− αk∧`)HZ(αk)HZ(α`) for all

(k, `) ∈ {1, . . . , J}2.
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Proof. Let s = (s1, . . . , sJ) ∈ RJ , and for all j = 1, . . . , J ,

εj,n := sj/
√
nhd,

νj,n := b(tn)εj,n,

yj,n = qY (αj | tn) + νj,n,

Vj,n :=
√
nhd

[
ˆ̄Fn,Y (yj,n | tn)− F̄Y (yj,n | tn)

]
,

vj,n :=
√
nhd

[
αj − F̄Y (yj,n | tn)

]
.

These notations yield

Wn(s) := P

(
J⋂
j=1

{√
nhd

b(tn)

(
q̂n,Y (αj | tn)− qY (αj | tn)

)
≤ sj

})
= P

( J⋂
j=1

{
Vj,n ≤ vj,n

})
.

From (3) and (5), the nonrandom term can be rewritten as

vj,n =
√
nhd

(
αj − F̄Z

(
yj,n − a(tn)

b(tn)

))
=
√
nhd(αj − F̄Z (qZ(αj) + εj,n)).

Since F̄Z(·) is differentiable, for all j ∈ {1, . . . , J}, there exists θj,n ∈ (0, 1) such that

vj,n = sjfZ (qZ(αj) + θj,nεj,n) =
sj

HZ(αj)
(1 + o(1)), (31)

in view of the continuity of fZ(·) and since εj,n → 0 as n → ∞. Let us now turn to

the random term. Recalling that, for all j = 1, . . . , J , yj,n = qY (αj | tn) + b(tn)εj,n, with

εj,n → 0 as n→∞, Proposition 1 entails that {Vj,n}j=1,...,J converges to a centered Gaussian

random vector with covariance matrix λ(Π)‖K‖2
2 B. Taking account of (31) yields that Wn(s)

converges to the cumulative distribution function of a centered Gaussian distribution with

covariance matrix λ(Π)‖K‖2
2 C, evaluated at s, which is the desired result.

The following proposition provides a uniform consistency result for the estimator (8) of

conditional quantiles of Y given a sequence of multidimensional design points in Π̃(n), i.e.

not too close from the boundary of Π.

Proposition 3. Assume (A.1), (A.2) and (A.3) hold. Suppose nhd/ log n → ∞ and

nhd+κ(d)/ log n→ 0 as n→∞. Then, for all α ∈ (0, 1),√
nhd

log n
max
i∈In

∣∣∣∣ q̂n,Y (α | xi)− qY (α | xi)
b(xi)

∣∣∣∣ = OP(1).
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Proof. Let vn = (nhd/ log n)1/2 and for all (ε, α) ∈ (0, 1)2, consider

κ1(ε, α) = 2‖K‖2 (λ(Π)α(1− α) (1− log(ε/2)))1/2 ,

κ2(α) = λ(Π)α(1− α)‖K‖2
2,

M(ε, α) = κ1(ε, α)HZ(α).

Let us also introduce, for all i ∈ In,

q±i,n = qY (α | xi)±M(ε, α)b(xi)/vn,

α±i,n = α− E
(

ˆ̄Fn,Y
(
q±i,n | xi

))
,

ξ±i,n =
(

ˆ̄Fn,Y − E ˆ̄Fn,Y

) (
q±i,n | xi

)
,

so that the following expansion holds:

δn := P
(
vnmax

i∈In

∣∣∣∣ q̂n,Y (α | xi)− qY (α | xi)
b(xi)

∣∣∣∣ ≥M(ε, α)

)
= P

(⋃
i∈In

{
q̂n,Y (α | xi) ≥ q+

i,n

}
∪
{
q̂n,Y (α | xi) ≤ q−i,n

})

= P

(⋃
i∈In

{
α ≤ ˆ̄Fn,Y

(
q+
i,n | xi

)}
∪
{
α ≥ ˆ̄Fn,Y

(
q−i,n | xi

)})

= P

(⋃
i∈In

{
α+
i,n ≤ ξ+

i,n

})
+ P

(⋃
i∈In

{
α−i,n ≥ ξ−i,n

})
=: δ+

n + δ−n .

