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On finite-time stabilization of a class of nonlinear time-delay systems:
Implicit Lyapunov-Razumikhin approach

Artem N. Nekhoroshikh, Denis Efimov, Andrey Polyakov, Wilfrid Perruquetti, and Igor B. Furtat

Abstract— Theorems on Implicit Lyapunov-Razumikhin
functions (ILRF) for asymptotic, exponential, finite-time and
nearly fixed-time stability analysis of nonlinear time-delay
systems are presented. Based on these results, finite-time stabi-
lization of a special class of such systems is addressed. These
systems are represented by a chain of integrators with a time-
delay term multiplied by a function of instantaneous state vec-
tor. Possible explicit restriction on nonlinear time-delay terms is
discussed. Simple procedure of control parameters calculation
is given in terms of linear matrix inequalities (LMIs). Some
aspects of digital implementations of the presented nonlinear
control law are touched upon. Theoretical results are illustrated
by numerical simulations.

I. INTRODUCTION

In many practical applications time response constraints
are the main optimization criteria. For delay-free case there
are plenty of techniques providing non-asymptotic (finite-
time and fixed-time) rates of convergence [1], [2]. For exam-
ple, by using theory of homogeneous dynamical systems, the
rate of convergence depends on the degree of homogeneity
of the system [2].

However, time-delay systems can be stabilized in finite
time only under strong restrictions on the right-hand side
of the system [3]. The most general sufficient conditions
are given in [4]. On the other hand, in [3] the ”necessary”
condition for finite-time convergence is presented. It claims
that the right-hand side of the system has to be equal to zero
once the instantaneous state vector has reached the origin.
For example, this condition will be satisfied if time-delay
terms are multiplied by some functions depending on delay-
free state vector or if the control contains distributed delays
injection term.

There exist two main frameworks for stability analysis
of time-delay systems: Lyapunov-Krasovskii approach and
Lyapunov-Razumikhin method [5]. The former one is the
natural extension of Lyapunov method for the case of time-
delay systems, since delay-free state vector is replaced by
the functional state vector. Therefore, this approach provides

A. N. Nekhoroshikh is with Faculty of Control Systems and Robotics,
ITMO University, 197101, 49 Kronverkskiy av., Saint Petersburg, Russia
annekhoroshikh@itmo.ru

D. Efimov and A. Polyakov are with Valse team,
Inria, Univ. Lille, CNRS, UMR 9189 - CRIStAL, F-
59000 Lille, France denis.efimov@inria.fr,
andrey.polyakov@inria.fr

W. Perruquetti is with Faculty of Automation, Computer
Engineering, Signal and Image Processing, Centrale Lille Institut,
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qualitative as well as quantitative estimates on the system
convergence. However, selection of Lyapunov-Krasovskii
functional is not a trivial task. The latter method is based on
a classical Lyapunov function, as the one employed for the
delay-free case, and it imposes restrictions on time deriva-
tive of Lyapunov function only under auxiliary functional
restrictions. Hence, it gives mainly a qualitative conclu-
sion. Recently several extensions of Lyapunov-Razumikhin
method have been proposed [6], allowing the rate of solution
convergence to be estimated.

Nevertheless, the Lyapunov function (functional) methods
being the most developed tool for analysis of non-asymptotic
stability do not provide a constructive way to control synthe-
sis. This drawback can be overcome by means of implicit for-
mulation of Lyapunov-type theorems. The Implicit Lyapunov
Function (ILF) method has been developed for delay-free
systems in [7] as well as the Implicit Lyapunov-Krasovskii
Functional (ILKF) approach has been proposed for time-
delay systems in [8]. This methods allow one to check
sufficient stability conditions and obtain control parameters
by solving a system of LMIs.

