
HAL Id: hal-02942710
https://hal.archives-ouvertes.fr/hal-02942710

Submitted on 18 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scaling property for fragmentation processes related to
avalanches

Lucian Beznea, Madalina Deaconu, Oana Lupaşcu-Stamate

To cite this version:
Lucian Beznea, Madalina Deaconu, Oana Lupaşcu-Stamate. Scaling property for fragmentation pro-
cesses related to avalanches. Applications of Mathematics and Informatics in Natural Sciences and
Engineering, In press, Springer Proceedings in Mathematics & Statistics. �hal-02942710�

https://hal.archives-ouvertes.fr/hal-02942710
https://hal.archives-ouvertes.fr


To appear in Applications of Mathematics and Informatics in Natural Sciences and Engineering,
Springer Proceedings in Mathematics, 2020

Scaling property for fragmentation processes
related to avalanches

Lucian Beznea, Madalina Deaconu, and Oana Lupaşcu-Stamate

Abstract We emphasize a scaling property for the continuous time fragmentation
processes related to a stochastic model for the fragmentation phase of an avalanche.
We present numerical results that confirm the validity of the scaling property for our
model, based on the appropriate stochastic differential equation of fragmentation
and on a fractal property of the solution.
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1 Introduction

In the papers [1], [2], and [3] we studied binary fragmentation processes (and as-
sociated non-local branching processes, cf. [4]) of an infinite particles system, in-
cluding a numerical approach for the time evolution of the fragmentation phase
of an avalanche. A fractal property was emphasized for the process related to the
avalanches.
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Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France,
e-mail: Madalina.Deaconu@inria.fr

Oana Lupaşcu-Stamate
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In this paper we prove that a scaling property holds for the above mentioned
process and we present numerical results that confirm the validity of this property.

The study of the scaling property is closely related to the study of the self-
similarity property. In this direction some results were recently obtained by using
deterministic approaches. In particular in [5] this study is performed by studying the
asymptotic behaviour of the first eigenvalue, as it represents the asymptotic growth
of the solution. In the presence of a transport term it is shown that this behaviour de-
pends on wether transport dominates fragmentation or not. This equation has some
applications in biology and medicine. Previously in [7] the self-similarity property
was used for the coagulation-fragmentation equation to obtain the existence of a
stationary solution for any given mass. In [10] the fragmentation is used to model
cell-division and the authors prove the existence of a stable steady distribution.

The paper is organised as follows.
In Sect. 2 we present a general result, characterizing (in Theorem 1) the scaling

property of Markov process in terms of the transition function, the associated resol-
vent of kernels, and of the generator. It is pointed out also the case of a pure jump
process.

In Sect. 3 it is given the main application, by proving (in Corollary 1) that the
weak solution of the stochastic differential equation of fragmentation for avalanches
has a scaling property. As it was already mentioned, it is a second specific property
emphasized for this SDE of fragmentation, the first one being the fractal property
proved in [2], and for the reader convenience we presented it at the end of the sec-
tion.

Finally, in Sect. 4 we discuss the numerical results, obtained by Monte Carlo
simulation, that confirm the validity of the scaling property we proved.

2 Scaling property for jump processes

Let E be Lusin topological space (i.e., E is homeomorphic to a Borel subset of a
compact metric space) with Borel σ -algebra B(E). We denote by pB(E) (resp.
bB(E)) the set of all positive Borel measurable functions on E (resp. the set of all
bounded real-valued Borel measurable functions on E).

Let X = (Ω ,F ,Ft ,Xt ,θt ,Px,ζ ) be the right Markov process on E having
(Pt)t>0 as transition function, Pt f (x) = Ex( f (Xt), t < ζ ), t > 0, f ∈ pB(E). Let
further (Uα)α>0 be the associated sub-Markovian resolvent of kernels, Uα f :=∫

∞

0 e−αtPt f dt.
We consider the generator (L,D(L)) of X as follows; cf. [6] pag. 55, and [9]. Let

Bo := { f ∈ bB(E) : lim
t↘0

Pt f = f pointwise on E}

and D(L) be the set of all f ∈Bo such that
(

Pt f (x)− f (x)
t

)
t,x

is bounded for x ∈ E

and t in a neighbourhood of zero, there exists limt↘0
Pt f− f

t pointwise and the above
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limit is an element of Bo. Define the linear operator L : D(L)−→ bB(E) as

L f (x) := lim
t↘0

Pt f (x)− f (x)
t

, f ∈D(L), x ∈ E.

