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Abstract21

With the upcoming SWOT satellite mission, which should provide spatially dense river surface elevation, width22

and slope observations globally, comes the opportunity to assimilate such data into hydrodynamic models, from the23

reach scale to the hydrographic network scale. Based on the HiVDI (Hierarchical Variational Discharge Inversion)24

modeling strategy (Larnier et al. [1]), this study tackles the forward and inverse modeling capabilities of distributed25

channel parameters and multiple inflows (in the 1D Saint-Venant model) from multisatellite observations of river26

surface. It is shown on synthetic cases that the estimation of both inflows and distributed channel parameters27

(bathymetry-friction) is achievable with a minimum spatial observability between inflows as long as their hydraulic28

signature is sampled. Next, a real case is studied: 871 km of the Negro river (Amazon basin) including complex29

multichannel reaches, 21 tributaries and backwater controls from major confluences. An effective modeling approach30

is proposed using (i) WS elevations from ENVISAT data and dense in situ GPS flow lines (Moreira [2]), (ii) average31

river top widths from optical imagery (Pekel et al. [3]), (iii) upstream and lateral flows from the MGB large-scale32

hydrological model (Paiva et al. [4]). The calibrated effective hydraulic model closely fits satellite altimetry obser-33

vations and presents real like spatial variabilities; flood wave propagation and water surface observation frequential34

features are analyzed with identifiability maps following Brisset et al. [5]. Synthetic SWOT observations are gener-35

ated from the simulated flowlines and allow to infer model parameters (436 effective bathymetry points, 17 friction36
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patches and 22 upstream and lateral hydrographs) given hydraulically coherent prior parameter values. Inferences37

of channel parameters carried out on this fine hydraulic model applied at a large scale give satisfying results using38

noisy SWOT-like data at reach scale. Inferences of spatially distributed temporal parameters (lateral inflows) give39

satisfying results as well, with even relatively small scale hydrograph variations being inferred accurately on this40

long reach. This study brings insights in: (i) the hydraulic visibility of multiple inflows hydrographs signature at41

large scale with SWOT; (ii) the simultaneous identifiability of spatially distributed channel parameters and inflows42

by assimilation of satellite altimetry data; (iii) the need for prior information; (iv) the need to further tailor and43

scale network hydrodynamic models and assimilation methods to improve the fusion of multisource information and44

potential information feedback to hydrological modules in integrated chains.45

Keywords: 1D Saint-Venant Model, Hydrology couplings, Variational Assimilation, Satellite Altimetry, SWOT,46

Hydraulic Visibility, Ungauged River47
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1. Introduction49

Hydrographic networks represent major flowpaths for freshwater in the water cycle and an interface with the50

space of human societies. It is of prior importance in a context of climate change to improve the knowledge and51

representation of continental water fluxes, including river discharge, defined as an essential physical variable (see52

Global Climate Observing System [6, 7]). However, modeling flows structure in the different compartments of a53

catchment remains a hard task (see [8] and references therein) especially at poorly gauged locations. In complement54

of in situ sensors networks, which are declining in several regions (e.g. [9]), new generations of earth observation55

satellites and sensors provide increasingly accurate and dense measurements of water surface variabilities.56

The Surface Water and Ocean Topography (SWOT) satellite, to be launched in 2021, will bring observations57

of water surface (WS) with an unprecedented spatio-temporal coverage [10, 11, 12, 13, 14]. This will yield greater58

hydraulic visibility (see definition in [15, 16, 17]) of hydrological responses through WS signatures from the local scale59

to the hydrographic network scale, hence an opportunity to better characterize hydrological fluxes and potentially60

constrain local to integrated hydrodynamic models and inverse problems. However, estimating river discharge Q61

from “geometric” observables of flow surface (elevation Z, width W and slope S) remains a difficult inverse problem62

particularly in case of poor knowledge on river bathymetry and friction (see [18, 1] and references therein).63

Hydraulic inverse problems with various model complexities, data-unknowns types and amounts are investigated64

by recent studies in a satellite data context (see [13] for a review). A few studies started to test the benefit65

of assimilating (synthetic) SWOT WS observations with sequential methods in simplified hydraulic models, for66

estimating inflow discharge assuming known river friction and bathymetry [19, 20] or inferring bathymetry assuming67

known friction [21, 22]. Next, methods based on low-complexity models have been proposed for estimating river68
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discharge from WS observables in case of unknown bathymetry b and friction K, based on the low Froude model69

[23, 18], hydraulic geometries [24] or empirical algebraic flow models [25]. The intercomparison of low complexity70

methods in [26] highlights the difficulty of estimating the so-called unknown triplet (Q,K, b) from WS observables71

as well as the importance of good prior guesses on the sought parameters.72

The combined use of dynamic flow models of river systems and optimization methods enables to solve hydraulic73

inverse problems, as shown for upstream flood hydrograph(s) estimation by [27] from WS width time series and a74

1D Saint-Venant model or by [28, 29, 30] using variational assimilation of flow depth time series in a 2D shallow-75

water model. The variational data assimilation (VDA) approach (see e.g. [31] and references therein) is suitable to76

address the present hydraulic inverse problem from WS observations (see [32, 5, 33, 34, 1] and references therein77

- single upstream hydrographs in all studies except multiple “stepwise” offtakes on synthetic and densely observed78

irrigation-like cases in [32]). It consists in fitting the modeled flow features to observations through the optimization79

of control parameters in a variational framework. To be solved efficiently, such an ill-posed inverse problem needs to80

be regularized: see [35] for the theory of regularization of such inverse problems and [32, 1] for the present inverse81

flow problem.82

Crucial aspects of this difficult inverse problem are (i) the spatio-temporal sparsity of altimetric observations83

regarding flow controls – as analyzed in [5] for inferable hydrographs frequencies with the introduction of the84

identifiability maps and in [34] for inferable channel parameters patterns; (ii) the sensitivity of the triplet inference85

to good prior guesses on the sought parameters as highlighted in a SWOT context by [18, 36, 1, 37, 34]. The latest86

is highlighted by recent discharge estimates (in a triplet setup) from synthetic SWOT data on the Pô, Garonne and87

Sacramento Rivers in [1] (see also [38]), from AirSWOT airborne measurements on the Willamette River in [37] or88

from ENVISAT altimetric data on an anabranching portion of the Xingu River [34]. Using a biased prior hydrograph89

results in a biased estimate of inflow hydrograph despite a correct temporal variability at observation times - see90

[1] for detailed analysis. A hierarchical modeling strategy HiVDI (Hierarchical Variational Discharge Inversion) is91

proposed in [1] including low complexity flow relations (Low Froude and locally steady-state) for providing robust92

prior guesses to the VDA process by taking advantage of databases or regional hydrological models.93

Most studies mentioned above tackle the estimation of a single upstream inflow discharge hydrograph from94

WS observations on relatively short river reaches regarding the spatio-temporal sparsity of (satellite) observations95

sampling and without complex flow zones - confluences, multichannel portions (except [34]), floodplains. Moreover,96

few recent studies address the effective modeling of (ungauged) river channels using multisatellite data [15, 39, 34,97

40].98

The present study investigates the challenging inference of multiple inflows and channel parameters patterns from99

hydraulic signatures in a SWOT context. Particular attention is paid to the difficult inference of hydraulic controls100

(HC) with correlated effects on WS signatures including overlapping backwater effects. Moreover, we present an101

effective hydraulic modeling approach based on multi-satellite observations of WS and accounting for hydrological102
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model inputs. It is applied to a long river reach including confluences with tributaries and strong backwater effects103

in the Amazon basin. The computational inverse method, based on the full 1D Saint-Venant equations, is that104

presented in [5, 1] with a spatially distributed friction power law in water depth and a simple piecewise linear channel105

bathymetry [34]. It is adapted here to account for lateral inflows/offtakes and is weakly coupled to the large scale106

MGB hydrological model [41, 42, 43]. Numerical investigations of the resulting WS signatures and identifiability107

tests are presented along with sensitivity analysis to the parameters of both the (forward) hydraulic model and the108

inverse method. The challenging inference of multiple inflows and channel parameters patterns is investigated with109

various observations densities including the assimilation of synthetic SWOT ones.110

The paper is organized as follows. Section 2 presents the modeling approach with the 1D Saint-Venant flow111

model and the inverse computational method. Section 3 investigates the capabilities of the inverse method for112

identifying spatially distributed inflows with and without unknown channel parameters given observation patterns113

of WS signatures including overlapping backwater effects. Section 4 presents the effective modeling approach from114

multisatellite data applied to 871 km of the Negro river (Amazon basin) and the analysis of flow propagation features115

against SWOT observability. Section 5 proposes inference tests for spatially distributed inflows with and without116

unknown parameters on the Negro case in the presence of strong backwater effects.117

2. Modeling Approach118

2.1. The flow model119

The Saint-Venant equations ([44]) consist in the unidirectional form of the shallow water equations and are120

commonly used to describe open channel flows (see e.g. [45, 46, 47] for detailed assumptions including the long121

wave one). In what follows, x denotes the curvilinear abscissae from upstream to downstream along a reach of length122

L (usual simplifying hypothesis are used) and t ∈ [0, T ] denotes the time. In this representation, let A(x, t) be the123

flow cross sectional area
[
m2
]
and Q(x, t) the discharge

[
m3.s−1

]
such that U = Q/A represents the longitudinal124

cross-section averaged velocity
[
m.s−1

]
. The Saint-Venant equations in (A,Q) variables at a flow cross section read125

as follows:126

127 
∂tA+ ∂xQ = klatqlat

∂tQ+ ∂x

(
Q2

A

)
+ gA∂xZ = −gASf + klatUqlat

(1)

where Z (x, t) is the WS elevation [m] and Z = (b + h) with b(x) the river bed level [m] and h(x, t) the water128

depth [m], Rh (x, t) = A/Ph the hydraulic radius [m] , Ph (x, t) the wetted perimeter [m], g is the gravity magnitude129 [
m.s−2

]
, qlat (x, t) is the lineic lateral discharge

[
m2.s−1

]
, and klat is a lateral discharge coefficient chosen equal to130

one here since we consider inflows only. In DassFlow, the friction term Sf is classically parameterized with the131

empirical Manning-Strickler law established for uniform flows:132
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Sf =
|Q|Q

K2S2R
4/3
h

(2)

The Strickler friction coefficient K
[
m1/3.s−1

]
is defined as a power law in h:133

134

K (x, h (x, t)) = α (x) h (x, t) β(x) (3)

where α and β are spatially distributed parameters. This spatially distributed friction law enables a variation of135

friction effects in function of the flow state (see effective modeling of multichannel flows in [34]).136