Therefore, the goal of this work is to propose the implicit
versions of Lyapunov-Razumikhin theorems on asymptotic
and non-asymptotic stability developed in [6]. Differently
from [8], the proposed approach allows one to use ”simple”
ILF (e.g. from [7]) rather than ILKF to design control
laws. The obtained results are used to effectively solve a
problem of finite-time stabilization of nonlinear time-delay
systems. Moreover, some ”mild sufficient” conditions on
the right-hand side of the system are obtained. All stability
conditions are represented by LMIs depending on two tuning
parameters.

The outline of this work is as follows. The stability
definitions of time-delay systems and explicit Lyapunov-
Razumikhin theorems, guaranteeing each type of stability,
are introduced in Section II. Implicit formulation of the
theorems are given in Section III. The problem of finite-time
stabilization of a special class of nonlinear time-delay sys-
tems is investigated in Section IV. The numerical simulation
is presented in Section V.

Through the paper the following notations will be used:
• R is the field of real numbers, R>0 = {x ∈ R : x > 0}

and R≥0 = R>0 ∪ 0;
• ‖ ·‖ is the Euclidean norm in Rn, ‖ ·‖P is the weighted

Euclidean norm in Rn for a symmetric positive definite
matrix P ∈ Rn×n;

• Ch is the space of continuous functions [−h, 0] →
Rn with the norm ‖ · ‖h defined as follows ‖Φ‖h =



max
τ∈[−h,0]

‖Φ(τ)‖ for Φ ∈ Ch;

• a continuous function σ : R>0 → R>0 belongs to the
class K if it is strictly increasing and σ(0) = 0; if
additionally it is unbounded then σ belongs to K∞;

• a series of integers 1, 2, . . . , n is denoted by 1, n;
• diag{λi}nj=1 is the diagonal matrix with the elements
λj ∈ R, j = 1, n;

• if P ∈ Rn×n is symmetric, then the inequalities P > 0
(P < 0) and P ≥ 0 (P ≤ 0) mean that P is positive
(negative) definite and semidefinite, respectively;

• λmin(P ) and λmax(P ) are the minimal and maximal
eigenvalues of a symmetric matrix P ∈ Rn×n, respec-
tively;

• In ∈ Rn×n is the identity matrix and On ∈ Rn is the
zero column.

II. PRELIMINARIES

Consider the time-delay system of the form [9]{
ẋ(t) = φ(xt), t ≥ 0
x(t) = Φ(t), Φ ∈ Ch, t ∈ [−h, 0]

(1)

where x(t) ∈ Rn is the instantaneous state vector, xt ∈
Ch is the state of the delay system at time t, defined by
xt(τ) = x(t + τ) with τ ∈ [−h, 0] for h > 0 (time delay)
and φ : Ch → Rn is a continuous operator. Assume that the
origin is an equilibrium point of the system (1), i.e. φ(0) = 0
for all t ≥ 0. A solution of the system (1) with the initial
function Φ ∈ Ch is denoted by x(t,Φ).

A. Stability definitions

The definitions of Lyapunov, asymptotic, exponential,
finite-time and nearly fixed-time stability [4] of the system
(1) at the origin are given below.

Let D be a neighborhood of zero in Ch.

Definition 1. At the origin the system (1) is said to be:
1) Lyapunov stable if there is ϕ ∈ K such that for any Φ ∈
D, the solutions are defined and ‖x(t,Φ)‖ ≤ ϕ(‖Φ‖h)
for all t ≥ 0;

2) asymptotically stable if it is Lyapunov stable and

lim
t→∞

‖x(t,Φ)‖ = 0 for any Φ ∈ D;

3) exponentially stable if for any Φ ∈ D there exist ϕ′ ∈ K
and ϑ > 0 called the decay rate such that ‖x(t,Φ)‖ ≤
ϕ′(‖Φ‖h)e−ϑt for all t ≥ 0;

4) finite-time stable if it is Lyapunov stable and for any
Φ ∈ D there exists 0 ≤ TΦ <∞ such that x(t,Φ) = 0
for all t ≥ TΦ. The functional T (Φ) = inf{TΦ ≥ 0 :
x(t,Φ) = 0 ∀t ≥ TΦ} is called the settling time of the
system (1);

5) nearly fixed-time stable if it is Lyapunov stable and
for any % > 0 there exists 0 < T (%) < ∞ called the
transition time such that ‖x(t,Φ)‖ ≤ % for all t ≥ T (%)
and all Φ ∈ D.