The operator (L,D(L)) is called the weak generator of X . Recall that D(L) =
Uα(Bo) for all α > 0, and if f =Uα g, with g ∈Bo, then (α−L) f = g.

We present now the classical construction of a jump process (see, e.g., [8], page
163), as we need it for the fragmentations processes related to avalanches.

Let N be a bounded kernel on E and denote by λ (x) the total mass of the measure
Nx, x ∈ E, λ (x) := N1(x) ∈ E. We set

λo := ||N1||∞ and N′ :=
1
λo

N +(1− λ

λo
)I,

and define the bounded linear operator Ñ on bB(E) as

Ñ f (x) = λo

∫
E
[ f (y)− f (x)]N′x(dy) for all f ∈ bB(E) and x ∈ E.

Then Ñ = N−λ I = λo(N′− I) and it is the generator of a C0–semigroup (Pt)t>0 on
bB(E),

Pt := etÑ , t > 0.

Each Pt is a Markovian kernel on E, more precisely, Pt f = e−tλo ∑k>0
(λot)k

k! N′k f ,
where N′k := N′ ◦ . . .◦N′︸ ︷︷ ︸

k times

. The operator Ñ is the generator of a (continuous time)

pure jump Markov process X = (Xt)t>0 with state space E. Clearly, Ñ is the weak
generator of (Pt)t>0, with D(Ñ) = bB(E).

The scaling property. Assume that E is a star-convex subset of Rd , d > 1, i.e. there
exists an xo in E such that for all x in E the line segment from xo to x is in E. For
simplicity we suppose that xo = 0. For a real-valued function f on E and s ∈ (0,1)
we denote be fs the function on E defined as fs(x) := f (sx), x ∈ E.

Let n ∈ Z. A linear operator (L,D(L)) on bB(E) is called homogeneous of
degree n provided that for every s ∈ (0,1) and f ∈ D(L) one has fs ∈ D(L) and
(L f )s = snL( fs).

Clearly, the Laplace operator (in a star-convex subset of Rd) is homogeneous
of degree −2. In the next section we shall give examples of operators related to
fragmentation processes, satisfying such a scaling property.

We can state now the main result of this section.

Theorem 1. Let n ∈ Z, (Pt)t>0 be the transition function of a right (Markov) pro-
cess (X ,Px) with state space E, let (L,D(L)) be the weak generator of (Pt)t>0, and
(Uα)α>0 the associated resolvent.
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(i) The following assertions are equivalent.
(i.a) The transition function (Pt)t>0 satisfies

(Pt f )s = Ptsn( fs) for all f ∈ bpB(E),s ∈ (0,1), and t > 0. (1)

(i.b) The resolvent family (Uα)α>0 satisfies

sn(Uα f )s =U α

sn
( fs) for all f ∈ bpB(E),s ∈ (0,1), and α > 0 (2)

(i.c) The weak generator (L,D(L)) is homogeneous of degree n.
(i.d) The process X has the following scaling property:

Esx(Xt ∈ A) = Ex(Xtsn ∈ 1
s

A) for all A ∈B(E),x ∈ E,s ∈ (0,1), and t > 0. (3)

(ii) Assume that N is a kernel on E which is homogeneous of degree n. Then the
pure jump Markov process having the generator Ñ has the scaling property (3).

Proof. We clearly have (i.a)⇐⇒ (i.d) because (Pt)t>0 is the transition function of
X .

(i.a) =⇒ (i.b). We have (Uα f )s =
∫

∞

0 e−αt(Pt f )sdt =
∫

∞

0 e−αtPtsn( fs)dt =
1
sn U α

sn
( fs), where we used the hypothesis (i.a) to get the second equality.

(i.b) =⇒ (i.a). With the same computation as before, we get from (i.b) that for
all α > 0 we have

∫
∞

0 e−αt(Pt f )sdt =
∫

∞

0 e−αtPtsn( fs)dt. Since any bounded β -level
excessive function belongs to Bo, using a monotone class argument, in order to
prove (1) we may assume that f ∈Bo and therefore the real-valued functions t 7−→
(Pt f )s(x) and t 7−→ Ptsn( fs)(x) are both right continuous on [0,∞) for every x ∈
E. By the uniqueness property of the Laplace transform we conclude now that (1)
holds.

