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Abstract

Bayesian optimisation has been successfully applied to a variety of reinforcement learning
problems. However, the traditional approach for learning optimal policies in simulators does
not utilise the opportunity to improve learning by adjusting certain environment variables:
state features that are unobservable and randomly determined by the environment in a
physical setting but are controllable in a simulator. This article considers the problem of
finding a robust policy while taking into account the impact of environment variables. We
present alternating optimisation and quadrature (ALOQ), which uses Bayesian optimisation
and Bayesian quadrature to address such settings. We also present transferable ALOQ
(TALOQ), for settings where simulator inaccuracies lead to difficulty in transferring the
learnt policy to the physical system. We show that our algorithms are robust to the presence
of significant rare events, which may not be observable under random sampling but play
a substantial role in determining the optimal policy. Experimental results across different
domains show that our algorithms learn robust policies efficiently.

Keywords: Reinforcement Learning, Bayesian Optimisation, Bayesian Quadrature, Sig-
nificant rare events, Environment variables

1. Introduction

A key consideration when applying reinforcement learning (RL) to a physical setting is the
risk and expense of running trials, e.g., while learning the optimal policy for a robot. An-
other consideration is the robustness of the learned policies. Since it is typically infeasible
to test a policy in all contexts, it is difficult to ensure it works as broadly as intended.
Fortunately, policies can often be tested in a simulator that exposes key environment vari-
ables, state features that are unobserved and randomly determined by the environment in
a physical setting but are controllable in the simulator. For example, in a hexapod robot,
environment variables could describe the state of its legs, which can vary from fully op-
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erational to completely broken off, due to damage taken during operation. This article
considers how to use environment variables to help learn robust policies.

Although trials in a simulator are cheaper and safer than physical trials, the compu-
tational cost of each simulated trial can still be high. The challenge then is to develop
algorithms that are sample efficient, i.e., that minimise the number of such trials. In such
settings, Bayesian optimisation (BO) (Brochu et al., 2010) is a sample-efficient approach
that has been successfully applied to RL in multiple domains (Lizotte et al., 2007; Martinez-
Cantin et al., 2007, 2009; Cully et al., 2015; Calandra et al., 2015; Pautrat et al., 2018).

A näıve approach would be to randomly sample the environment variable in each trial,
so as to estimate expected performance. However, this approach (1) often requires testing
each policy in a prohibitively large number of scenarios, and (2) is not robust to significant
rare events (SREs), i.e., it fails any time there are rare events that substantially affect
expected performance. For example, rare localisation errors may mean that a robot is
much nearer to an obstacle than expected, increasing the risk of a collision. Since collisions
are so catastrophic, avoiding them is key to maximising expected performance, even though
the factors contributing to the collision occur only rarely. In such cases, the näıve approach
will not see such rare events often enough to learn an appropriate response.

Instead, we present a new approach called alternating optimisation and quadrature
(ALOQ) (Paul et al., 2018) specifically aimed at learning policies that are robust to these
rare events while remaining sample efficient. The main idea is to actively select the envi-
ronment variables (instead of sampling them) in a simulator. We use a Gaussian process
(GP) (Rasmussen and Williams, 2005) to model returns as a function of both the policy
and the environment variables and then, at each step, alternately use BO and Bayesian
quadrature (BQ) (O’Hagan, 1991; Rasmussen and Ghahramani, 2003) to select a policy and
environment setting, respectively, to evaluate.

A simulator is only an imperfect representation of reality and policies that are exclusively
learnt in simulation can exploit badly modelled aspects of reality and end up performing
significantly worse on the physical system. This poses the challenge of bridging the reality
gap (Jakobi et al., 1995; Jakobi, 1997; Koos et al., 2013), i.e., transferring policies from
the simulator to the real system without any significant downgrade in performance. In
this article we present an extension to ALOQ, called transferable ALOQ (TALOQ), that
automatically trades off the cost and accuracy of running a trial on the simulator against
running it on the physical system.