If D = Ch, then the corresponding properties are called
global Lyapunov/asymptotic/exponential/finite-time/nearly
fixed-time stability.

B. Razumikhin-type theorems

Let us formulate a Lyapunov-Razumikhin theorem on
asymptotic stability of time-delay systems [9] and its mild
modifications [6] allowing one to estimate the exponential,
finite-time and nearly fixed-time convergence rates. For
brevity only the global stability will be considered in the
sequel.

Denote values of V at time instants t and t + τ and
derivative of V with respect to time along the trajectories of
the system (1) at time instant t as follows: Vt := V (xt(0)),
Vt+τ := V (xt(τ)), V̇t := ∂V (x)

∂x

∣∣∣
x=xt(0)

φ(xt).

Theorem 1 (Theorem 4.2 [9]). Let there exists a locally
Lipschitz continuous Lyapunov-Razumikhin function V :
Rn → R such that

1) for some σ1, σ2 ∈ K∞ and all x ∈ Rn

σ1(‖x‖) ≤ V (x) ≤ σ2(‖x‖);

2a) for some w, p ∈ K, with p(s) > s for all s > 0, and
all xt ∈ Ch

max
τ∈[−h,0]

Vt+τ ≤ p(Vt)⇒ V̇t ≤ −w(‖xt(0)‖).

Then the system (1) is globally asymptotically stable at
the origin.

Theorem 2 (Theorem 6 [6]). Let there exists a locally
Lipschitz continuous Lyapunov-Razumikhin function V :
Rn → R, satisfying condition 1) of Theorem 1, such that

2b) for some χ > 1, α > 0 and all xt ∈ Ch
max

τ∈[−h,0]
Vt+τ ≤ χVt ⇒ V̇t ≤ −αVt.

Then the origin of the system (1) is globally asymptotically
stable with the decay rate of exponential convergence

ϑ = −min{α, ln(χ)/h}. (2)

Theorem 3 (Theorem 8 [6]). Let there exists a locally
Lipschitz continuous Lyapunov-Razumikhin function V :
Rn → R, satisfying condition 1) of Theorem 1, such that

2c) for some µ ∈ (−1, 0), c > 0, α > 0 and all xt ∈ Ch
max

τ∈[−h,0]
V −µt+τ ≤ V

−µ
t + ch⇒ V̇t ≤ −αV 1+µ

t .

Then the origin of the system (1) is globally finite-time
stable with settling-time estimate

T (Φ) = σ−µ2 (‖Φ‖h)/min{−αµ, c}. (3)

Theorem 4 (Theorem 9 [6]). Let there exists a locally
Lipschitz continuous Lyapunov-Razumikhin function V :
Rn → R, satisfying condition 1) of Theorem 1, such that

2d) for some ν > 0, c > 0, α > 0 and all xt ∈ Ch(
max

τ∈[−h,0]
Vt+τ

)−ν
+ ch ≥ V −νt ⇒ V̇t ≤ −αV 1+ν

t .

Then the system (1) is globally nearly fixed-time stable at
the origin with transition-time estimate to the ball B = {x ∈
Rn : ‖x(t,Φ)‖ ≤ %}

T (%) = σ−ν1 (%)/min{αν, c}. (4)



III. IMPLICIT RAZUMIKHIN-TYPE THEOREMS

In this subsection Theorems 1-4 are reformulated in the
implicit way. Compared to explicit formulation, proposed
approach is more constructive for control design purposes.

Before formulating the theorem concerning stability anal-
ysis of time-delay systems using ILRF, a special class of
comparison functions is introduced in the following defini-
tion.