(i.a) =⇒ (i.c). Let f ∈ D(L). Observe first that if g ∈ Bo then for all s ∈
(0,1) we have gs ∈ Bo because limt↘0 Pt(gs) = limt↘0 Ptsng = g. Consequently,
if f ∈ D(L) then (L f )s ∈ Bo and we have pointwise (L f )s = limt↘0

(Pt f )s− fs
t =

sn limt↘0
Ptsn ( fs)− fs

tsn = snL( fs). As a consequence fs also belongs to D(L), hence
(L,D(L)) is homogeneous of degree n.

(i.c) =⇒ (i.b). As before, in order to prove (2), we may suppose that f ∈ Bo
and let g := Uα f ∈ D(L). Because gs also belongs to D(L), there exists h ∈ Bo
such that gs =U α

sn
h. We have (Lg)s = α(Uα f )s− fs = αgs− fs = αU α

sn
h− fs. We

have also L(gs) = L(U α

sn
h) = α

sn U α

sn
h−h. The equality (Lg)s = snL(gs) is therefore

equivalent with αU α

sn
h− fs = αU α

sn
h− snh. Hence fs = snh, U α

sn
( fs) = snU α

sn
h =

sngs = sn(Uα f )s.
(ii) Observe first that the hypothesis on N implies that λ (sx) = (N1)s(x) =

snN1(x) = snλ (x) for all x∈E and s∈ (0,1]. It follows that the kernel λ I is homoge-
neous of degree n and we deduce that Ñ = N−λ I is also homogeneous of degree n.
The scaling property of X is now a consequence of the equivalence (i.c)⇐⇒ (i.d),
since Ñ is its generator. ut
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Remark 1. By Theorem 1 if follows that:
If N is a kernel on E which is homogeneous of degree n, then the induced semigroup
Pt = etÑ , t > 0, satisfies the scaling property (1).
One can give a direct, alternative proof for this assertion. Indeed, observe first that
the hypothesis on N implies that λ (sx) = (N1)s(x) = snN1(x) = snλ (x) for all x∈ E
and s∈ (0,1]. It results that the kernel λ I is homogeneous of degree n and we deduce
that Ñ = N− λ I is also homogeneous of degree n. Therefore (Ñk f )s = sknÑk( fs)

for any k ∈ N∗ and we conclude that (Pt f )s = ∑k>0
tk

k! (Ñ
k f )s = ∑k>0

(tsn)k

k! Ñk( fs) =
Ptsn( fs).

3 Scaling property for the SDE of fragmentation

In this section we consider the framework from [2].
Discontinuous fragmentation kernels for avalanches. We describe first a binary
fragmentation model. Consider an infinite system of particles, each particle being
characterized by its mass. As time evolves the particles perform fragmentation, that
is one particle can split into two smaller particles by conserving the total mass.
Let F be a fragmentation kernel, that is, a symmetric function F : (0,1]2 −→ R+.
Here F(x,y) represents the rate of fragmentation of a particle of size x+ y into two
particles of sizes x and y.

The following assumption is suggested by the so called rupture properties, em-
phasized in the deterministic modelling of the snow avalanches:

(H) There exists a function Φ : (0,∞) −→ (0,∞) such that F(x,y) = Φ

(
x
y

)
for

all x,y > 0.
Since the fragmentation kernel F is assumed to be a symmetric function, we have

Φ(z) = Φ
( 1

z

)
for all z > 0. An example is as follows. Fix a ”ratio” r, 0 < r < 1,

and consider the fragmentation kernel Fr : [0,1]2 −→ R+, defined as Fr(x,y) :=
1
2 (δr(

x
y )+δ1/r(

x
y )), if x,y > 0, and Fr(x,y) := 0 if xy = 0.