Inflow hydrographs Qin(t) and qlat,l(t) at l ∈ [1..L] are classically imposed respectively upstream of the river137

domain and at known injection cells, that is inbetween two computational cross-sections along the river channel.138

Let us recall the Froude number definition Fr = U/c comparing the average flow velocity U to pressure wave celerity139

c =
√
gA/W where W is the flow top width [m]. Considering subcritical flows (Fr < 1) in a satellite observability140

context (see [18]), a boundary condition is imposed at the downstream end of the model using the Manning-Strickler141

equation depending on the unknowns (A,Q,K)out. The initial condition is set as the steady state backwater curve142

profile Z0 (x) = Z (Qin (t0) , qlat,1..L (t0)) for hot-start. This 1D Saint-Venant model (eq. (1)) is discretized using143

the classical implicit Preissmann scheme (see e.g. [48]) on a regular grid of spacing ∆x using a double sweep144

method enabling to deal with flow regimes changes, ∆t is precised in numerical cases. This is implemented into the145

computational software DassFlow [49].146

2.2. The computational inverse method147

The paper studies the estimation of spatially and temporally distributed flow controls from WS observables148

using the inverse method presented in [1] (see also [5]) with an augmented composite control vector c; the method149

is detailed in AppendixA. The principle of the inverse method is to estimate (discrete) flow controls by minimizing150

the discrepancy between observed and simulated flow lines, Zobs and Z(c) respectively, the latter depending on the151

unknown parameters vector c through the hydrodynamic model (eq. (1)). This discrepancy is classically evaluated152

with the observation cost function term jobs(c) = 1
2 ‖(Z(c)− Zobs)‖2O computed on the observation spatial and153

temporal grids, see details in AppendixA.154

The control vector c contains temporally and spatially distributed unknown “input parameters” of the 1D Saint-155

Venant model: a friction law ([34]) and lateral inflows, unlike in [1], where there is a spatially uniform friction law156

K(h) without lateral flows. It reads:157

158

c =
(
Q0
in, ..., Q

P
in ; Q0

lat,1, ..., Q
P
lat,1, Q

0
lat,2, ..., Q

P
lat,L ; b1, ..., bI ; α1, ..., αN ; β1, ..., βN

)T
(4)

where Qpin is the upstream discharge (the superscript p ∈ [0..P ] denotes the observation time), Qplat,l is the lateral159

discharges injected in the inflow cell l ∈ [1..L] (note that Qlat,l = qlat,l∆x), bi the river bed elevation (i ∈ [1..I]160
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Figure 1: Flowchart of the method using the HiVDI inverse method [1] for variational calibration, adapted from [50, 51, 34].

denotes the computational cross section index in space) and, for each patch n ∈ [1..N ] with N ≤ I, the spatially161

distributed parameters αn and βn of the friction law (eq. (3)) depending on the flow depth.162

The inversion consists in solving the following minimization problem: c∗ = argminc j(c) starting from the so-163

called prior cprior in the parameter space. This minimization problem is solved using a first order gradient-based164

algorithm, more precisely the classical L-BFGS quasi-Newton algorithm (see AppendixA). Note that the sought165

parameters have a correlated influence on the modeled flow lines, therefore leading to an ill-posed inverse problem.166

In order to be solved efficiently, the optimization problem is “regularized” as detailed in AppendixA. The main steps167

of the method are illustrated in Fig. 1.168

169

3. Inference capabilities from WS signatures: synthetic test cases170

In order to calibrate the parameters of a hydraulic model (eq. (1)) from WS observables, one has to identify171

and understand the influence of these parameters on the observable(s): in our case the WS profile. Fluvial flows172

are studied here in the context of satellite altimetry (see [18]). Following [52], the influence of the parameters on173

the modeled flow lines is referred to as their “hydraulic signature” (HC) and a reach is defined inbetween two fluvial174

HCs. Fluvial HCs can be defined in steady state (see [52]) as “local maximal deviations of the flow depth from the175

normal depth hn (equilibrium), imposing the upstream variation of the water depth profile h(x) over the so-called176

control length [53]”. They can stem from a change in either the hydraulic resistance, cross-section shape, bottom177

slope or total flow variation through lateral exchanges.178

This section studies the influence of inflows on hydraulic signatures, the capabilities of the inverse method179

described above to infer multiple inflows and channel parameters (either spatially constant or not), with a focus on180
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Figure 2: TOP: Academic test cases configurations. Rectangular channels of length L = 1000 m and constant cross section width
W = 300 m, constant bottom slope of 10−3 m/m for Ch1, 2 and varying between 10−4 and 10−2 m/m for Ch3 - the bottom b (x) is
defined by linear interpolation between the 4 bathymetry points (diamonds, b = {2, 1.88, 1.28, 1.12} m) - and friction defined by constant
values on 3 patches (α = {30, 12.5, 30} m1/3.s−1). Upstream inflow at x = 0; for Ch1, 2, 3 respectively lateral injections at abscissae
(in m): x = 300, x = {300, 700}, x = {350, 700}, and observations at {xS1, ..., xS5} = {150, 500, 850, 450, 550}, {xSb1, ..., xSb5} =
{150, 325, 450, 600, 800}, {xSc1, ..., xSc4} = {0, 300, 600, 1000}. BOTTOM: Sample waterlines with visible upstream and downstream
controls and signatures. For the sake of clarity here, upstream and injected flow are set at 100 m3s−1 (Fr ∼ 0.12 − 0.3). Using the
identifiability index Iident = Twave/∆tobs introduced in [5] with Twave = L/ck and the kinematic wave velocity for a rectangular
channel ck = 5/3U (ck = 1.16 m.s−1 considering average speed U = 0.69 m.s−1) and a high observation frequency (∆tobs = 20 s), gives
a high identiability index Iident = 43 for the present flow observation configuration.

the influence of the spatial observability of those hydraulic signatures.181

3.1. Test case design182

Three test cases configurations representing typical hydraulic-observations setup of increasing complexities in-183

volving lateral inflows are presented (see Fig. 2). Cases Ch1 and Ch2 are designed to study the effect on the inference184

of the overlapping signatures triggered by the propagations of, respectively, one or two lateral hydrographs, con-185

commitantly with the one of the upstream inflow hydrograph. Case Ch3 is a complexification of Ch2 through the186

introduction of a non-flat bottom and a variable friction pattern K = α (x) as needed in a real river case in the187

next sections (β = 0 in eq. (3) - see investigations on spatialized friction laws with multiscale bathymetry controls188

in [34]).189

For all three channels the boundary conditions (fluvial) consist in: (i) a normal depth (equilibrium) imposed190

downstream and (ii) sinusoidal hydrographs (see Tab. 1) imposed upstream and at lateral injection cells. The191

simulation time step is set to ∆t = 20 s for all cases. They are set up as twin experiments, where a forward run192

of the flow model (eq. (1)) is used to generate perfect WS elevation observations which are then used to infer193

an unknown parameter vector c (eq. (4)) with the inverse method described in section 2.2 and AppendixA. The194

inferences are started from erroneous prior guesses c(0) that verify Manning-Strickler law for hydraulic consistency,195

that is unbiased priors (see investigations in [1, 34]); hydrograph priors are constant values equal to the average196

value of the target hydrographs.197

Increasingly challenging inverse problems are considered, with increasing number of unknowns sought simulta-198

neously and various observations densities. Cases Ch1 and Ch2 are used to infer temporal parameters only, given199

7



Case Qin Qlat,1 Qlat,2 Froude range
Q0 aQ T Q0 aQ T Q0 aQ T

Ch1 100 0 6300 100 20 6300 - 0.13-0.29
Ch2a

100 20 6300

100 20 6300

100 20 6300

0.12-0.3
Ch2b 400 80 6300 0.05-0.55
Ch2c 100 20 630 0.1-0.33
Ch2d 100 20 6300 0.12-0.3
Ch3 100 20 6300 0.09-0.53

Table 1: Parameter values for sinusoidal hydrographs Q(x, t) = Q0(x) + aQ(x) sin
(

2π
T
t
)
used in synthetic channels; resulting modeled

Froude ranges. Flows in m3s−1, time T in s.

a channel of constant slope and friction. Case Ch3 is the most challenging case with all inflows and non constant200

channel parameters sought simultaneously.201

3.2. Informative content of hydraulic signatures: single/multiple inflows inferences202

The fluvial signature from a single lateral inflow is divided in two parts (see Ch1 on Fig. 2, bottom): (i) in the203

reach downstream of the injection point, the cumulative flow (Q = Qin + Qlat,1) is uniform with a water depth204

corresponding to the normal depth imposed downstream, (ii) in the reach upstream of the injection point an M1205

backwater curve profile (see [54], [55, 52] in the present “altimetry context”) is obtained given the upstream flow206

Qin and the water depth imposed downstream of this reach as the normal depth corresponding to the cumulative207

flow. In the case of two distinct lateral injections (Ch2), WS signatures overlap in the most upstream reach because208

of the stronger backwater effect created by two downstream inflows, which represent a more challenging inference209

problem.210

Inference trials in case Ch1 with control vector c1 =
(
Q0
lat,1, ..., Q

P
lat,1

)T
, assuming a known constantQin (x = 0, t),211

show that a single observation point in space with a dense sampling in time, placed either upstream (S1, in Fig.212

2, top) or downstream (S2) from the lateral inflow, is sufficient to infer one lateral inflow hydrograph perfectly -213

noiseless twin experiments - (not presented). Indeed, the hydraulic signature of a lateral inflow is visible and fully214

informative either upstream from it because of its downstream control on the upstream flow line or downstream215

from it, in the signature of the cumulative flow. This means that as long the river is well temporally-observed216

regarding its response time (see [5] without lateral inflows) and that the temporal variations of the observed system217

stem from a single control, only one spatial point is needed to infer this parameter.218

In the case of two distinct lateral injections (Ch2), WS signatures overlap in the most upstream reach because of219

the stronger backwater effect created downstream by the two inflows, which represents a more challenging inference220

problem considering the unknown control vector c2 =
(
Q0
in, ..., Q

P
in ; Q0

lat,1, ..., Q
P
lat,1, Q

0
lat,2, ..., Q

P
lat,2

)T
. Several221

variants of Ch2 are considered to study the possible misattibution of flow controls (locations, amplitudes and222

frequencies) in case of identical inflow hydrographs (Ch2a), the backwater influence of inflow hydrographs on Qin223

downstream signature observed at S1 given 4 times larger inflow amplitude (Ch2b) or 10 times higher frequency224
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(Ch2c), different observations samplings “mixed” inflows signatures (see Fig. 2 and Tab. 1).225