Let us focus on the first term. Assumption nhd/ log n→∞ entails that vn →∞ as n→∞
and thus q+

i,n is bounded. Therefore Lemma 2(i) shows that

α+
i,n = α− F̄Y

(
q+
i,n | xi

)
+O(h2) +O(n−1/d)

= F̄Z(qZ(α))− F̄Z
(
qZ(α) +

M(ε, α)

vn

)
+O(h2) +O(n−1/d)

=
M(ε, α)

vn
fZ

(
qZ(α) +

M(ε, α)

vn
θ

)
+O(h2) +O(n−1/d),

for some θ ∈ (0, 1), and the continuity of fZ(·) then yields

α+
i,n =

M(ε, α)

vnHZ(α)
(1 + o(1)) +O(h2) +O(n−1/d) =

κ1(ε, α)

vn
(1 + o(1)) , (32)

in view of the assumption nhd+κ(d)/ log n→ 0 as n→∞. As a consequence,

δ+
n = P

(⋃
i∈In

{
ξ+
i,n ≥

κ1(ε, α)

vn
(1 + o(1))

})
≤
∑
i∈In

P
(
ξ+
i,n ≥

κ1(ε, α)

vn
(1 + o(1))

)
. (33)
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Moreover,

P
(
ξ+
i,n ≥

κ1(ε, α)

vn
(1 + o(1))

)
=: P

(
n∑
j=1

X̃j ≥
κ1(ε, α)

vn
(1 + o(1))

)
, (34)

where, for all j = 1, . . . , n, the random variables

X̃j :=
[
1{Yj>q+i,n}

− P
(
Yj > q+

i,n | xi
)] ∫

Πj

Kh(xi − s)ds

are independent, centered and bounded from (14):

|X̃j| ≤
∫

Πj

Kh(xi − s)ds ≤
λ(Π)‖K‖∞

nhd
(1 + o(1)).

Lemma 2(ii) entails

n∑
j=1

E(X̃2
j ) = var

(
n∑
j=1

X̃j

)
= var

[
ˆ̄Fn,Y

(
q+
i,n | xi

)]
=

λ(Π)F̄Y
(
q+
i,n | xi

)
FY
(
q+
i,n | xi

)
nhd

‖K‖2
2(1 + o(1)),

=
κ2(α)

nhd
(1 + o(1)),

since α+
i,n → 0 as n → ∞ from (32) and thus F̄Y

(
q+
i,n | xi

)
→ α as n → ∞ in view of the

continuity of F̄Y (· | xi). Bernstein’s inequality for bounded random variables yields

(34) ≤ exp

(
− κ2

1(ε, α) log n

2κ2(α) + 2κ1(ε,α)(1+o(1))
3vn

(1 + o(1))

)

= exp

(
−κ

2
1(ε, α) log n

2κ2(α)
(1 + o(1))

)
= exp [−2 (1− log(ε/2)) log n (1 + o(1))]

≤ exp [− (1− log(ε/2)) log n] , (35)

for n large enough. Collecting (33)-(35) leads to

δ+
n ≤ n exp [− (1− log(ε/2)) log n] = exp (log(ε/2) log n) ≤ ε/2

for n large enough. The proof that δ−n ≤ ε/2 follows the same lines. As a conclusion, we have

shown that, for all α ∈ (0, 1) and ε ∈ (0, 1) there exists M(ε, α) > 0 such that

P

(√
nhd

log n
max
i∈In

∣∣∣∣ q̂n,Y (α | xi)− qY (α | xi)
b(xi)

∣∣∣∣ ≥M(ε, α)

)
≤ ε,

which is the desired result.
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7.3 Proofs of main results

The proof of Theorem 1 directly relies on Proposition 2:

Proof of Theorem 1. Let us remark that

√
nhd

b(tn)

(
ân(tn)− a(tn)

b̂n(tn)− b(tn)

)
= Ωξn,

where Ω =

(
0 1 0

1 0 −1

)
and ξn =

√
nhd

b(tn)

q̂n,Y (µ3 | tn)− qY (µ3 | tn)

q̂n,Y (µ2 | tn)− qY (µ2 | tn)

q̂n,Y (µ1 | tn)− qY (µ1 | tn)

 .