One can see that the fragmentation kernel Fr satisfies condition (H), more pre-
cisely we have Fr(x,y) = Φ r( x

y ) for all x,y > 0, where Φ r : (0,∞) −→ (0,∞) is
defined as Φ r(z) := 1

2 (δr(z)+δ1/r(z)), z > 0. Clearly, the function Φ r is not contin-
uous. By approximating the function Φ r with a convenient sequence of continuous
functions, one can see that the kernel NFr

associated with Fr is given by the follow-
ing linear combination of Dirac measures:

NFr

x := λo(βxδβx +(1−β )xδ(1−β )x), (4)

where λo := β 2+(1−β )2

4 with β := r
1+r . In this case the kernel NFr

is no more Marko-
vian and has no density with respect to the Lebesgue measure.
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The corresponding stochastic differential equation of fragmentation. To em-
phasize the stochastic differential equation of fragmentation which is related to our
stochastic model for the avalanches, we consider the kernel NFr

on E := [0,1] and
the associated pure jump process X = (Xt)t>0 with state space E.

We state now the stochastic differential equation of fragmentation for avalanches:

Xt = X0−
∫ t

0

∫ 1

0

(
(1−β )Xα−1[ s

βλo
<Xα−61]+βXα−1[ s

λo
<Xα−6 s

βλo
]

)
p(dα,ds), (5)

where p(dα,ds) is a Poisson measure with intensity q := dαds.
Recall that the solution X of (5) describes the time evolution of the size of a

typical particle as follows. At some exponential random instants of parameter λ0,
either, with probability 1−X , no fragmentation occurs for the typical particle, or
else, it breaks into two smaller particles: we subtract (1−β )X from X with proba-
bility βX , or βX with probability (1−β )X . The conditions on the particle size are
induced by the specific property of an avalanche, depending on β .

The existence of the weak solution to the equation (5) was proved in [2]. The
next corollary shows that this solution satisfies the claimed scaling property.

Corollary 1. The weak solution of the stochastic differential equation of fragmenta-
tion for avalanches (5), with the initial distribution δx, x∈ E, is equal in distribution
with (X ,Px) and the following scaling property holds:

Esx(Xt ∈ A) = Ex(Xts ∈
1
s

A) for every x ∈ E, t > 0,A ∈B(E), and s ∈ (0,1].

Proof. We show first that the kernel NFr
is homogeneous of degree one (n = 1). It

is sufficient to show that a kernel K of the form K f (x) := x f (βx) has this property.
We have indeed K f (sx) = sx f (β sx) = sK( fs)(x).

The scaling property follows now by assertion (ii) of Theorem 1 (see also Re-
mark 1) because we know that the generator of X is ÑFr . ut

The fractal property. We consider a sequence (dn)n>1 such that d1 < β 6 1/2 and
dn+1/dn < β for all n > 1. Let n > 1 be fixed and define

En := [dn,1],E ′n := [dn+1,dn), and E ′0 = E1.

Then clearly En =
⋃n

k=1 E ′k−1.
The kernel NFr

given by (4) is used to define the kernel Nr
n on En as

Nr
n f :=

n

∑
k=1

1E ′k−1
NFr

( f1E ′k−1
) for all f ∈ pbB(En).

Further, we consider the first order integral operator F r
n ,

F r
n f (x) := Ñr

n f (x) =
∫

En

[ f (y)− f (x)](Nr
n)x(dy) for all f ∈ pbB(En) and x ∈ En.
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The operator F r
n is the generator of a (continuous time) jump Markov process

X r,n = (X r,n
t )t>0. Its transition function is Pr,n

t := eF r
n t , t > 0.

For every x ∈ E let

Eβ ,x := {β
i(1−β ) jx : i, j ∈ N}∪{0} and Eβ ,x,n := Eβ ,x∩En for n > 1.

We can state now the fractal property of the process X r,n, proved in [2].

Theorem 2. If n>1 then the following assertions hold for the Markov process X r,n

with state space En and transition function (Pr,n
t )t>0.

(i) If t > 0 and x ∈ En then Pr,n
t (1(x,1])(x) = 0.

(ii) For every φ ∈ pbB(En) and each probability ν on En, the process
φ(X r,n

t )−
∫ t

0 F r
n φ(X r,n

s )ds, t>0, is a martingale under Pν , with respect to the
natural filtration of X r,n.

(iii) If x ∈ En then Px-a.s. X r,n
t ∈ Eβ ,x,n for all t > 0.