3.2.1. Inference of multiple inflows226

For all cases, using perfect and dense observations in space (1 every 10 m) and also in time leads to quasi perfect227

inferences. The influence of a sparser sampling and of the observability patterns of overlapping WS signatures on228

the identifiability of multiple inflows with the present inverse method is studied here - without a priori weighting229

of the parameters in the inverse method, that is equal and unadjusted σ� values (see AppendixA). The inferred230

hydrographs are summed up in Fig. 3. Scores are given in Tab. 2, including cost function values and iterations231

number at convergence.232

Variant Ch2a. Given only one observation station by reach (S1, S2, S3) very satisfying inferences of the 3 inflows233

are obtained(Fig. 3, red line). Hence sufficient information is provided by those three stations observing distinct234

signatures in each reach from upstream to downstream: (S1) propagation of the inflow Qin(x = 0, t) in presence of235

the overlapping backwater effects due toQlat,1(x = 300, t) andQlat,2(x = 700, t); (S2) propagation ofQin(x = 0, t)+236

Qlat,1(x = 300, t) in presence of the overlapping backwater effect due to Qlat,2(x = 700, t); (S3) the propagation of237

the total discharge without downstream control.238

Variant Ch2b. Assimilation is more difficult than in Ch2a but inferred hydrographs (Fig. 3, red line) are still accu-239

rate (Tab. 2). This testifies to the ability to discriminate multiple sources of various amplitudes given observations240

of hydraulic signatures at higher frequency and at pertinent locations (S1, S2 and S3).241

Interestingly, this case highlights the expected misattribution behaviour between inflow sources as shown by an242

intermediate iteration (Fig. 3, orange line) and remaining to a lesser extent at convergence (red line): Qin and243

Qlat,1 are respectively over- and underestimated). This may be due to the relatively higher contribution of Qin to244

the observed signature (it impacts WS elevation at S1, S2 and S3) and consequently its contribution in the cost245

function (observation part).246

Note that the final overestimation of Qin in Ch2b is slightly greater than in Ch2a. This is likely due to greater WS247

elevation variation at S1 caused by backwater from Qlat,1, which is first attributed to Qin since it has more impact248

on the cost function. Remember that, with perfect observations of WS signatures, at the end of the optimization249

process, nearly perfect hydrographs are inferred. However, the small flow misattributions during this optimization250

shows the difficulty of inferring multiple controls using an observation located in a strong backwater signal.251

Variant Ch2c. Perfect inferences are obtained. An intermediate iteration (Fig. 3, orange line) shows that the252

expected misattribution of frequencies for all 3 inflows is present, though it disappears at convergence (Fig. 3,253

red line). This testifies to the ability to discriminate multiple sources of various frequencies given observations of254

hydraulic signatures at higher frequency and at pertinent locations (S1, S2 and S3).255
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Figure 3: Inflows inferences from WS observations for all Ch2 variants. Intermediate iteration in the assimilation process are represented
for Ch2b and Ch2c ; they are hand-picked to illustrate “intermediate” behaviours before convergence (“inferred”).

Variant Ch2d. Convergence is achieved but the flow upstream of S4 is misattributed between Qin and Qlat,1.256

Signatures of Qin and Qlat,1 are only observed mixed, downstream of Qlat,1 (at S4 and S5) and downstream from257

both Qlat,1 and Qlat,2 (at S3). Given that all stations are located in the downstream infuence of both inflows, the258

distribution of flow between them makes little difference on the observed WS dynamics. This confirms the need to259

have at least one observation station between each sought inflow in order to be able to “separate” them.260

Case
Qin Qlat,1 Qlat,2

Cost Nite
RMSE rRMSE (×10−6) RMSE rRMSE (×10−6) RMSE rRMSE (×10−6)

Ch2a 0.08 2.5 0.15 4.7 0.05 1.6 8.0×10−6 54

Ch2b 0.72 22.9 1.34 10.6 0.08 2.7 9.4×10−6 261

Ch2c 0.06 1.9 0.27 8.7 0.04 1.3 7.7×10−6 78

Ch2d 2.21 70.0 3.31 105.0 0.03 0.9 7.9×10−6 24

Table 2: Inferred parameters misfits to the truth for Ch2 variants. The RMSE [m3s−1] and rRMSE represent the misfit of the inferred
parameters, while the cost function used in the assimilation process represents the misfit of variables.

RMSE =

√
1
n

n∑
i=1

(
Qitarget −Qiinfered

)2
, rRMSE = RMSE/

n∑
i=1

Qitarget
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3.2.2. Synthesis261

These first tests showed that for inferring multiple inflows, i.e. spatially distributed temporal controls, a minimal262

spatial observability of their WS signature is required with one observation point between each inflow here. In case of263

observation stations affected by backwater influence, the potential difficulty of separating multiple inflows from their264

“mixed signature” is highlighted; using a higher spatial density of (simultaneous) observations leads to improved265

inferences in the present configuration. Moreover, using observations with high temporal density (with regards to266

the response time in the considered river system) and low spatial density, different frequencies can be correctly267

attributed to multiple inflows (as highlighted for a single upstream inflow in [5]). Furthermore, note that if a268

supercritical regime occurs in a reach between inflows, their hydraulic signatures are disconnected (not shown),269

effectively reducing the assimilation problem to that of case Ch1.270

3.3. Multiple and composite controls inference271

In this section multiple inflows are sought simultaneously with channel parameters on case Ch3. Three friction272

patches are consistently applied to sub-reaches inbetween the 4 sought bathymetry points. The control vector273

is c3 =
(
Q0
in, ..., Q

P
in ; Q0

lat,1, ..., Q
P
lat,1, Q

0
lat,2, ..., Q

P
lat,2 ; b1, b2, b2, b4 ; α1, α2, α3

)T
. Searching both inflows and274

channel parameters creates a configuration (intendedly) prone to equifinality problems on the sought parameters275

having correlated influence in the water surface signal. Three observation configurations (see Fig. 2) are studied:276

one with a high station density (Ch3a: 100 stations, 1 every 10 m), another with fewer stations (Ch3b: 9 stations,277

Sb1..5 and Sc1..4) and a third one with even fewer stations (Ch3c: 4 stations, Sc1..4). Priors for inflows are those278

defined for case Ch2 (subsection 3.2.1), priors for channel parameter are hydraulically consistent with flow priors and279

initial flow line. For this equifinality prone configuration, the σ� values used in the inverse problem regularization,280

related to the sought parameters (see section AppendixA) and denoted as weights, are given in Tab. 3.281

Inference results are presented in Fig. 4. In red, the final estimate of c3 for Ch3a with the “default” weights set282

(see Tab. 3). In green, final inferences for variant-specific parameter weights adjusted through trial and error. In283

orange, intermediate inferences with the “default” set of parameter weights. Equal values of 1, corresponding to “no284

weighting”, were also tested: they lead to inaccurate inferences (not shown) and thus the “default” weights producing285

more interpretable results are preferred. In further iterations, after the ones plotted in orange, behaviours similar286

to the Ch3a “default” weights inferences (Fig. 4, in red) appear (not shown), i.e. a shift of inferred hydrographs287

and Strickler coefficients away from the target. Also note that the inferred flow oscillation in the first time step288

stems from the influence of the initialization scheme (see section 2.1) in the optimization on this quickly responding289

channel.290

Qin is underestimated while the local friction is overestimated, denoting a local tendency to equifinality. This291

is linked to a strong backwater influence, created by both Qlat,1 and the increase in friction at x = 300 m. This292
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Case σQin

(
m3s−1

)
σQlat,1

(
m3s−1

)
σQlat,2

(
m3s−1

)
σα
(
m1/3s−1

)
σb (m) Cost Nite

“Default”

Ch3a

50
50 50 600

2

0.54 180

Ch3b 0.54 97

Ch3c 0.63 54

“Adjusted”

Ch3a 30 30 400 0.23 156

Ch3b
1 0.9 1.2 300

0.25 108

Ch3c 0.26 100

Table 3: Parameter weight sets in Ch3 variants.

local inflow error leads to compensation in downstream hydrographs. By adjusting parameter weights through trial293

and error, accurate inferences are obtained (Fig. 4, in green). This means that dense observations of the WS294

elevation are not sufficient for inferring all flow controls contained in c3 and that spatially distributed regularization295

parameters, acting as weights in the parameter search, are required.296

297

Variant Ch3b and Ch3c . With sparses observations, the “default” weight set leads to worse inferences. However,298

the existence of a set of adjusted weights that lead to good inferences (Fig. 4, in green) is enough to show that the299

minimum observation spatial density of 1 station between each inflow can be sufficient to infer the extended control300

vector c3. Note that adjusted weight for Ch3b and Ch3c are different from adjusted weights for Ch3a (see Tab. 3).301

Using less observation points in space, the influence of spatial parameters decreases without loss of meaningful302

information and thus the relative influence of inflows increases. This simple test highlights the weighting influence303

of the σ� parameters in the regularization method in the present flow configuration. The spatial distribution and304

density of WS observations along with the weights change the hydraulic representativity of spatially distributed305

parameters in the optimization process.306

The main difficulty uncovered with these academic cases is the challenge presented by simultaneous inferences307

of multiple inflows and channel parameters from their potentially overlapping hydraulic signatures. However, in the308

case of unbiased prior parameters and dense WS observation patterns relatively to those of spatio-temporal controls,309

satisfiying inferences are obtained with the present inverse method. A real and complex river case is considered310

hereafter.311

4. Effective hydraulic model of the Negro river312

After addressing increasingly challenging hydraulic inverse problems on synthetic test cases in the previous313

section, a real complex river flow case is now considered. It consists in 871 km of the Negro river, including several314

confluences with tributaries and anabranching flow zones. The reach is located upstream of the Solimoes-Negro315
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Figure 4: Inflow, bathymetry and friction patch inferences from WS observations for all Ch3 variants. In red, final inference with
“default” parameter weights (see Tab. 3). In green, final inference with adjusted parameter weights. In orange, intermediate inferences
with “default” parameter weights.

confluence which is responsible for significant backwater effects (see e.g. [52]). This section presents the elaboration316

of effective flow models in view of performing forward and inverse flow modeling from WS observations of varying317

sparsity in the next section.318

The modeling approach consists in (i) a 1D hydraulic model (full Saint-Venant equations, see subsection 2.1)319