Proposition 2 with J = 3 and αj = µj, j = 1, . . . , J yields that ξn converges in distribution

to the N (0R3 , λ(Π)‖K‖2
2 C) distribution where

C =

 µ1(1− µ1)H2
Z(µ1) µ2(1− µ1)HZ(µ2)(HZ(µ1) µ3(1− µ1)HZ(µ3)HZ(µ1)

µ2(1− µ1)HZ(µ2)HZ(µ1) µ2(1− µ2)H2
Z(µ2) µ3(1− µ2)HZ(µ2)HZ(µ3)

µ3(1− µ1)HZ(µ3)HZ(µ1) µ3(1− µ2)HZ(µ2)HZ(µ3) µ3(1− µ3)H2
Z(µ3)

 .

Therefore, Ωξn
d−→ N (0R2 , λ(Π)‖K‖2

2 ΩCΩt) and the conclusion follows from ΩCΩt = Σ.

Theorem 2 is a straightforward consequence of Proposition 3:

Proof of Theorem 2. Remarking that

max
i∈In

∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣ = max
i∈In

∣∣∣∣ q̂n,Y (µ2 | xi)− qY (µ2 | xi)
b(xi)

∣∣∣∣ ,
the first part of the result is a consequence of Proposition 3 applied with α = µ2. Similarly,

max
i∈In

∣∣∣∣∣ b̂n(xi)− b(xi)
b(xi)

∣∣∣∣∣ ≤ max
i∈In

∣∣∣∣ q̂n,Y (µ3 | xi)− qY (µ3 | xi)
b(xi)

∣∣∣∣
+ max

i∈In

∣∣∣∣ q̂n,Y (µ1 | xi)− qY (µ1 | xi)
b(xi)

∣∣∣∣ ,
and the conclusion follows from Proposition 3 with α ∈ {µ3, µ1}.
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Proof of Corollary 1. Remark that for all i ∈ In, one has

|Ẑi − Zi| =

∣∣∣∣∣Yi − ân(xi)

b̂n(xi)
− Zi

∣∣∣∣∣ =

∣∣∣∣∣a(xi)− ân(xi)

b̂n(xi)
+
b̂n(xi)− b(xi)

b̂n(xi)
Zi

∣∣∣∣∣
≤

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣
(∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣+

∣∣∣∣∣ b̂n(xi)− b(xi)
b(xi)

∣∣∣∣∣ |Zi|
)

≤

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣max

{∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣ ;
∣∣∣∣∣ b̂n(xi)− b(xi)

b(xi)

∣∣∣∣∣
}

(1 + |Zi|)

=:

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣max
{∣∣∣ξ(a)

i,n

∣∣∣ ; ∣∣∣ξ(b)
i,n

∣∣∣} (1 + |Zi|) .

Let us define, for all i ∈ In,

ξ
(a)
i,n =

ân(xi)− a(xi)

b(xi)
, ξ

(b)
i,n =

b̂n(xi)− b(xi)
b(xi)

and Rn,i =

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣max
{∣∣∣ξ(a)

i,n

∣∣∣ ; ∣∣∣ξ(b)
i,n

∣∣∣} .
On the one hand, Theorem 2 entails

max
i∈In

Rn,i ≤ max
i∈In

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣max

{
max
i∈In

∣∣∣ξ(a)
i,n

∣∣∣ ; max
i∈In

∣∣∣ξ(b)
i,n

∣∣∣} = max
i∈In

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣OP

(√
log n

nhd

)
.

On the other hand,

P

(
max
i∈In

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣ ≥ 2

)
= P

(
max
i∈In

∣∣∣∣∣ 1

1 + ξ
(b)
i,n

∣∣∣∣∣ ≥ 2

)
≤ P

(
max
i∈In

∣∣∣ξ(b)
i,n

∣∣∣ ≥ 1

2

)

≤ P

(√
nhd

log n
max
i∈In

∣∣∣ξ(b)
i,n

∣∣∣ ≥ 1

2

√
nhd

log n

)
.