Definition 2 (Implicit comparison functions [8]). The
function q : R2

>0 → R is said to be of the class IK∞ if:
1) q is continuous on R2

>0;
2) for any s ∈ R>0 there exists σ ∈ R>0 such that

q(σ, s) = 0;
3) for any fixed s ∈ R>0 the function q(·, s) is strictly

decreasing on R>0;
4) for any fixed σ ∈ R>0 the function q(σ, ·) is strictly

increasing on R>0;
5) for all (σ, s) ∈ Γ = {(σ, s) ∈ R2

>0 : q(σ, s) = 0}, the
following holds:

lim
s→0+

σ = 0, lim
σ→0+

s = 0, lim
s→∞

σ =∞.

In other words, Definition 2 postulates that if q ∈ IK∞,
then there exists a unique function σ ∈ K∞ such that
q(σ(s), s) = 0 for all s ∈ R>0.

Denote values of V and partial derivatives of function
Q(V, x) at time instant t as follows: Vt := V (t), Qx(t) :=
∂Q(V,x)
∂x

∣∣∣V=Vt
x=xt(0)

and QV (t) := ∂Q(V,x)
∂V

∣∣∣V=Vt
x=xt(0)

. The proofs

of the following theorems are given in Appendix I.

Theorem 5 (Asymptotic stability). If there exists a con-
tinuous function Q : R>0 × Rn → R such that:
C1) Q is continuously differentiable outside the origin;
C2) for any x ∈ Rn \ {0} there exists V ∈ R>0 such that

Q(V, x) = 0;
C3) there exist q1, q2 ∈ IK∞ such that for all V ∈ R>0

and x ∈ Rn \ {0}:

q1(V, ‖x‖) ≤ Q(V, x) ≤ q2(V, ‖x‖);

C4) ∂Q(V,x)
∂V < 0 for all V ∈ R>0 and x ∈ Rn \ {0};

C5a) for all xt ∈ Ch and (Vt, xt(0)) ∈ Ω = {(Vt, xt(0)) ∈
R>0 × Rn : Q(Vt, xt(0)) = 0}:

max
τ∈[−h,0]

Q(p(Vt), xt(τ)) ≤ 0⇒

Qx(t)φ(xt) ≤ w(‖xt(0)‖)QV (t),

where p, w ∈ K and p(V ) > V for all V ∈ R>0. Then the
origin of the system (1) is globally asymptotically stable.

Theorem 6 (Exponential stability). If there exists a con-
tinuous function Q : R>0 × Rn → R such that conditions
C1–C4 of Theorem 5 are satisfied and the condition:

C5b) for all xt ∈ Ch and (Vt, xt(0)) ∈ Ω there exist
χ > 1, α > 0 such that:

max
τ∈[−h,0]

Q(χVt, xt(τ)) ≤ 0⇒ Qx(t)φ(xt) ≤ αVtQV (t).

Then the origin of the system (1) is globally asymptotically
stable with the decay rate of exponential convergence (2).

Theorem 7 (Finite-time stability). If there exists a con-
tinuous function Q : R>0 × Rn → R such that conditions
C1–C4 of Theorem 5 are satisfied and the condition:

C5c) for all xt ∈ Ch and (Vt, xt(0)) ∈ Ω there exist
µ ∈ (−1, 0), c > 0 and α > 0 such that:

max
τ∈[−h,0]

Q((V −µt + ch)−1/µ, xt(τ)) ≤ 0⇒

Qx(t)φ(xt) ≤ αV 1+µ
t QV (t).

Then the origin of the system (1) is globally finite-time
stable with settling-time estimate (3), where σ2 ∈ K∞ such
that q2(σ2(s), s) = 0 for all s ∈ R>0.

Theorem 8 (Nearly fixed-time stability). If there exists a
continuous function Q : R>0×Rn → R such that conditions
C1–C4 of Theorem 5 are satisfied and the condition:

C5d) for all xt ∈ Ch and (Vt, xt(0)) ∈ Ω there exist
ν > 0, c > 0 and α > 0 such that:

max
τ∈[−h,0]

Q((V −νt − ch)−1/ν , xt(τ)) ≤ 0⇒

Qx(t)φ(xt) ≤ αV 1+ν
t QV (t).