(ii) based on effective cross sections defined from multisatellite and in situ data and (iii) weakly coupled to the large320

scale hydrological model MGB [41, 42, 43]. The idea is to build an effective river flow model both in coherence with321

the main hydrological signals (inflows) propagations along with observable flow surface signatures and hydraulic322

controls (see [52]). As shown in what follows, this 1D approach allows for a fair representation of flow propagation323

and longitudinal signatures, which are the core focus of this paper.324

4.1. Study zone325

The study domain corresponds to the main stream of the Negro River, a major “left-bank” Amazon tributary326

draining the north part of the basin, with an average discharge of 28 400 m3.s−1 [56]. The reach covers the 871 km327

upstream of its confluence with the Solimoes and presents singular channel morphologies such as multichannel flow328

zones mainly located in two large grabens ([57]). Part of the reach is strongly influenced by the control imposed329

by the Solimoes river at its confluence (average discharge of 100 819 m3.s−1 according to ORE HYBAM gauge data330

[58], their confluence gives birth to the Amazon river). This hydraulic control is due to higher discharge and a331

consequently lower slope of the Negro River in its lower reach when compared to the Solimões River near to the332

confluence [59, 60]. The reach of interest has been crosscut by 18 ENVISAT ground tracks every 35 days from 2003333
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Figure 5: Study zone on the Negro river. ENVISAT Virtual Stations are numbered from 1 to 18 starting from upstream. The boundaries
of the studied reach are defined by stations 1 and 18. The 21 tributaries are divided between actual rivers and inflow points from the
hydrological model. SWOT swaths give an almost full spatial coverage of the reach. In gray is the average water extent map used to
extract width values, from [3].

to 2010 (see [61]), representing 68 to 79 measurements of WS elevations at each of the 18 Virtual Stations (VS).334

Note that the measurements are not simultaneous for each station.335

4.2. Effective models construction336

This section presents the elaboration of effective flow models from multisatellite data. First, a G1 “sparse” channel337

geometry is built from effective bottom elevations at ENVISAT VS resolution. Next, in view to test the additional338

constraints brought by spatially dense satellite data (synthetic SWOT), a more spatially detailled effective channel339

geometry G2 is built using a high resolution water mask and an in situ flow line as explained below.340

4.2.1. Effective geometry G1 from altimetry and optical data341

An effective 1D channel with effective rectangular cross sections is set up from available multisatellite data342

(altimetry, optical) and a large scale hydrological model following [15, 34]. According to [57], high width to depth343

ratios make the rectangular channel a pertinent effective modeling approach of the true geometry, even in highly344

anastomosed reaches - where an error on the actual hydraulic perimeter Ph hence Rh (see subsection 2.1) is expected.345

This is supported by a qualitative analysis of some additional ADCP measurements of river flow and cross-sectional346

bathymetry.347

• The river centerline from [62], formed by 30×30 m pixels, is used to calculate the river length and to project348

all spatial objects, such as VS, widths and inflow points, on a single one-dimensional reference.349
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• A longitudinal profile of cross sectional WS width W is calculated from the average river extent map derived350

from 31 years (1984-2015) of optic landsat imagery by [3]. A single width value per centerline point is extracted351

in order to build a 1D rectangular geometry. For multi-channel reaches, the effective width is the sum of the352

widths of all channels. This underestimates the actual hydraulic perimeter. Specific hand-filtering based on353

hydraulical expertise was necessary in some anabranching parts of the model where the water extent may354

include inactive flow zones not accounted for in the present 1D effective model. Note that [63] concurs to the355

necessity of reach-scale flow zone evaluation in the Amazon river catchment.356

• An effective channel bottom elevation benv is obtained at each VS (Fig. 6, in red) from altimetric rating357

curves (RC) from [64]. Its slopes range from −7.1×10−5 to 2.0×10−4 m/m with an average of 7.0×10−5 m/m.358

RCs were obtained by adjusting the parameters (γ, δ) of a stage discharge relationship Q = γ (Zsat − b)δ S0.5
sat359

using WS elevations Zsat and slopes Ssat gained by satellite altimetry and discharge Q simulated with the360

large scale hydrological model MGB ([41, 42, 43]) on the temporal window of interest.361

Effective rectangular cross sections geometries are defined at the R = 18 VS using the above defined effective362

bottom elevations {benv}r∈[1..R] and river widths {W1}r∈[1..R]. The final model geometry (G1 = {benv,W1}r∈[1..R])363

is obtained by linear interpolation between those 18 effective cross sections on the model grid with ∆x = 200 m.364

4.2.2. Effective geometry G2 at increased spatial resolution365

Spatially dense WS elevation data is introduced in the form of an in situ GPS flow line with G = 579 spatial366

points. It was collected by survey ship along the whole studied reach over 7 days during the low-flow period in367

december 2010 ([2]); it provides local WS elevations Z every 1.4 km on average and WS slopes S for every 25 km368

reach (ranging between 2.0×10−5 and 8.11×10−5 m/m, averaging at 3.4×10−5 m/m). Under the hypothesis of a369

wide rectangular cross section and a steady uniform flow, the Manning equation writes:370

Q = K (Wh)
5/3

(W + 2h)
−2/3

√
S (5)

The water depth writes h = (Z − b) and the bottom elevation is sought using (i) the fixed WS width pattern371

W2 from imagery, (ii) the WS elevation ZGPS and slope SGPS given by the GPS profile and (iii) the discharge Q372

from the hydrological model (see subsection 4.1) on the river domain at the corresponding time t∗. We invert an373

effective bathymetry bGPS using equation 5 by minimizing the square sum of misfits to benv at ENVISAT stations374

through the modification of M = 14 friction values ((αm, βm = 0) , m ∈ [1..M ], friction law eq. (3)). They are375

simply spatialized intoM “hydraulic” patches consistent with large scale morphological features classified as follows:376

single channels, multiple channels (from 2 to 3), lightly anastomosed and heavily anastomosed (Fig. 6, in purple).377

The friction coefficient values are coherent with the physical properties of the classified reaches.378
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Figure 6: Effective river channel bottom and width for spatially sparse, G1 = {benv ,W1}r∈[1..R], and spatially dense, G2 =
{bGPS ,W2}G∈[1..G], model geometries along with a low-flow GPS waterline from [2].

The new bathymetry bGPS is coherent with the best available reference data and its corresponding set of379

physically distributed Strickler patches. The final model geometry is G2 = {bGPS ,W2}G∈[1..G].380

In the following, using either geometry G1 or G2, the hydraulic model is inflowed with time series at a daily time381

step upstream of the river domain and at 21 tributaries (both river tributaries and runoff inflows) corresponding to382

the 21 catchment cells feeding into the Negro river cells in the large scale hydrological model MGB ([42, 41]). The383

largest of these tributaries is the Branco river at 657 km.384

4.3. Effective Models calibration against altimetry385

The friction of the hydraulic model (eq. (1)) is calibrated against altimetric WS elevation time series following386

[34], i.e.
{
Zobss,p

}env
S=16,P∈[68..79]

at ENVISAT VS, the most downstream VS being used as BC (see subsection 2.1).387

The friction law is distributed using N = 17 “ENVISAT” patches with constant (αn, βn = 0) , n ∈ [1..N ] values for388

each reach between two successive VS. This choice is made to avoid spatial “overparameterization” in the calibration389

process regarding the spatial sparsity of ENVISAT observations of WS signatures. The aim of parameter calibration390

is to obtain a “real-like” model as close as possible of the sparse observation set. Three models are considered, to391

assess the impact of the bathymetry refinement and of the downstream BC on the modeled hydraulic signatures and392

on inverse problems: a “sparse” model (M1) using channel geometry G1 and the WS elevation time series from VS393

18 as BC, a refined model (M2a) with channel geometry G2 including all the spatial variability from multisource394

data described above while keeping the same BC and a further changed refined model (M2b) where the BC is395

changed to an altimetric RC which is of interest for “operational-like” applications in other rivers and basins.396

The inverse method presented in [1] and described in subsection 2.2 and AppendixA is used here, without397

regularization terms, for friction calibration. Effective Strickler patches, starting from priors corresponding to398

average values of the “hydraulic” patches used above (Fig. 6, in purple), are calibrated following [34] who use399

observations of the same nature. Friction patterns c∗G1, c
∗
G2a and c∗G2b found with the inverse method are shown in400

Fig. 7. Most differences in calibrated friction from M1 (Fig. 7, in red) to M2a (Fig. 7, in blue) correspond to their401
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Figure 7: Friction patches after calibration against ENVISAT WS elevation observations. Inferred Strickler coefficient values are very
close for all configurations for patches 1, 3 to 5 , 9 to 14 and 16. Patches 2, 6 and 15 are especially sensitive to model variations.

difference in bathymetry at the virtual station point (Fig. 7, gray line), i.e. a lower slope in M2a leads to a higher402

inferred Strickler parameter in order to match WS observations (e.g. in patch 2 and 6. Inferred parameters for403

M2b roughly match those of M2a, with some discrepancies in patch 2, 15 and 17. Using a different BC influences404

WS sensitivity to parameters and the relative contribution to the cost function of local WS misfits, which explains405

differences in patch 15 and 17 ; the one in patch 2 stems for the high friction values, hence lower WS sensitivity as406

analyzed after.407

4.3.1. Water levels analysis408

The following presents a detailed analysis of the effective hydraulic model for configuration M1, along with an409

analysis of changes obtained for configurations M2a and M2b.410

The simulated WS elevation are compared to observed WS elevation at each ENVISAT virtual station in Fig.411

8 - other time series are available in AppendixB. For the 3 models calibrated above, the modeled WS are fairly412

close to observed WS given the limited modeling complexity and data uncertainties. More precisely, the fit to the413

altimetric WS elevation time series is fairly good, as shown for M1 in Fig. 8, and nearly unbiased as shown in Fig.414

9(left). The WS elevation global RMSE is at 0.936 m for M1 ; similar results are found with M2a (see Tab. 4).415

Errors are greater in low and high flows, with consistent underestimations of flow amplitude upstream (VS 1 − 4)416

which turns into overestimation downstream (VS 9 − 13), before disappearing closer to the BC (VS 14 − 18). VS417

5 to 8 are particularly accurate. Error metrics are coherent with those from current state of the art models using418

satellite data (see e.g. [40] on the Congo river).419

The analysis of the time series for M1 gives insight on the 1D model behaviour regarding the real flow physics420

sampled with the sparse nadir altimetry data and dense in situ low flow line. Modeling errors can stem from either421

an (expected) improper representation of the channel and flow complexity or uncertain (ungauged) inflows and422

data.423

Concerning the hydraulics, from downstream to upstream, relative errors are lower in anabranching reaches424
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outside of the backwater influence starting at the Branco tributary (x = 657 km up to around x = 350 km) and in425

the backwater influence of the (known “perfect”) downstream BC. Overall, relative errors are higher upstream, in426

single channeled, low water height reaches and in the Branco backwater influences. Note that 2D complex lateral427

flows in floodplains or retention behaviours from “igarape” rivers may happen in high flow periods (see [65, 66]).428