We first apply ALOQ to a number of primarily simulated problems, where the reality
gap does not pose any significant challenge. Our results demonstrate that ALOQ learns
better and faster than multiple baselines. Next, we demonstrate that TALOQ can use an
imperfect simulator to learn policies that bridge the reality gap, while requiring significantly
fewer trials than if we were to train with ALOQ solely on the robot.1

1. This article extends a conference paper (Paul et al., 2018) that introduced ALOQ but required an
accurate simulator to ensure transferability to the physical system. This article adds TALOQ, which
addresses this issue by actively selecting whether to run a trial on the physical system or the simulator at
each iteration. It also adds new experimental results showing that a policy learnt by TALOQ transfers
well to the physical system, comparisons of performance of TALOQ to ALOQ and other baselines, and
an empirical evaluation of the robustness of TALOQ to the additional hyperparameter it introduces.
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2. Related Work

Here we present some of the methods proposed in the literature for optimising problems
with environment variables, learning robust policies, and for bridging the reality gap.

2.1. Optimising in the presence of environment variables

Williams et al. (2000) consider a problem setting they call the design of computer experi-
ments that is similar to our setting, but does not specifically consider SREs. Their proposed
GP-based approach marginalises out the environment variable by alternating between BO
and BQ. However, unlike ALOQ, their method is based on the EI acquisition function,
which makes it computationally expensive for reasons discussed in Section 5, and is ap-
plicable only to discrete environment variables. We include their method as a baseline in
our experiments. Our results (in Section 8.2) show that their method is unsuitable for set-
tings with SREs. Further, their method fails even to outperform a baseline that randomly
samples the environment variable at each step.

Toscano-Palmerin and Frazier (2018) propose a BO based method for the same setting.
They show that their method, Bayesian Quadrature Optimisation, which uses a value of
information criterion to select points for evaluation, is more efficient than that of Williams
et al. (2000). However, like Williams et al. (2000) they do not explicitly consider SREs,
and their method likely to fail without the benefit of the machinery developed in ALOQ
(discussed in detail in Section 5) to specifically address the issues raised by SREs.

Krause and Ong (2011) also address optimising performance in the presence of environ-
ment variables. However, they address a fundamentally different contextual bandit setting
in which the learned policy conditions on the observed environment variable.

2.2. Learning Policies Robust to SREs

Frank et al. (2008) also consider the problems posed by SREs. In particular, they propose
an approach based on importance sampling (IS) for efficiently evaluating policies whose
expected value may be substantially affected by rare events. While their approach is based
on temporal difference (TD) methods, we take a BO-based policy search approach. Unlike
TD methods, BO is well suited to settings in which sample efficiency is paramount and/or
where assumptions (e.g., the Markov property) that underlie TD methods cannot be verified.
More importantly, they assume prior knowledge of the SREs, such that they can directly
alter the probability of such events during policy evaluation. By contrast, a key strength of
ALOQ is that it requires only that a set of environment variables can be controlled in the
simulator, without assuming any prior knowledge about whether SREs exist, or about the
settings of the environment variables that might trigger them.

Ciosek and Whiteson (2017) also proposed an IS-based algorithm, OFFER, where the
setting of the environment variable is gradually changed based on observed trials. Since
OFFER, as a policy gradient method, relies on properties of the Markov Decision Process
such as the Markov property, it suffers from all the disadvantages mentioned earlier. Also,
it can lead to unstable IS estimates if the environment is modified in other ways than by
changing the initial state.
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Rajeswaran et al. (2017) propose EPOpt for finding robust policies by training on dif-
ferent versions of a simulator. First, multiple instances of the simulator are generated by
drawing a random sample of the simulator parameter settings. Trajectories are then sam-
pled from each of these instances and used by a batch policy optimisation algorithm (e.g.,
TRPO (Schulman et al., 2015)). While ALOQ finds a risk-neutral solution, EPOpt finds a
risk-averse one that maximises the conditional value at risk (CVaR) by feeding the policy
optimisation only the sampled trajectories whose returns are lower than the CVaR. In a
risk-neutral setting, EPOpt reduces to the underlying policy optimisation algorithm with
trajectories randomly sampled from different instances of the simulator. This approach will
not see SREs often enough to learn an appropriate response, as we demonstrate in our
experiments.

Pinto et al. (2017) also suggest a method to address the problem of finding robust
policies. Their method learns a policy by training in a simulator that is adversarial in
nature, i.e., the simulator settings are dynamically chosen to minimise the returns of the
policy. This method requires significant prior knowledge to be able to set the simulator
settings such that it provides just the right amount of challenge to the policy. Furthermore,
it does not consider any settings with SREs.

2.3. Learning policies for physical systems

The methods suggested for learning policies for physical systems address the need for sam-
ple efficiency by a variety of means: they can use be model based, use sample efficient
optimisation techniques like BO, and incorporate the use of simulators in the learning loop
(see Chatzilygeroudis et al. (2019) for a survey). Here we discuss some of these methods.