Then the system (1) is globally nearly fixed-time stable at
the origin with transition-time estimate (4), where σ1 ∈ K∞
such that q1(σ1(s), s) = 0 for all s ∈ R>0.

IV. FINITE-TIME STABILIZATION OF TIME-DELAY
SYSTEMS

A. Problem statement

Let us consider a nonlinear time-delay system of the form:{
ẋ(t)=Ax(t) + bu(t) + F (x(t))x(t− h), t ≥ 0
x(t)=Φ(t), Φ ∈ Ch, t ∈ [−h, 0]

(5)

where x(t) ∈ Rn is the instantaneous state vector, u(t) ∈ R
is the control input, h > 0 is the known time delay; the
system matrix A, the vector b ∈ Rn and the function gain
F : Rn → Rn×n are of the form:

A =

[
On−1 In−1

0 OTn−1

]
, b =

[
On−1

1

]
,

F (x(t)) =

[
On−1 diag{fj(x(t))}n−1

j=1

0 OTn−1

]
.

Functions fj(x(t)), j = 1, n− 1 are continuous and fj(0) =
0. The function Φ ∈ Ch represents initial conditions.

The problem is to stabilize the origin of the system (5) in
finite time. Let us note that the well-known obstruction to
finite-time stabilization of time delay systems (see [3], [4])
is overcome since the right-hand side of the system is zero
once the instantaneous state vector has reached the origin
(for u = 0).



B. Control design

Introduce the Implicit Lyapunov-Razumikhin function
candidate [7]

Q(V, x) := x>D(V −1)PD(V −1)x− 1, (6)

where V ∈ R>0, x ∈ Rn, 0 < P = P> ∈ Rn×n, D(λ) :=
diag{λri}ni=1 is a diagonal matrix with r = [r1, . . . , rn]> ∈
Rn>0 and

ri = 1− (n− i)µ, −1 < µ < 0.

Denote H := diag{−ri}ni=1.

Theorem 9 (Finite-time stabilization). Let there exists
µ ∈ (−1, 0) such that the following conditions hold:

1) the functions fj(x), j = 1, n− 1 satisfy the inequalities

|fj(x)| ≤ δ0
( V −µ

V −µ + ch

)−rj+1/µ

, (7)

for some c, δ0 > 0 and all V ∈ R≥0, x ∈ Rn such that
Q(V, x) = 0.

2) there exist α, γ, ρ, η > 0 such that LMIs

−γX ≤ XH +HX < 0 (8a)

AX + by> +XA> + yb> + (2αγ + ρ−1)X ≤ 0 (8b)

δ2
0ηρ/(αγ)In ≤ X ≤ ηIn (8c)

are feasible for some 0 < X = X> ∈ Rn×n and y ∈ Rn;
3) the control law u has the form

u(V, x) = V 1+µk>D(V −1)x, (9)

where k> := y>X−1, V ∈ R>0 is such that Q(V, x) = 0
and Q is defined by (6) with P = X−1;

Then the closed-loop system (5), (9) is globally finite-time
stable with settling-time estimate

T (Φ) =

[
max

{
κ1/(2r1)(‖Φ‖h), κ1/2(‖Φ‖h)

}]−µ
min{−αµ, c}

, (10)

where κ(‖Φ‖h) := αγ/(δ2
0ηρ)‖Φ‖2h.

Let us make some comments about the presented control
scheme:

Firstly, the practical implementation of the control law (9)
requires to find the solution V (x) of the equation Q(V, x) =
0. Since Q(V, x) = 0 is a monotonically decreasing function
for any fixed x ∈ Rn \ {0}, then the value V (x) can be
found numerically on-line using the current value of the state
vector. To this end, one can use, for example, Algorithm
10 from [8] based on the bisection method. This algorithm
allows to stabilize the system (5) in the vicinity of the origin,
which is defined by Vmin, the smallest possible value of V .