These unaccounted phenomenons may decrease flood wave velocities and cause hydrograph skewness ([67, 68, 10]).429

The 1D modeling of water levels compared to altimetry observations (Fig. 8) can first be analyzed as follows:430

• Stations 14 to 18 are located in reaches with different morphological properties. Stations 14 and 15 are located431

in a densely anastomosed reach upstream of the Branco river confluence, a major tributary. Stations 16 and432

17 are in single channel reaches, upstream from the confluence with the Solimoes river. Station 18 is in a433

densely anastomosed reach at the location of the BC forcing on WS elevation. Their low relative misfits do434

not testify to the absence of complex hydraulic behaviours in this area but rather to the dominating influence435

of the BC.436

• Stations 5 to 13 are located in mostly homogeneous anastomosed reaches, with stations 5 to 8 in a less437

densely anastomosed region than stations 9 to 13. This spatial division corresponds to two trends in relative438

misfit, where lower misfit is seen in the less anastomosed reaches. This testifies to the difficulty of modeling439

potentially 2D hydrodynamics using 1D approach. Indeed, the more channels there are, the further away440

the simulated wetted perimeter is from the true wetted perimeter (and so the hydraulic radius). Note that441

parameterizing the Strickler coefficient as described in eq.(3) and including β (x) in the control vector during442

the calibration process, instead of the simpler β (x) = 0 used here, does not yield a better fit in this complex443

case modeled with a single rectangular channel.444

• Stations 1 to 4 are located on single channel reaches. Although the area seems the most suitable to be modeled445

in 1D, it still has the highest relative misfit to ENVISAT observations. For stations 1 and 2, this is partly446

due to effective width estimation errors being more prevalent in the relatively narrow channel (around 2 km447

in width). Furthermore, note that effective channel bottom elevation for these stations are respectively 37.3 m448

and 36.3 m while the lowest ENVISAT WS elevation observation are respectively 36.6 m and 35.8 m. This449

corresponds to low-flow water heights of 0.7 m and 0.5 m which do not fit field measurements. Consequently,450

relatively high friction coefficients are inferred between station pairs 1-2 and 2-3 to fit low water depth. This451

misfit might be due to data error, including effective width errors for stations 3 and 4 located in areas of sharp452

width variations. Note that the higher the friction values, the less sensitivity of the modeled WS elevation,453

which explains the highest spread of Strickler coefficient (K = 40 to 55 m1/3s−1) in reach 2 found during454

calibration for the 3 models (Fig. 7).455
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Global RMSE (m) Global Average bias (m) Upstream RMSE (m) Upstream Average bias (m)

M1 0.94 −0.02 0.88 −0.08

M2a 0.94 −0.02 0.91 −0.01

M2b 1.72 0.23 0.90 −0.05

Table 4: RMSE and bias over 8 years for the M1, M2a and M2b models. Upstream metrics are calculated for stations 1 to 9 only,
which are outside of the BC’s backwater influence. The high global RMSE for M2b comes from the known dephasing of the Solimoes
and Negro peak flow, which is not reproduced by the RC.

Figure 8: Modeled and observed WS elevation at ENVISAT VS after friction calibration at all stations for M1

The introduction of the refined geometry G2 in M2a, recall for generating spatially distributed SWOT data and to456

perform inference tests hereafter, has low impact on WS elevation bias and errors at ENVISAT VS (see Fig. 9),457

with only stations 1, 2 and 3 showing significant change. Using a rating curve as downstream BC in M2b mostly458

impacts the downstream part of the model where some misfit to altimetry data appears. Indeed, it is more difficult,459

using a simple power law depending on the local flow variables, to capture the influence of the confluence with the460

Solimoes River - not modeled. The latest having strong discharge variations out of phase with the one of the Negro461

River itself (e.g. [16]).462

4.3.2. Effective model analysis463

As a preliminary to hydraulic parameters inference from WS observables, this subsection studies the spatio-464

temporal features of the simulated hydraulic signatures, their sensitivity to model parameters and their observability465
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Figure 9: Relative misfit between modeled and observed WS elevation at ENVISAT for M1 (left, base model) M2a (middle, WS
elevation at downstream BC) and M2b (right, rating curve at downstream BC). Crosses are average values, horizontal bars are median
values.

given a SWOT sampling. First, an analysis of a flood wave propagation, resulting from multiple inflows, and its466

hydraulic signature visibility is performed using identifiability maps following [5]. The latter consist in a space-467

time representation of the WS signal and flow propagation features against the observability pattern. These maps,468

inspired by the theory of characteristics (see [69, 47]), enable to read how the sought upstream discharge information469

is sampled in the downstream WS deformations and help to estimate inferable hydrograph frequencies. Next, a470

numerical sensitivity evaluation of the flow model is carried out.471

In the context of regional hydrological modeling including river networks representation, the sensitivity of the472

present flow model is studied by using erroneous inputs. These inputs are also used in section 5 as erroneous priors473

for various assimilation setups.474

• Inflow: two hydrograph sets (containing lateral inflows and the upstream BC inflow) corresponding respectively475

to 70% and 130% of the true hydrographs are used as erroneous values for sensitivity trials and are referred476

to as Q−30
FG and Q+30

FG respectively.477

• Friction: two Strickler repartitions, with coefficient values worth respectively 70% and 130% of the truth are478

used as erroneous values for sensitivity and are referred to as K−30
FG and K+30

FG respectively.479

• Bathymetry: the inflow sets Q−30
FG and Q+30

FG and the true Strickler values are used to dig two bathymetries480

as described in section 4.3. The bathymetry derived from underestimated flows is referred to as b−30
FG (it481

overestimates the true bathymetry), and the other is referred to as b+30
FG .482

SWOT will provide spatially distributed observations with interesting revisit frequencies at the scales of the483

current river domain and hydrological signal propagations. Fig. 10 shows the evolution of the simulated WS484

elevation anomaly during the yearly peak flow (red-blue heatmap) as well as its multiple SWOT observability (in485

black). Based on the modeled flow, accounting for several inflows, the propagation of an intumescence corresponding486

to the annual flood wave signature is represented along the river through the maximum WS elevation in time487
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(following [55]) (Fig. 10, top, blue points). This intumescence propagation is visible on the upstream 400 km of the488

river from day 164 to day 173. It is detected by a SWOT swath at t = 166 d and another one at t = 170 d. It is more489

difficult to detect this signature in the downstream part of the river (x > 400 km) affected by the strong downstream490

control imposed by high water depths at the Negro-Solimoes confluence; a downstream control due to the Branco491

tributary also overlaps from x = 657 km to around x = 400 km. This control can be seen through the tracked WS492

elevation maximum (Fig. 10, top, in gray), where an early rise in WS elevation originates from x = 657 km, and493

through the extreme waterlines (Fig. 10, bottom, in blue), which highlights the change in length of this influence in494

low and high flows. As a consequence, WS observations on the downstream part may contain combined information495

due to the upstream hydrographs propagation but also to the expression of downstream controls.496

The maximum WS elevation is tracked for simulations with erroneous parameters as defined above (Fig. 10,497

top, in red, green and cyan). They are not plotted where the flow displays “pool behaviour” (gray points). They498

highlight the sensitivity of propagation to model parameters which is also an important point when they are varied499

during an optimization process as featured in section 5. The propagation time from 0 to 400 km can be evaluated500

to around 10 days, and is estimated as follows for the rest of the river domain.501

The conservative part of the Saint-Venant equations (i.e. without source terms) is hyperbolic: some quantities502

depending on the water depth and velocity (known as the Riemann invariants) are transported by waves at speeds503

different from the flow speed (see e.g. [69, 47]). The wave celerities are U+c and U−c with c =
√
gh for rectangular504

cross sections (see analysis of propagation features in [5]). For the fluvial regime of interest here (Fr = U/c < 1),505

information propagates both downstream and upstream and the Riemann invariants are modified along the wave506

due to the source term effects. The wave celerities obtained on the Negro River model are given by reach in Table507

5, relatively high wave speeds are obtained hence propagation of information both upstream and downstream,508

with spatio-temporal variability. The WS signature (and the discharge) thus reflects the nonlinear combination of509

information coming from both upstream (due to inflows variations) and downstream (due to local hydraulic controls510

or downstream BC - see the method of characteristic in [47]). This highlights the difficulty of inferring multiple511

inflows from sparse observations of WS signature, especially given uncertain channel parameters and backwater512

effects.513

Nevertheless interesting frequential information can be gained from the identifiability map as introduced in514

the case of a single inflow. Using the kinematic wave speed 5
3U (Fig. 10, top, dashed blue line) which compares515

fairly well to the intumescence speed on the upstream part of the reach (Fig. 10, top, x < 400 km). This gives516

an approximate propagation time Twave = 26 d on the whole domain, greater than the SWOT observation cycle517

period of 21 days. This brings the reach identifiability index to Iident = 1.23 (defined as Iident = Twave/∆tobs, i.e.518

the average number of time a wave is observed, see [5]). However, in the present case, the notion defined by [5]519

accounts for a single upstream inflow, not spatially distributed lateral inflows with potential upstream backwater520

controls. Actual identifiability indices for reaches in between each lateral inflow would be much lower (estimated521
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x (km) 0 65 121 163 193 216 388 418 465 502 528 598 623 628 657 700 739 754 789 1000

5
3
ūHF 2.35 1.42 1.22 1.07 1.02 0.75 0.50 0.52 0.53 0.50 0.48 0.35 0.32 0.41 0.61 0.47 0.44 0.47 0.44

cHF 8.32 9.23 9.71 10.31 10.36 11.19 12.52 12.61 12.62 13.49 13.95 15.90 16.28 16.82 17.93 17.26 17.56 19.37 19.69

uHF + cHF 9.74 10.08 10.44 10.95 10.97 11.64 12.82 12.92 12.93 13.79 14.23 16.11 16.47 17.06 18.29 17.54 17.82 19.65 19.95

uHF − cHF -6.92 -8.38 -8.98 -9.67 -9.75 -10.73 -12.22 -12.29 -12.30 -13.19 -13.66 -15.68 -16.09 -16.57 -17.56 -16.99 -17.29 -19.09 -19.42

Iident,HF 0.32 0.46 0.40 0.33 0.26 2.64 0.69 1.04 0.81 0.60 1.69 0.82 0.18 0.82 0.81 0.97 0.39 0.86 2.14