Again, Theorem 2 shows that the following uniform consistency holds: For all ε > 0, there

exists M(ε) > 0 such that

P

(√
nhd

log n
max
i∈In

∣∣∣ξ(b)
i,n

∣∣∣ ≥M(ε)

)
≤ ε.

Now, for n large enough, (nhd/ log n)1/2 > 2M(ε) so that

P

(
max
i∈In

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣ ≥ 2

)
≤ P

(
max
i∈In

√
nhd

log n

∣∣∣ξ(b)
i,n

∣∣∣ ≥M(ε)

)
≤ ε,

i.e. maxi∈In |b(xi)/b̂n(xi)| = OP(1). As a result,

max
i∈In

Rn,i = OP

(√
log n

nhd

)
,

which completes the proof of the corollary.
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Proof of Theorem 3. (i) Let us consider the expansion√
kn(γ̂n − γ) =

√
kn(γ̂n − γ̃n) +

√
kn(γ̃n − γ) =: Υ1,n + Υ2,n,

where

γ̃n =
1

kn

kn−1∑
i=0

logZmn−i,mn − logZmn−kn,mn

is the Hill estimator computed on the unobserved random variables Z1, . . . , Zn. Recall that

mn = card(In) where In = {i ∈ {1, . . . , n} such that xi ∈ Π̃(n)}. The first term is controlled

by remarking that

|Υ1,n| =
√
kn|γ̂n − γ̃n| ≤

√
kn max

0≤i≤kn

∣∣∣∣∣log
Ẑmn−i,mn
Zmn−i,mn

∣∣∣∣∣ = OP

(√
kn log n

nhd

)
= oP(1), (36)

from Corollary 1 and Lemma 3(ii). Let us now focus on Υ2,n. Remarking that mn ∼ n as

n → ∞ in view of Lemma 3(i), it is clear that mn/kn → ∞ as n → ∞. Besides, since

|A| ∈ RVρ, we thus have A(mn/kn) ∼ A(n/kn) as n → ∞. Therefore,
√
knA(mn/kn) → β

as n→∞ and, since Z1, . . . , Zn are iid from (2), classical results on Hill estimator apply, see

for instance [24, Theorem 3.2.5], leading to

Υ2,n
d−→ N (β/(1− ρ), γ2). (37)

The conclusion follows from (36) and (37).

(ii) Let us introduce vn =
√
kn/ log(kn/(nαn)) and consider the Weissman estimator com-

puted on the unobserved random variables Z1, . . . , Zn:

q̃n,Z(αn) = Zmn−k,mn

(
αnmn

kn

)−γ̃n
.

The following expansion holds:

vn(log q̂n,Z(αn)− log qZ(αn)) = vn(log q̂n,Z(αn)− log q̃n,Z(αn))

+ vn(log q̃n,Z(αn)− log qZ(αn))

=: T1,n + T2,n,

with

|T1,n| ≤ vn

∣∣∣∣∣log
Ẑmn−kn,mn
Zmn−kn,mn

∣∣∣∣∣+ vn|γ̂n − γ̃n|
∣∣∣∣log

(
αnmn

kn

)∣∣∣∣ =: T1,1,n + T1,2,n.

First, T1,1,n is controlled by Corollary 1 and Lemma 3(ii) together with the assumptions

kn log n/(nhd)→ 0 and kn/(nαn)→∞ as n→∞,

T1,1,n =

√
kn

log
(

kn
nαn

)OP

(√
log n

nhd

)
=

√
kn log n

nhd
OP

 1

log
(

kn
nαn

)
 = oP(1). (38)
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Second, since mn ∼ n as n→∞ (see Lemma 3(i)),

T1,2,n = |Υ1,n|(1 + oP(1)) = oP(1), (39)

in view of (36). Collecting (38) and (39) yields

T1,n = vn(log q̂n,Z(αn)− log q̃n,Z(αn)) = oP(1). (40)

Let us now focus on T2,n. As a consequence of [24, Theorem 4.3.8], Weissman estimator

inherits its asymptotic distribution from Hill estimator:

vn

(
q̂n,Z(αn)

qZ(αn)
− 1

)
d−→ N (β/(1− ρ), γ2),

in view of (37). As a result,

T2,n
d−→ N (β/(1− ρ), γ2). (41)

The conclusion follows from (40) and (41).