Secondly, the closed-loop system (5), (9) satisfies the
necessary condition for a finite-time convergence, i.e. ẋ(t) =
0 when x(t) = 0 [3], [4]. Indeed, x(t) = 0 implies that
V (t) = 0, then it follows from (7) and (9) that fj(0) =
0, j = 1, n− 1 and u(0, 0) = 0, respectively. Therefore, the
necessary condition is embedded in the ”sufficient” one (7).

However, restrictions (7) on functions fj(x) are given in
the form dependent on ILRF V , then in order to suggest an
interpretation of (7), the next proposition provide a possible
explicit form of functions fj(x).

Proposition 10. Condition (7) of Theorem 9 is satisfied if
functions fj(x) are defined as follows:

fj(x) := δj

( ‖x‖−µr
‖x‖−µr + βj

)−rj+1/µ

, (11)

where ‖x‖r is a homogeneous norm, defined as follows

‖x‖r :=
( n∑
i=1

|xi|r1/ri
)1/r1

and

0 ≤ |δj | ≤ δ0, βj ≥ β0 := ch
( n∑
i=1

ηr1/(2ri)
)−µ/r1

> 0.

Proof. Clearly, it is sufficient to prove that for all V ∈ R≥0,
x ∈ Rn such that Q(V, x) = 0 the following relation holds

‖x‖r ≤ V
( n∑
i=1

ηr1/(2ri)
)1/r1

.

Taking into account that the homogeneous norm is a
r-homogeneous function of degree one, i.e. ‖x‖r =
V ‖D(V −1)x‖r, then it yields( n∑

i=1

|V −rixi|r1/ri
)1/r1

≤
( n∑
i=1

ηr1/(2ri)
)1/r1

.

Since for all (V, x) ∈ Ω we have |V −rixi| ≤ λ−1/2
min (P ) and

λ−1
min(P ) ≤ η due to (8c), then the condition (7) is satisfied

for functions (11).

Thirdly, by means of (10) a settling-time estimate could
be obtained.

Fourthly, the number of the design parameters in Theorem
9 can be significantly reduced, if one let ρ = α = 1 and
γ = 2(1 − nµ). Moreover, parameter η can be chosen, for
example, as the solution of the equation( n∑

i=1

ηr1/(2ri)
)−µ/r1

= β0/(ch). (12)

Fifthly, the parameter c determines the rate of convergence
in the system and affects on tuning parameter η from LMIs
(8). Thus, by restricting the converge rate with c = 1/h it is
possible to obtain delay-independent LMIs to check.

Summarizing all remarks, we can formulate the following
corollary.

Corollary 11. Let there exist µ ∈ (−1, 0), c > 0 such
that:

1) the functions fj(x) are defined by (11) for some given
δ0, β0 > 0;



2) there exists η > 0 satisfying equation (12) such that
LMIs

−2(1− nµ)X ≤ XH +HX < 0 (13a)

AX + by> +XA> + yb> + [(4− 4nµ) + 1]X ≤ 0 (13b)

δ2
0η/(2− 2nµ)In ≤ X ≤ ηIn (13c)

are feasible for some 0 < X = X> ∈ Rn×n and y ∈ Rn.
Then the closed-loop system (5), (9) is globally finite-time

stable with settling-time estimate

T (Φ) =

[
max

{
κ̃1/(2r1)(‖Φ‖h), κ̃1/2(‖Φ‖h)

}]−µ
min{−µ, c}

, (14)

where κ̃(‖Φ‖h) := 2(1− nµ)/(δ2
0η)‖Φ‖2h.

Therefore, the proposed control algorithm allows one to
choose µ ∈ (−1, 0) and c > 0 such that the closed-loop
system (5), (9) with functions gains (11) is stabilized in
finite time. Obviously, the system of LMIs (13) is feasible
for sufficiently small δ0 due to the controllability (in the
classical linear sense) of the pair (A, b). Parameter η can be
chosen arbitrarily large for given β0 and h, since c is the
tuning parameter.