4 Numerical results

Let A⊂ [0,1] be a fixed set and x ∈ [0,1]. By Corollary 1 for all n ∈N∗ and all time
t > 0 we have the following scaling property:

Ex(Xt ∈ A) = E
1
n x
(

Xnt ∈
1
n

A
)

for all t > 0. (6)

The relation (6) indicates that the probability that the process starting from x is
in the set A at time t is exactly the probability that the process starting from x/n,
belongs to the smaller set A/n at time nt. The key point of the equality (6) is that it
depends on n only on the right hand side.

To test numerically the relation (6) we use a Monte Carlo simulation for the
stochastic differential equation of fragmentation given by (5).

We fix a set A ⊂ [0,1], a point x ∈ [0,1], a final time T ∈ R∗+ and n ∈ N∗. In the
first step, we sample values of XT starting from x as a solution of the correspond-
ing stochastic differential equation of fragmentation with the discontinuous kernel
Fr, by using the algorithm developed and implemented in [3]. For the reader’s con-
venience we recall it below, we can remark the fractal property of the resulting
fragments after the splitting, property which holds according to assertion (iii) of
Theorem 2. In the second step we compute the probability that the samples of XT
belong to the set A. Then, we compare it with the probability that the process XnT ,
starting from x/n, belongs to 1

n A.

We fix the parameter β < 1
2 and a final time T .

Algorithm
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Step 0: Sampling the initial particle X0 ∼ Q0
Step p: Sampling a random variable Sp ∼ Exp(λ0)

Set Tp = Tp−1 +Sp
Set Xt = Xp−1 for each t ∈ [Tp−1,Tp)
Set Xp = βXp−1 with probability βXp−1,

Xp = (1−β )Xp−1 with probability (1−β )Xp−1,
or Xp = Xp−1 with probability 1−Xp−1

Stop: When Tp > T.
Outcome: The approximated particle mass at time T , Xp−1.

To implement the above Monte Carlo simulation associated to the relation (6),
we fix the set A a union of disjoint intervals, A = [0, 1

4 ]∪ [
1
2 ,

3
4 ], the starting point

x = 1, that does not belong to A. We consider the Monte Carlo parameter 104. No-
tice that the fractal character of the particles is encoding in the ratio β .

In Table 1 below we give the Monte Carlo estimator for each one of the terms
of relation (6), for β = 1

6 , T = 20 fixed, and different values of n. In Table 2 we
illustrate the Monte Carlo estimator of the each term of relation (6) for n= 3, T = 20
fixed, and different values of β . In Table 3 is written down the Monte Carlo estimator
of the each term of relation (6), for different values of n, with parameter 104.

Table 1 Monte Carlo estimators for 104 simulations for x = 1, β = 1
6 , T = 20 fixed, and different

values of n

n Ex(Xt ∈ A) E 1
n x (Xt ∈ 1

n A
)

3 1 0.9998
10 1 1
20 1 1
30 1 1
40 1 1
50 1 1

Table 2 Monte Carlo estimators for 104 simulations for x = 1,n = 3, T = 20 fixed, and different
values of β

n Ex(Xt ∈ A) E 1
n x (Xt ∈ 1

n A
)

1
6 1 0.9998
1
3 1 1
1
9 1 1

We represent in Figure 1 the evolution in time of t 7−→ Ex(Xt ∈ A) the red color
and t 7−→ E 1

n x (Xnt ∈ 1
n A
)

the blue color in the time interval t ∈ [50,100] for β ,A,x
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Table 3 Monte Carlo estimators for 104 simulations for x = 1,n = 3, β = 1
6 fixed, and different

values of T

n Ex(Xt ∈ A) E 1
n x (Xt ∈ 1

n A
)

20 1 1

30 1 1

Fig. 1 The path of Monte
Carlo approximation for t 7−→
Ex(Xt ∈ A), the red color,
and t 7−→ E 1

n x (Xnt ∈ 1
n A
)
,

the blue color, for β = 1
6 ,

A = [0, 1
4 ]∪ [

1
2 ,

3
4 ], n = 3, the

Monte Carlo parameter 104,
and the Euler step 10−3.

50 55 60 65 70 75 80 85 90 95 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

chosen above, and n = 3. Remark that in large time the red trajectory is very close
to the blue one, that suggest the validity of the relation (6).
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