5
3
ūLF 1.40 0.96 0.83 0.70 0.69 0.52 0.34 0.37 0.45 0.40 0.41 0.25 0.22 0.26 0.31 0.26 0.24 0.24 0.23

cLF 5.54 6.16 6.54 7.13 7.05 7.72 8.70 8.59 7.87 8.71 8.81 11.30 11.83 12.54 14.11 13.37 13.78 16.09 16.59

uLF + cLF 6.38 6.74 7.04 7.54 7.47 8.03 8.91 8.81 8.14 8.94 9.06 11.45 11.96 12.70 14.30 13.52 13.93 16.24 16.72

uLF − cLF -4.70 -5.58 -6.04 -6.71 -6.64 -7.40 -8.50 -8.37 -7.60 -8.47 -8.56 -11.15 -11.70 -12.39 -13.93 -13.22 -13.64 -15.95 -16.45

Iident,LF 0.54 0.67 0.58 0.50 0.39 3.80 1.03 1.47 0.95 0.76 1.97 1.16 0.26 1.29 1.61 1.76 0.73 1.71 4.21

Table 5: Identifiability indexes between each pair of inflow at low and high flow (see Fig. 10, bottom). Speeds are given in m.s−1.
Iident is given for a reach of length L and an observation time step ∆tobs = 1 d by Iident = L

5
3
ū∆tobs

.

identifiabilities in between each inflow pair are given in Tab. 5 considering a fictious ∆tobs = 1 d full domain522

observability). Furthermore, SWOT swaths observations consist in WS snapshots on different parts of the river523

domain at given times, hence containing various and mixed signatures (in the sense introduced in section 3) of524

both several inflows and channel parameters - the more downstream, the more aggregated is the inflow information.525

Inferences of multiple inflows and frequential analysis are presented in the next section given known or uncertain526

channel parameters, spatio-temporally dense or sparse (SWOT) observations.527

528

5. Inferences from satellite observables529

This section studies the challenging inference of ungauged channel parameters and multiple inflows on the Negro530

River case, which represents a real and complex large scale problem. Typical inverse problems in hydrological-531

hydraulic modeling are studied here considering SWOT WS observations. The inference of channel parameters532

or/and inflows in the 1D Saint-Venant model is addressed using the inverse method presented in subsection 2.2 (see533

also section AppendixA). The downstream BC is set as a known altimetric rating curve. Three observation sets534

are generated: spatially and temporally dense (∆t = 600 s) observations (DenseSet), SWOT observations from the535

hydraulic model outputs masked by SWOT swaths (SWOTSet) and noisy SWOT observations using the large scale536

simulator [70] to add realistic measurement noise (SWOTNoiseSet). We first present inferences of inflows only, then537

of channel parameters, and finally of all those spatio-temporal controls simultaneously.538

539

5.1. Multiple hydrographs inferences540

Depicting flow structure within a river network and a catchment is a key issue in hydrological modeling, especially541

in ungauged basins. Seeking to infer, from distributed WS observations, flow controls that are both temporally and542

spatially distributed can represent a very challenging inverse problem, as previously highlighted on synthetic cases.543

22



Figure 10: TOP: Identifiability maps and flood wave propagation during the yearly peak flow (may-june) in the Negro river model. The
WS anomaly (heatmap) is given by Zano (x, t) = Z (x, t) − Z (x), where Z (x) is the average local WS elevation from day 160 to 190.
Blue points: tracking of maximum WS elevation value Zm(x) = maxt∈[0,365] Z(x, t), ∀x ∈ [0, L]. Gray points: tracking of maximum
WSE in the downstream pool. Dashed blue lines: fictitious trajectory at kinematic speed (sparse dashes) ck = 5/3U and at U + c
(dotted dashes), starting at x = 0, at the time of the local WS elevation peak. The speeds are calculated from the simulated flow speed
U and water height h and updated every ∆x = 200 m, such as tp+1 = tp + ∆x

c
p
k

. BOTTOM: Extreme flow forcings and flow model

variables over a 2 year period. Blue lines: Extreme simulated waterlines. Red lines: corresponding extreme Froude values. Green lines:
corresponding cumulative injected flows.
Vertical black dashes are lateral inflow locations. Bold vertical dashes are inflows inferred in subsection 5.2.
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Inferences of L = 21 inflow hydrographs from 2 years of SWOT synthetic observations are studied here.544

The channel geometry, friction and BCs are assumed to be known, hence the control vector reduced to c =545 (
Q0
lat,1, ..., Q

P
lat,1, Q

0
lat,2, ..., Q

P
lat,L

)T
. The inferences are started from a prior guess c(0) consisting in true hy-546

drographs affected by uncertainties of ±30%, that is Q+30
FG and Q−30

FG as defined above. Note that the inference is547

started from a hydraulically consistent initial state using an unbiased prior in the first time steps (see investigations548

in [1, 34]); the prior values of regularization parameters σQlat correspond to inflows magnitudes.549

The inferred hydrographs from inflow prior Q−30
FG are presented in Fig. 11 for DenseSet (green lines) and550

SWOTNoiseSet observations (orange lines). Results from prior Q+30
FG are available in AppendixC. SWOTSet and551

SWOTNoiseSet give almost identical inferences, therefore only the SWOTNoiseSet inferences are presented. For552

under- and overestimated priors, the assimilation of dense and SWOT observations enables to infer the true hy-553

drographs fairly well. RMSE ranges from 8.86 m3s−1 at x = 465 km up to 578.31 m3s−1 for the Branco tributary554

at x = 657 km. RMSE for all inferences presented in Fig. 11 can be found in section AppendixC. Some inferences555

show global under- or overestimations (e.g. x = 216 , 388 , 789 km). These biases are linked to the prior bias. Strong556

and numerous overlapping backwater signals may also influence flow misattribution, as discussed in the academic557

cases (section 3) for a small scale model. As tested in numerical experiments (not shown), increasing a scalar value558

σQlat,l
can give more effective weight to an hydrograph Qlat,l in the inference and it can be found further away from559

its prior guess, which highlights the role of the covariance matrix used for regularization.560

Note that temporal oscillations appear on the inferred hydrographs when using SWOTNoiseSet which is “tem-561

porally sparse” observation patterns compared to flow propagation, which is not the case of DenseSet. These562

oscillations are especially present in downstream inflows, which may link them to particular hydraulic responses563

in the BC influence zone, although they can be seen in upstream inflows as well. They tend to be prevalent in564

declining limbs of hydrographs (e.g. in Fig. 11, at 789 km, from day 120 to 300).565

Note that, regardless of oscillations, inferences tend to be further from the truth in decreasing hydrographs.566

These oscillations are not the effect of signal misattribution, as they are present with any number of inferred567

hydrographs (not shown), nor are they caused by the prior’s shape, as filtered priors also lead to oscillations (not568

shown). Instead, the oscillations seems to stem from the combination of the low observation frequency compared569

to the spatially distributed inflow hydrographs and the nonlinear hydraulic response. Keep in mind that we track570

flow information through WS elevation deformations caused by the nonlinear propagation of parameter signatures571

(see subsection 4.3.2).572

A sample illustration of those oscillations on the simulated WS elevation is presented in Fig. 12, at 870 km,573

downstream for three oscillating inferred hydrographs (at x = 738, 754 and 789 km). The inferred waterline from574

SWOTNoiseSet is compared to the truth at all simulated times and at SWOT pass times only. The misfit is logi-575

cally lowest at SWOT pass times (goal of the optimization), while unobserved periods exhibit a slightly oscillating576

(unconstrained) misfit. Higher frequency observations, such as DenseSet, prevent this behaviours through a more577
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complete spatio-temporal observability of the WS signatures, hence constrain the spatio-temporal parameters in-578

ference further. Some model configurations where temporal parameters are discretized at a greater time step than579

observation one do no exhibit such behaviours (e.g. results with DenseSet, [34]). As already shown in [5] for the580

identification of a single hydrograph, the identification is possible only in time windows representing the wave prop-581

agation time Twave ∼ 26 days in the present case, yet with multiple inflows and observation sample (see subsection582

4.3.2). As a consequence, outside the “identifiable time windows”, the infered values are not necessarily representing583

reality (see related WS misfit in Fig. 12). They are the optimal solution corresponding to the considered priors584

of the optimization problem. In practice, this means that introducing an additional regularization term jreg, like585 ∫ t
0
∂2h
∂t2 dt at observation points, would smooth (as following a spline curve) between the identifiable windows instead586

of the obtained oscillations. This smooth discharge curve would not be more physical than the present oscillations587

and we made the choice to not hide this well understood phenomena. It is a logical consequence of the disparity588

between the samplings of observations and parameters and does not impede interpretations of hydraulic signatures589

and identifiability.590

Seeking to infer a control that is both temporally and spatially distributed represents a challenging assimilation591

problem. In the present case: (i) the observation frequency now plays a role in identifying the hydraulic signa-592

ture, on top of its spatial density and resulting flow propagation: (ii) varying nonlinear flow propagation, and so593

WS signatures, can result in different inferences depending whether they are performed from observations of ris-594

ing/declining hydrographs propagations (local Q(Z) hysteresis) and (iii) indirect contributions to parameter weight595

in the inverse method appear, as successive hydrographs influence the whole downstream water line (established in596

subsection 3.2), which gives greater “effective weight” to upstream hydrographs as the cause of the misfit is observed597

in more stations and thus accounted for multiple times in the cost function. The inferred flow variations may be598

compensating for errors made at upstream stations with different SWOT pass times, impacting their WS elevation599

either through backwater control or through the modification of the BC and its own backwater effect.600

601

5.1.1. Spatial parameters inference602

The inference of effective channel parameters is studied here considering a control vector composed of all friction603

coefficient values and bathymetry points. The bathymetry is composed of I = 436 free points (1 every 2000 m)604

between each of which it is obtained by linear interpolation. SWOTSet is used, with a spatial observations sampling605

(1 point every 200 m), i.e. 10 times greater than the sought bathymetry for observed reaches. Two inferences from606

hydraulically consistent priors are presented, one with the refined bathymetry b−30
FG introduced in subsection 4.3.2607

(Fig. 13, in green) and another one with b+2.6m
env , a shifted bathymetry from the M1 model in subsection 4.2.1,608

in red. The 2.6 m correspond to the spatially averaged shift of b−30
FG compared to benv. b+2.6m

env does not contain a609

priori information on target bathymetry shape - such as a coarse DEM prior. The friction prior is K−30
FG for both610

inferences.611
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Figure 11: Lateral hydrographs inferences from SWOTNoiseSet and DenseSet, using the Q−30
FG inflow prior .