V. SIMULATION

Consider the system (5) for n = 3, with functions fj(x)
described by (11). Assume that δ0 = 0.01 and β0 = 1. From
(14) it follows that both µ and c define the settling time
T (Φ). However, let us fix c = 1/h in order to obtain delay-
independent LMIs. Therefore, by solving equation (12) and
choosing minimal µ, for which LMIs (13) are feasible, we
obtain η = 0.2337, µ = −0.75 and

K =

−1822.20
−371.61
−24.21

 , P =

215824.29 29817.52 1029.93
29817.52 5130.00 209.91
1029.93 209.91 14.20

 .
Let us compare performance of the proposed control law

(9) with corresponding linear one (µ = 0) by numerical
simulations with respect to different initial conditions and
time delays. During the simulation, initial conditions Φ are
assumed to be constant, i.e. Φ(τ) = ‖Φ‖h for all τ ∈ [−h, 0],
and parameters δj , βj , j = 1, 2 are chosen as follows:

δ1 = −0.0078, δ2 = 0.0074, β1 = 1.3175, β2 = 1.0290.

The following numerical simulation has been done in
MATLAB Simulink using the Euler method with a fixed
step size ∆t = 10−4. The control has been applied using
Algorithm 10 [8] with Vmin = 10−3.

A. Different initial conditions

The norm of the trajectories ‖x(t)‖ of the system (5) with
h = 1 second are depicted on Fig. 1 in the logarithmic
scale for different initial conditions. Solid and dashed lines
correspond to nonlinear (NSFB) and linear state feedback
(LSFB). Clearly, the proposed control law preserves finite-
time stability for different initial conditions. Moreover, the
settling time is proportional to the norm of initial conditions
‖Φ‖h, that agrees with (14).

B. Different time delays

The norm of the trajectories ‖x(t)‖ of the system (5) are
presented on Fig. 2 in the logarithmic scale for different
values of time delay. Solid and dashed lines correspond
to nonlinear (NSFB) and linear state feedback (LSFB),
meanwhile, red, black and blue ones correspond to time delay
h = 2, h = 1 and h = 0.5 seconds, respectively. Obviously,
the proposed control law preserves finite-time stability for
different values of time delays.

VI. CONCLUSION

The paper develops the Implicit Lyapunov-Razumikhin
Function method for asymptotic, exponential, finite-time
and nearly fixed-time stability analysis of nonlinear time-
delay systems. The problem of finite-time stabilization of
a special class of such systems has been solved by means
of the proposed method. The implicit approach provides
an effective way of control parameters computation, having
LMI representation. For some particular cases LMIs have
been shown to depend only on two tuning parameters. The
numerical simulation for different initial conditions and time
delays has confirmed obtained theoretical results. Application
of the developed method to more sophisticated time-delay
systems is a possible direction of future research.
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APPENDIX I
PROOF OF THEOREMS 5-8

In order to prove Theorems 5-8, let us show that there
exists a function V : Rn → R≥0 that satisfies conditions of
Theorems 1-4. It was proven in [7] that conditions C1)-C4)
from Theorem 5 imply condition 1) from Theorem 1.

On the other hand, conditions 2a)-2b) and C5a)-C5b) are
equivalent. Indeed, for any τ ∈ [−h, 0] take (Vt+τ , xt(τ)) ∈
Ω. Since the function Q(s, x) is monotonically decreasing
for any fixed x ∈ Rn \ {0} (C4), we have the following
equivalence for any s ∈ R>0:

max
τ∈[−h,0]

Q(s, xt(τ)) ≤ 0⇔ max
τ∈[−h,0]

Vt+τ ≤ s.