Levine et al. (2016) and Chebotar et al. (2017) use guided policy search (GPS) (Levine
and Koltun, 2013) to learn a deep neural net based visuomotor policy for various object
manipulation tasks. Yahya et al. (2017) propose a distributed, asynchronous version of
GPS to accelerate training and improve generalisation. While GPS has proved to be highly
sample efficient, it are unsuitable for our setting. A straightforward application of it ignores
the setting of the environment variable, and treats its effect on the transition and rewards
as noise. As such the underlying linear-quadratic assumptions of the transition dynamics
and rewards are going to be grossly violated as these effects can be very large due to the
presence of SREs.

Another approach is to learn a controller in simulation and then fine tune it on the
real robot. For example, Lipson and Pollack (2000) learn a design of a robot in simulation,
which is then 3D-printed and evolved for a few more steps for fine tuning. Cully et al.
(2015) learn a low dimensional behaviour map of diverse controllers in simulation and then
perform BO to find the optimal controller on the robot. Inspired by the kernel structure
proposed in Poloczek et al. (2017), Marco et al. (2017) develop an entropy search based
BO algorithm that together with selecting a policy for evaluation, also selects whether to
evaluate the policy on the simulator or the physical system at each iteration.

PILCO (Deisenroth and Rasmussen, 2011) uses data from trials on the physical system
to build a model of the environment, and has been shown to achieve remarkable sample
efficiency in robot control. Kamthe and Deisenroth (2018) propose a similar approach that
maintains data efficiency, while being less computationally intensive and better able to
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handle state and control constraints. A similar approach, Black-DROPS (Chatzilygeroudis
et al., 2017), is a purely black-box model-based policy search algorithm for robotics and
can take advantage of parallel computations. Black-DROPS achieves similar data-efficiency
to PILCO. However, like PILCO it scales poorly as the dimensionality of the state/action
space increases. A recent extension of Black-DROPS (Chatzilygeroudis and Mouret, 2018)
combines nonparametric model learning (using GPs) and model identification in order to
scale up to high-dimensional systems.

These methods superficially resemble ALOQ in its use of GPs but the key difference is
that they are model based approaches where the GP models the transition dynamics, while
ALOQ is model free with the GP modelling the returns as a function of the policy and
environment variable. These methods are fundamentally ill suited to our setting. First, they
assume that the transition dynamics are Gaussian and can be learned with a few hundred
observed transitions, which is often infeasible in more complex environments (i.e., they scale
poorly as the dimensionality of the state/action space increases). Second, during training
they would be unable to learn a good transition model that conditions on the environment
variable since SREs might not be observed often enough under random sampling. Even
if they were to learn such a transition model, they would still have to learn a policy that
marginalises out the environment variable since it is not observable outside of training. In
this case, propagating the uncertainties through the trajectory during training would lead
to major violations of the Gaussian assumption when the environment variables can cause
SREs.

3. Problem Setting

We assume access to a computationally expensive simulator that takes as input a policy that
is parametrised by π ∈ Π and environment variable θ ∈ Θ and produces as output the return
f(π, θ) ∈ R, where both Π and Θ belong to some compact sets in Rdπ and Rdθ , respectively.
Note that θ refers to the setting of the environment variable, and is independent of the
policy whose parameters are given by π. We assume that this simulator is highly accurate
and poses little to no reality gap and thus policies learnt on this simulator transfer well to
the physical system.

We also assume access to p(θ), the probability distribution over θ. p(θ) may be known a
priori, or an approximation of it may be available. For example, this could be based on the
knowledge of some human expert, or as in the case of a mobile robot it could be the robot’s
belief about its distance from potential obstacles. While the inferred distribution for p(θ)
based on limited trials may only be a rough approximation of the true distribution, our
experiments show that taking account of this approximate distribution can lead to better
results than running policy search on some point estimate of θ.

Our objective is to find an optimal policy π∗:

π∗ = argmax
π

f̄(π) = argmax
π

Eθ[f(π, θ)]. (1)

Since evaluating f(π, θ) is expensive, BQ is well suited for computing f̄(π), and BO can be
a sample efficient framework for finding π∗ = argmaxπ f̄(π). We describe BO and BQ in
detail in Section 4.
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In Section 6, we present a method for a setting in which we relax the assumption
that the simulator is accurate. Instead, we assume that the simulator is imperfect but still
useful enough that running trials on it is informative about the performance on the physical
system. We assume that during training θ can be controlled on the physical system, which
is not very restrictive in practice. For example, a broken joint in a robot can be emulated
by disabling or limiting the actuator for that joint.