Figure 12: Difference between target and inferred WS elevation at 870 km, as observed by DenseSet and SWOTSet. The dotted line
represents the inferred waterline inferred from SWOTSet (with Q−30

FG as inflow prior), but observed by DenseSet. The difference between
this waterline and the target waterline is the misfit to target. At SWOT pass times, the misfit is low as expected from an inference
from SWOTSet. It only displays WS elevation oscillations at unobserved times.
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Figure 13: Bathymetry and friction pattern inferences from SWOTSet

Using b−30
FG and b+2.6m

env as priors, the inference of channel parameters (friction and bathymetry) respectively612

reach a RMSE of
(
4.362 m1/3s−1, 1.231 m

)
and

(
4.762 m1/3s−1, 1.913 m

)
. Upstream (x = 0−110 km), irregularities613

appear in both inferred bathymetries and correspond to underestimated Strickler coefficients. The high friction614

partially hides the hydraulic signature of the bathymetry and enables inference error inconsequential to the cost615

function. Downstream (x = 600− 870 km), in the strong backwater control of the downstream BC, inferences tend616

to stay close to their prior values. Furthermore, inferences from the unrefined prior b+2.6m
env are smoother than those617

from the refined prior b−30
FG . This testifies to the role of the a priori bathymetry shape knowledge contained in the618

prior when the WS elevation sensitivity to bathymetry is low. Strong backwater effects make the inference of channel619

parameters more difficult and parameter compensation appears due to the lessened sensitivity of the simulated WS620

(e.g. in green, at the last friction patch). The refined bathymetry prior b−30
FG leads to inferred bathymetry and621

friction that are closer to the truth. It will be used in the extended control vector inferences below.622

623

5.2. Inference of channel parameters and inflows624

This section investigates the simultaneous inference of both unknown inflows and channel parameters on the625

large scale Negro River case; it combines all previously mentioned difficulties and corresponds to an ungauged626

configuration. In the following, the aim is to determine: 1) if SWOT data are sufficient to infer the extended control627

vector given unbiased prior parameters; 2) how the added spatial complexity from lateral inflows impacts spatial628

parameter inference. In addition, further investigations on the impact of lateral inflow prior shape, representing629

for example hydrological modeling uncertainty in a simple manner, are presented. The considered extended control630

vector is the following:631

cext = (Qlat,x=65 (t) , Qlat,x=502 (t) , Qlat,x=657 (t) , Qlat,x=754 (t) ; b1, ..., bH ; α1, ..., αN ) (6)

27



The inferences are performed from DenseSet and SWOTNoiseSet. The bathymetry and friction priors are b−30
FG632

and K−30
FG respectively. Four major lateral inflows located at x = 65, 502, 657 and 754 km (Fig. 10, bold dashed633

bars) are considered. Their reduced number facilitates the analysis of their spatial impacts. The other inflows are634

set to their target values. Two inflows prior types are used: QflatFG , that gives no a priori on hydrograph shapes635

and QfilterFG , hydrographs obtained by applying a 80 days moving average filter to the true hydrographs. Prior636

flow values in QflatFG are set to the target flow values from the first time step up to 120 days for the sake of initial637

hydraulic consistency. Inferences of all parameters for these inflow priors are presented in Fig. 14 and Fig. 15. The638

inferred control vectors are referred to as c∗flat and c
∗
filter. Inferred parameter scores can be found in Tab. 6.639

Inferred spatial parameters patterns are similar to those obtained previously without unknown inflows in sub-640

section 5.1.1. c∗flat features a fair bathymetry fit downstream (x = 600 − 870 km) while c∗filter stays close to the641

prior value. This may be due to the different range of the simulated hydraulic responses in the first iterations:642

using QflatFG leads to an increase in WS elevation sensibility to bathymetry. Upstream (x = 0 − 110 km), increased643

bathymetry irregularities in c∗flat are linked to the erroneous prior QflatFG leading to bathymetry errors in the first644

iterations, coupled with lower inferred Strickler coefficients, hence a lessened impact of bathymetry on the water645

surface and the inability to correct the “initial” errors.646

In terms of temporal behaviours, both priors give fair estimates of hydraulic controls for DenseSet. Inferences647

from SWOTNoiseSet are close to those from DenseSet with the presence of oscillations and the rising part of648

hydrographs are better fitted than decreasing ones, as observed in subsection 5.1. In both c∗filter and c∗flat and649

for both observation sets, a correlation between sought inflows at x = 502; 657 and 754 km appears. The Branco650

river flow, at x = 657 km, is better inferred and its well fitted peaks are also found in the two smaller rivers (e.g.651

at 520 days), which are in its upstream and downstream influences zones (see Fig. 10, left). In all inferences, the652

total flow at the downstream BC closely matches that of the truth, which means that only hydraulic signature is653

misattributed across the 4 inferred temporal parameters, not on the total flow. In c∗filter, more accurate inferences654

are obtained, with a smaller influence of the Branco river on other inflows in its influence zone and more accurate655

inference of small scale behaviours. The filtered prior QfilterFG introduces information on low frequency behaviours656

of the sought inflows, helping the assimilation process to converge to correct the target inflows. This configuration657

allows for a better fit of small scale variation in the controls.658

659

6. Conclusion660

This paper investigated the inference of river channel parameters and multiple inflows from water surface signa-661

tures in the context of satellite altimetry with the forthcoming SWOT mission and using water extents from optical662

data as well. The HiVDI inverse method presented in [1], based on the 1D Saint-Venant equations and a variational663

assimilation scheme adapted to account for lateral inflows (mass and momentum injections). Given hydraulically664

consistent prior guesses and regularization weights, it is successfully applied to synthetic test cases and a long reach665
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(a) (b)

Figure 14: Inflow, bathymetry and friction patch inferences from SWOT synthetic data: c∗flat, inferred control vector without a priori
hydraulic behaviour.

(a) (b)

Figure 15: Inflow, bathymetry and friction patch inferences from SWOT synthetic data : c∗filter, inferred control vector with a priori
hydraulic behaviour.
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Obs set Prior
RMSE [m3s−1] (rRMSE) Nash-Sutcliffe

65 km 502 km 657 km 754 km 65 km 502 km 657 km 754 km

DenseSet
QflatFG

189 (0.12) 329 (0.17) 1472 (0.22) 430 (0.45) 0.84 0.90 0.87 0.10
NoiseSWOTSet 209 (0.14) 360 (0.18) 1719 (0.26) 421 (0.44) 0.81 0.88 0.82 0.10
DenseSet

QfilterFG

101 (0.07) 195 (0.10) 412 (0.06) 158 (0.17) 0.94 0.97 0.99 0.49
NoiseSWOTSet 102 (0.07) 208 (0.11) 503 (0.07) 154 (0.16) 0.94 0.96 0.99 0.51

(a) Hydrograph scores

Obs set Prior RMSEα
[m1/3s−1] RMSEb [m]

DenseSet
QflatFG

5.35 1.89
NoiseSWOTSet 5.12 1.64
DenseSet

QfilterFG

5.30 2.06
NoiseSWOTSet 5.13 1.99

(b) Channel parameters scores

Table 6: Inferred parameter scores for extended control inferences.

of the anabranching Negro River in the Amazon basin using multisatellite data.666

Through low Froude synthetic cases, it is shown that the signature of a lateral inflow is visible downstream667

from the inflow point through the total flow signature and can be visible upstream in case of downstream control668

at the injection. Following this analysis and using the HiVDI variational assimilation method (global in time and669

space), a study of the minimum spatial density of water surface observations necessary to infer lateral inflows from670

their hydraulic signatures is carried out. Synthetic twin experiments yield the following results: (i) given high671

observation temporal frequency relative to model hydraulic response, perfect inflows inferences can be obtained; (ii)672

to correctly attribute signatures between multiple lateral inflows, a minimum of 1 observation point between each673

injection cell is necessary; (iii) when simultaneously inferring inflows and/or channel parameters, a sensitivity to674

parameter weights (see section AppendixA) appears; (iv) given a priori parameter weights, accurate inferences of675

inflows and channel parameters is achievable even with the minimum spatial observability.676

A method for building effective river models in coherence with multisatellite data and including realistic spatial677

variations is introduced based on multisource data of water surface elevation, width and slopes. This method678

makes use of (i) multimission altimetric rating curves (see [64]) or equivalently a distributed hydrological model679

and altimetry data and (ii) water surface width like those from current databases (see [71]); it should be applicable680

to rivers from the future SWOT database. It is applied here to build a simple effective 1D model of the Negro river681

upstream from its confluence with the Solimoes river. It fits currently available satellite water surfaces signatures682

and contains real-like spatial variabilities and flood wave propagation features.683

The inference capabilities of spatially distributed channel parameters and inflows from synthetic SWOT ob-684

servations are highlighted on the Negro River case given hydraulically coherent priors. The inference of temporal685

parameters in the form of 21 spatially distributed lateral inflow hydrographs leads to accurate estimates and low686
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water surface misfit at observation times. High frequency observations give good inferences, with an expected687

sensitivity to both prior bias (see [1, 34]) and prior shape.688

SWOT-like observations lead to comparable inferences, with slight oscillations due to the frequential disparity689

between observations temporal controls combined to their spatial distribution and the resulting nonlinear flow prop-690

agation on the domain, as analyzed with identifiability maps. Those oscillations related to model-observations time691

scales could be overcome by introducing additional regularizations - not done here for the sake of hydraulic analysis.692

Inference of purely spatial parameters (bathymetry/friction) were carried out as well, leading to some complemen-693

tary remarks: (i) channel parameters equifinality is most present in the downstream part of the model, where the694

waterline is influenced by the strong backwater effect of the boundary condition (Solimoes River) which diminishes695

water surface sensitivity to other parameters; (ii) bathymetry prior shape influences the inferred bathymetry. Fi-696

nally, simultaneous inference of channel parameters and spatially distributed inflows was achieved with satisfying697

accuracy. We show that, with the present method, large scale temporal parameter variations can be found from698

synthetic SWOT observations even without a priori knowledge of the shape of the hydrological response, but that699

small scale variations can be better inferred with a priori hydrograph shape knowledge.700

Recall that the estimation of discharges and channel parameters from (SWOT) WS observations is a difficult701

inverse problem because of the correlated influence of flow controls on the observable water surface signatures -702

non uniqueness/equifinality issues. It is therefore necessary to use hydraulically consistent priors as investigated in703