Proof of Theorem 4. Let vn =
√
kn/ log(kn/(nαn)) and consider the following expansion:

vn
b(tn)qZ(αn)

(q̃n,Y (αn | tn)− qY (αn | tn))

=
vn

qZ(αn)

(
ân(tn)− a(tn)

b(tn)

)
+ vn

(
b̂n(tn)− b(tn)

b(tn)

)
+ vn

b̂n(tn)

b(tn)

(
q̂n,Z(αn)

qZ(αn)
− 1

)

=:

√
kn
nhd

ξ
(a)
n

qZ(αn) log
(

kn
nαn

) +

√
kn
nhd

ξ
(b)
n

log
(

kn
nαn

) + vn
b̂n(tn)

b(tn)

(
q̂n,Z(αn)

qZ(αn)
− 1

)
.

From Theorem 1, ξ
(a)
n :=

√
nhd

(
ân(tn)−a(tn)

b(tn)

)
= OP(1), ξ

(b)
n :=

√
nhd

(
b̂n(tn)−b(tn)

b(tn)

)
= OP(1)

and thus, √
kn
nhd

ξ
(a)
n

qZ(αn) log
(

kn
nαn

) +

√
kn
nhd

ξ
(b)
n

log
(

kn
nαn

) P−→ 0,

in view of kn/(nh
d) → 0, qZ(αn) → ∞ and nαn/kn → 0 as n → ∞. In addition, since

ξ
(b)
n = OP(1), it follows that

b̂n(tn)

b(tn)
= 1 +

ξ
(b)
n√
nhd

P−→ 1. (42)

Besides, from Theorem 3(ii),

vn

(
q̂n,Z(αn)

qZ(αn)
− 1

)
= vn (log q̂n,Z(αn)− log qZ(αn)) (1 + oP(1))

d−→ N (β/(1− ρ), γ2), (43)
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and collecting (42) and (43) yields

vn
b̂n(tn)

b(tn)

(
q̂n,Z(αn)

qZ(αn)
− 1

)
d−→ N (β/(1− ρ), γ2).

The conclusion follows.

Proof of Theorem 5. Recall that vn =
√
kn/ log(kn/(nαn)). The proof follows the same lines

as the one of Theorem 4:

vn
qZ(αn)

max
i∈In

∣∣∣∣ q̃n,Y (αn | xi)− qY (αn | xi)
b(xi)

∣∣∣∣
≤ vn

qZ(αn)
max
i∈In

∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣+ vnmax
i∈In

∣∣∣∣∣ b̂n(xi)− b(xi)
b(xi)

∣∣∣∣∣+ vn

∣∣∣∣ q̂n,Z(αn)

qZ(αn)
− 1

∣∣∣∣max
i∈In

∣∣∣∣∣ b̂n(xi)

b(xi)

∣∣∣∣∣ .
From Theorem 2,

vn
qZ(αn)

max
i∈In

∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣+ vnmax
i∈In

∣∣∣∣∣ b̂n(xi)− b(xi)
b(xi)

∣∣∣∣∣ P−→ 0,

since qZ(αn) → ∞ and under the assumptions nhd/(kn log n) → ∞ and nαn/kn → 0 as

n→∞. In addition,

max
i∈In

∣∣∣∣∣ b̂n(xi)

b(xi)

∣∣∣∣∣ ≤ max
i∈In

∣∣∣∣∣ b̂n(xi)

b(xi)
− 1

∣∣∣∣∣+ 1 = OP(1), (44)

from Theorem 2, and

vn

∣∣∣∣ q̂n,Z(αn)

qZ(αn)
− 1

∣∣∣∣ = vn |(log q̂n,Z(αn)− log qZ(αn))(1 + oP(1))| = OP(1), (45)

in view of Theorem 3(ii). Collecting (44) and (45) yields

vn

∣∣∣∣ q̂n,Z(αn)

qZ(αn)
− 1

∣∣∣∣max
i∈In

∣∣∣∣∣ b̂n(xi)

b(xi)

∣∣∣∣∣ = OP(1)

and the conclusion follows.
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