In this case, we define the return f = f(π, θ, δ), where δ ∈ {0, 1} is an indicator function
that denotes whether the return is from a simulated trial or from the physical system. Our
objective is to find the optimal policy π∗:

π∗ = argmax
π

f̄(π) = argmax
π

Eθ[f(π, θ, 1)], (2)

where δ = 1 since we want the policy that maximises returns on the physical system.

4. Background

GPs provide a principled way of quantifying uncertainties associated with modelling un-
known functions. A GP is a distribution over functions, and is fully specified by its mean
function m(x) and covariance function k(x,x′) (see Rasmussen and Williams (2005) for an
in-depth treatment) which encode prior belief about the nature of the function. The prior
can be combined with observed values to update the belief about the function in a Bayesian
way to generate a posterior distribution.

The prior mean function of the GP is often assumed to be 0 for convenience. A popular
choice for the covariance function is the squared exponential which has the form

k(x,x′) = exp

{
−

D∑
d=1

(
xd − x′d
ld

)2
}
, (3)

where D is the dimensionality of x and ld is the lengthscale associated with the dth di-
mension. The squared exponential covariance function belongs to the class of stationary
functions of the form k(x,x′) = k(x − x′), which implies that the correlation between the
function values of any two points depends only on the distance between them. Informally,
a large lengthscale along a particular dimension implies that the function values change
relatively slowly along that dimension.

In GP regression, it is assumed that the observed function values {f(xi)}Ni=1 are a sample
from a multivariate Gaussian distribution. The prediction for a new point x∗ is connected
with the observations through the mean and covariance functions. By conditioning on the

observed data, this can be computed analytically as a Gaussian N
(
E
(
f(x∗)

)
,Cov

(
f(x∗)

))
:

E
(
f(x∗)

)
= k(x∗,X)(K + σ2

noiseI)−1f(X) (4a)

Cov
(
f(x∗)

)
= k(x∗,x∗)− k(x∗,X)(K + σ2

noiseI)−1k(X,x∗), (4b)

where X denotes the vector of observed inputs, f(X) the vector of corresponding function
values, and K is the matrix with entries k(xi,xj), i, j = 1, 2, ..., N .
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4.1. Bayesian Optimisation

Bayesian optimisation is a framework for optimising black-box gradient-free functions that
are expensive to evaluate. It works by iteratively building a surrogate model of the function
based on observed data, and using this surrogate model to actively select the next point
to query. The property of generating estimates of the uncertainty associated with any
prediction makes GPs particularly suited as the surrogate model. Once the surrogate GP
model has been built, BO uses an acquisition function to guide the search and balance
exploitation (searching the space expected to have the optimum) and exploration (searching
the space which has not been explored well) to choose the next point to be queried.

Concretely, at iteration n, BO fits a GP to the observed data D1:n−1 = {(xi, f(xi))}n−1
i=1 .

The next point for evaluation is then set as xn = argmaxx α(x), where α(x) is the acqui-
sition function. Two commonly used acquisition functions are expected improvement (EI)
(Močkus, 1975; Jones et al., 1998) and upper confidence bound (UCB) (Cox and John, 1992,
1997). Defining x+ as the current optimal evaluation, i.e., x+ = argmaxxi f(xi). EI seeks
to maximise the expected improvement over the current optimum,

αEI(x) = E[I(x)], where I(x) = max{0, f(x)− f(x+)}. (5)

By contrast, UCB does not depend on x+ but directly incorporates the uncertainty in the
prediction by defining an upper bound:

αUCB(x) = µ(x) + κσ(x), (6)

where κ controls the exploration-exploitation tradeoff.

4.2. Bayesian Quadrature

Bayesian quadrature (O’Hagan, 1991; Rasmussen and Ghahramani, 2003) is a sample-
efficient technique for computing integrals of the form f̄ =

∫
f(x)p(x)dx, where p(x) is

a probability distribution. Using GP regression to compute the prediction for any f(x)
given some observed data, f̄ is a Gaussian whose mean and variance can be computed an-
alytically for particular choices of the covariance function and p(x) (Briol et al., 2015). If
no analytical solution exists, we can approximate the mean and variance via Monte Carlo
quadrature by sampling the predictions of various f(x).