[1, 37, 34] with HiVDI method that contains low complexity flow relations for deriving robust prior guesses from704

databases and hydrological models, or even in situ depth/discharge data when available (see [1]) - not the scope of705

this paper. As already discussed in [1], the VDA solution depends on the priors which are the first guess value and706

the covariances matrixes. Ongoing research efforts in the SWOT community, in view of global discharge estimates,707

focus on the determination of priors through the construction of a SWOT a-priori database based on [72, 71] and708

global/regional model outputs (see [26, 1]), constrained with available in situ gauge measurements. Note that709

a-priori estimations/databases could be enriched or reprocessed during or after the SWOT mission lifetime and710

HiVDI would enable to refining discharge estimates (see [1]). Moreover, as shown in [73], priors obtained by deep711

learning can greatly improve global estimation.712

More generally, reaching unbiased estimates of discharge, from downstream to upstream of river networks with713

varying densities of in situ discharge data hence ungauged river portions/basins, is a crucial challenge in hydrology714

that could benefit from the fusion of complementary in situ and remotely sensed data in integrated models. The715

present study brings insight in lateral inflows inference from hydraulic signatures and paves the way for further716

research on integrated hydrological-hydraulic assimilation chains for river networks and in coherence with multi-717

satellites observables (of local hydrodynamic signatures) to benefit from them in a regionalization perspective.718

Searching for distributed channel parameters and inflows given temporally sparse SWOT data and a global719

assimilation method brings the issue of signal attribution to the forefront, especially at the scale of a river network.720
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Further research should focus on tributaries that could be amenable to the use of SWOT and multisatellite obser-721

vations to better constrain estimates of lateral inflows and next distributed fluxes on network models considering722

hydrological-hydraulic couplings. The introduction of pertinent signatures, scales and constrains in the forward-723

inverse models (e.g. forward operators, covariance matrices, cost function terms) should help maximizing the use724

of various information sources and enable smooth discharge estimates and better signal attribution, given uneven725

and heterogeneous satellite data in combination with other complementary databases/knowledge. This could help726

leveraging better inferences of hydrological responses and flow structure within a river basin and eventually enable727

information feedback to rainfall-runoff modules and ultimately regionalization issues.728
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974

AppendixA. The computational inverse method975

The computational inverse method is based on Variational Data Assimilation (VDA) applied to the 1D Saint-976

Venant model (eq. (1)). The computational inverse method is the one presented in [5, 1] with an augmented977

composite control vector c (eq. (4)): c contains a spatially distributed friction coefficient enabling to model complex978

flow zones (while it is an uniform friction law K(h) in [1]). This definition of K(x, h) enables to consider more979

heterogeneous bathymetry controls. c also contains lateral flow hydrographs Qlat,i(t) to deal with in/offtakes due980

to tributaries or underground flows. It is important to point out that the imposed downstream BC is an unknown981

of the inverse problem. It is constrained with the observed water elevations and inferred river bottom slope using982

a locally uniform flow hypothesis (i.e. Manning equation, see subsection 2.1) - except in the last real case above.983

The cost function j(c) is defined as:984

j(c) = jobs (c) + γ jreg (c) (A.1)

where γ > 0 is a weighting coefficient of the so-called “regularization term” jreg(c). The term jobs(c) measures the985

misfit between observed and modeled WS elevations such that:986

jobs(c) =
1

2
‖(Z (c)− Zobs)‖2O (A.2)

The norm ‖·‖O = ‖O1/2 ·‖2 is defined from an a priori positive definite covariance matrix O. Assuming uncorrelated987

observations O = diag (σZ). The modeled WS elevations Z depend on c through the hydrodynamic model (eq. (1))988

and the inverse problem reads as989

c∗ = argminc j (c) (A.3)
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This optimal control problem is solved using a Quasi-Newton descent algorithm: the L-BFGS algorithm version990

presented in [74]. The cost gradient ∇j(c) is computed by solving the adjoint model; the latter is obtained by991

automatic differentiation using Tapenade software [75]. Detailed know-hows on VDA may be found e.g. in the992

online courses [76, 51].993

To be solved efficiently this optimization problem needs to be “regularized”. Indeed the friction and the994

bathymetry may trigger indiscernible surface signatures therefore leading to an ill-posed inverse problem; we refer995

e.g. to [35] for the theory of regularization of such inverse problems and to [1] for a discussion focused on the present996

inverse flow problem.997

Following [1], the optimization problem (eq. (A.3)) is regularized as follows. First the regularization term jreg998

is added to the cost function (eq. (A.1)). We simply set: jreg(c) = 1
2 ‖b”(x)‖22. Therefore this term imposes (as999

weak constraints) the inferred bathymetry profile b(x) to be an elastic interpolating the values of b at the control1000

points (i.e. a cubic spline).1001

A specificity of the present context is the large inconsistency between the large observation grid (altimetry1002

points) and the finer model grid. Between the sparse observations points (equivalently the control points), the1003

bathymetry profile b(x) is reconstructed as a piecewise linear function. It is worth to point out that the resulting1004

reconstruction is consistent with the physical analysis presented in [52, 55]. (This study analyses the adequation1005

between the SW model (eq. (1)) behavior and the WS signature).1006

Next and following [77, 78, 1], the following change of control variable is made:1007

k = B−1/2 (c− cprior) (A.4)

where c is the original control vector, cprior is a prior value of c and B is a covariance matrix. The choice of B is1008

crucial in the VDA formulation; its expression is detailed below. After this change of variable the new optimization1009

problem reads:1010

min
k

J (k) with J (k) = j (c) (A.5)

It is easy to show that this leads to the following new optimality condition: B1/2∇j(c) = 0; somehow a1011

preconditioned optimality condition. For more details and explanations we refer to 79, 80 and [1] in the present1012

inversion context.1013

Assuming uncorrelated controls the matrixB is defined as block diagonal such thatB = diag (BQ,BQlat,1, . . . ,BQlat,L,Bb,Bα,Bβ).1014

Still following [1], the covariance matrices BQ, BQlat and Bb are set as the classical second order auto-regressive1015

correlation matrices:1016
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(BQ)i,j = (σQ)
2

exp

(
−|tj − ti|

∆tQ

)
,
(
BQlat,l

)
i,j
= (σQlat

)
2

exp
(
− |tj−ti|∆tQ

)
and (Bb)i,j = (σb)

2
exp

(
−|xj − xi|

Lb

)
(A.6)

The VDA parameters ∆tQ and Lb represent prior hydraulic scales and act as correlation lengths. We refer1017

to [5] for a thorough analysis of the discharge inference in terms of frequencies and wave lengths and [1] in the1018

present river-observation context. In the present study, the friction parameters applied to deca-kilometric patches1019

are assumed to be uncorrelated thus the matrices Bα and Bβ are diagonal:1020

(Bα)i,i = (σα) 2, (Bβ)i,i = (σβ) 2 (A.7)

The scalar values σ� may be viewed as variances ; their values are given in the numerical results section.1021

Finally, in a noised observation context and to avoid overfitting noisy data, we denote by δ the noise level such1022

that ‖Zobs − Ztrue‖2 ≤ δ with Zobs the observed and Ztrue the true WS elevation profiles. A common technique1023

to avoid overfitting noisy data, in the context of Tykhonov’s regularization of ill-posed problems, is Morozov’s1024

discrepancy principle, (see e.g. [35] and references therein): the regularization parameter γ (see eq. (A.1)) is chosen1025

a posteriori such that j does not decrease below the noise level.1026
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1027

AppendixB. Extended friction calibration results1028

Figure B.16: ENVISAT WS elevation misfit after friction calibration at all stations for M2a.
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Figure B.17: ENVISAT WS elevation misfit after friction calibration at all stations for M2b.

1029
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AppendixC. Additional graphs and RMSE for lateral hydrograph inferences on the Negro River1030

with DenseSet and SWOTNoiseSet observation patterns1031

Figure C.18: Lateral hydrograph inferences from SWOTNoiseSet and DenseSet, using the Q+30
FG inflow prior

1032
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x (km) µ (d) σ
(
m3s−1

)
DenseSet RMSE

(
m3s−1

)
SWOTNoiseSet RMSE

(
m3s−1

)
65

1

2500 79.62 122.34
121 1500 97.74 134.59
163 1000 64.17 70.44
193 1000 49.06 50.75
216 700 37.04 41.48
234 800 112.76 120.43
247 1000 89.82 105.24
261 800 56.57 45.62
388 1000 98.30 125.94
418 800 60.64 49.12
465 600 8.86 12.64
502 2000 116.21 194.86
528 1000 66.85 83.55
598 600 28.69 29.08
623 1000 40.75 44.83
628 1200 119.85 126.13
657 5000 421.26 578.31
700 1500 263.07 264.27
739 2800 127.97 173.35
754 2000 140.89 158.19
789 2400 249.73 283.92

(a) With prior Q−30
FG

x (km) µ (d) σ
(
m3s−1

)
DenseSet RMSE

(
m3s−1

)
SWOTNoiseSet RMSE

(
m3s−1

)
65

1

2500 134.66 156.34
121 1500 142.70 138.31
163 1000 69.46 66.83
193 1000 45.66 43.47
216 700 45.31 47.28
234 800 128.18 130.98
247 1000 122.21 125.72
261 800 35.82 33.85
388 1000 146.13 149.39
418 800 33.81 32.22
465 600 13.53 15.37
502 2000 212.87 235.58
528 1000 87.67 91.96
598 600 28.62 28.85
623 1000 39.51 43.31
628 1200 123.45 126.71
657 5000 581.03 775.15
700 1500 250.54 256.81
739 2800 157.54 194.14
754 2000 147.88 154.01
789 2400 293.07 297.37

(b) With prior Q+30
FG

Table C.7: Inferred lateral inflows parameter weights and RMSE
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AppendixD. Technical specifications1033

Host bridge: Intel Corporation 8th Gen Core Processor Host Bridge/DRAM Registers1034

PCI bridge: Intel Corporation Xeon E3-1200 v5/E3-1500 v5/6th Gen Core Processor PCIe Controller1035

Memory: 2x16Gb SODIMM DDR4 Synchronous 2667 MHz (0.4 ns)1036

Resolution mode: sequential1037

Resolution method: implicit-explicit preissmann scheme1038

Sample run: inference of the full triplet on the Negro model (inferred control vector c∗filter in subsection 5.2)1039

• Control vector components: 4x740 flow points, 436 bathymetry points, 17 friction patches (3413 total sought1040

values)1041

• Total run time (direct): under 15 min1042

• Total run time (inverse): 20.8 h1043

• Number of iterations: 351044

• Average iteration time length: 35.8 min1045
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