Taking this into account and that the classical implicit
function theorem [10] for Euclidean spaces implies that
V̇t = −Qx(t)f(xt)/QV (t), conditions C5a)-C5d) can be
rewritten respectively as

max
τ∈[−h,0]

Vt+τ ≤ p(Vt)⇒ V̇t ≤ −w(‖xt(0)‖)

max
τ∈[−h,0]

Vt+τ ≤ χVt ⇒ V̇t ≤ −αVt

max
τ∈[−h,0]

Vt+τ ≤ (V −µt + ch)−1/µ ⇒ V̇t ≤ −αV 1+µ
t

max
τ∈[−h,0]

Vt+τ ≤ (V −νt − ch)−1/ν ⇒ V̇t ≤ −αV 1+ν
t .

Since −µ > 0 and −ν < 0, these conditions are equivalent
to the corresponding ones from 2a)-2d).

APPENDIX II
PROOF OF THEOREM 9

It can be shown that the following inequalities

q1(V, ‖x‖) = λmin(P )‖x‖2
max{V 2−2(n−1)µ,V 2} − 1 ≤ Q(V, x)

≤ λmax(P )‖x‖2
min{V 2−2(n−1)µ,V 2} − 1 = q2(V, ‖x‖)

hold for all V ∈ R>0 and x ∈ Rn. Therefore, the function
(6) satisfies conditions C1)-C3) of Theorem 5.

The condition C4) of Theorem 5 also holds, since from
(8a) it follows

0 >
∂Q(V, x)

∂V
= V −1x>D(V −1)

[
HP + PH

]
D(V −1)x.

Taking into account that D(V −1)A = V µAD(V −1),
D(V −1)F (x) = V µF (x)D(V −1) and D(V −1)bu =
V µbk>D(V −1)x, we obtain:

Qx(t)f(xt) = 2V µt xt(0)>D(V −1
t )P

×
[
(A+ bk>)D(V −1

t )xt(0) + F (xt(0))D(V −1
t )xt(−h)

]
.

Denote d(xt) := F (xt(0))D(V −1
t )xt(−h) and z(xt) :=

[xt(0); d(xt)]. Then adding and subtracting ρV µt ‖d(xt)‖2P
and 2αγV µt , we get:

Qx(t)f(xt) = −2αγV µt +V µt z
>(xt)Ψz(xt)+ρV

µ
t ‖d(xt)‖2P ,

where the matrix

Ψ :=

[
P (A+ bk>) + (A+ bk>)>P + 2αγP P

P −ρP

]
is negative semidefinite due to (8b) and the Schur comple-
ment. Using (8c) and (7), disturbance term ρ‖d(xt)‖2P could
be bounded as:

ρ‖d(xt)‖2P ≤
αγ
δ20η

∑n−1
j=1 |fj(xt(0))V

−rj+1

t xt,j+1(−h)|2

≤ αγ
η

∑n−1
j=1 (V −µt + ch)2rj+1/µ|xt,j+1(−h)|2.

Therefore, taking into account (8c), one could deduce that:

Qx(t)f(xt) ≤ −αγV µt
[
2− ‖D((V −µt + ch)1/µ)xt(−h)‖2P

]
.

Finally, applying Theorem 7, one can see that for all xt ∈ Ch
and (Vt, xt(0)) ∈ Ω such that

Q
(

(V −µt + ch)−1/µ, xt(−h)
)
< 0⇔

‖D((V −µt + ch)1/µ)xt(−h)‖2P < 1

the following estimation holds:

Qx(t)f(xt) ≤ −αγV µt ≤ αV
1+µ
t QV (t).

Hence, condition C5c) from Theorem 7 holds.
From Theorem 3 it follows that system (1) will

be stabilized at the origin in finite time T (Φ) such
that σ−µ2 (‖Φ‖h) = min{−αµ, c}T (Φ). Since σ2(s) is
implicitly defined by function q2(σ2(s), s) = 0 and
λmax(P ) ≤ αγ/(δ2

0ηρ) due to (8c), then σ2(s) ≤
max

{
κ1/(2r1)(s), κ1/2(s)

}
. Therefore, from (3) we get the

settling-time estimate (10).