Given some observed data D, we can also devise acquisition functions for BQ to actively
select the next point x∗ for evaluation. A natural objective here is to select x that minimises
the posterior variance of f̄ after observing f(x) (Osborne et al., 2012),

x∗ = argmin
x

V(f̄ |D,x). (7)

Since V(f̄ |D,x) is a linear combination of the predictive variances V(f(x)|D,x) (4b), which
do not depend on f(x), V(f̄ |D,x) does not depend on f(x) either and is thus computation-
ally feasible to evaluate. Uncertainty sampling (Settles, 2010) is an alternative acquisition
function that chooses the x∗ with the maximum posterior variance:

x∗ = argmax
x

V(f(x)|D). (8)
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(a) (b) (c)

Figure 1: ALOQ models the return f as a function of (π, θ); (a) the predicted mean based
on some observed data; (b) the predicted return of π = 1.5 for different θ, together with the
uncertainty associated with them; (c) given p(θ), ALOQ marginalises out θ and computes
f̄(π) and its associated uncertainty, which is used to actively select π.

Although simple and computationally cheap, it is not the same as reducing uncertainty
about f̄ since evaluating the point with the highest prediction uncertainty does not neces-
sarily lead to the maximum reduction in the uncertainty of the estimate of the integral.

Monte Carlo (MC) quadrature simply samples (x1,x2, ...,xN ) from p(x) and estimates
the integral as f̄ ≈ 1

N

∑N
i=1 f(xi). This typically requires a large N and so is less sample

efficient than BQ: it should only be used if f is cheap to evaluate. The many merits
of BQ over MC, both philosophically and practically, are discussed by O’Hagan (1987)
and Hennig et al. (2015). For ALOQ and TALOQ, we use an active Bayesian quadrature
scheme (i.e., selecting points according to an acquisition function), inspired by the empirical
improvements offered by those of Osborne et al. (2012) and Gunter et al. (2014).

5. ALOQ

The key idea behind ALOQ is to model the return as a GP with inputs (π, θ), and use
BO to optimise the policy while using BQ to marginalise out the effect of the environment
variable on returns. This is illustrated in Figure 1.

Concretely, at each iteration l, ALOQ fits a GP to data setD1:l−1 = {((πi, θi), f(πi, θi))}l−1
i=1.

Note that both π and θ are inputs to the GP. Next, it uses a modified UCB acquisition
function:

αALOQ(π) = µ(f̄(π) | D1:l−1) + κσ(f̄(π) | D1:l−1), (9)

to set πl = argmaxπ αALOQ(π). For discrete θ with support {θ1, θ2, . . . , θNθ}, the estimate
of the mean µ and variance σ2 for f̄(π) | D1:l−1 is:

µ =
1

Nθ

Nθ∑
i=1

E[f(π, θi)|D1:l−1] (10a)

σ2 =
1

N2
θ

Nθ∑
i=1

Nθ∑
j=1

Cov[f(π, θi)|D1:l−1, f(π, θj)|D1:l−1], (10b)
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where f(π, θ) is the prediction from the GP with mean and covariance computed using (4).
For continuous θ, we apply Monte Carlo quadrature. Although this requires sampling a
large number of θ and evaluating the corresponding f(π, θ) | D1:l−1, it is feasible since we
evaluate f(π, θ) | D1:l−1, not from the expensive simulator, but from the computationally
cheaper GP. This can be viewed as performing policy evaluation in our approach, i.e.,
estimating the expected return of a given π after marginalising out the effect of θ.

Although it is possible to define an EI-based acquisition function: α = Ef̄(π)|D1:l−1
[I(π)],

where I(π) = max{0, f̄(π)−f̄(π+)}, as an alternative to the UCB based acquisition function,
it is prohibitively expensive to compute in practice. The stochastic f̄(π+) | D1:l−1 renders
this analytically intractable. Approximating it using Monte Carlo sampling would require
performing predictions on (l−1)×Nθ points, i.e., all the (l−1) observed π’s paired with all
the Nθ possible settings of the environment variable, which is infeasible even for moderate
(l − 1) as the computational complexity of GP predictions scales quadratically with the
number of predictions.

Once πl is chosen, ALOQ uses a BQ acquisition function to select θl. Since the presence
of SREs leads to high variance in the returns associated with any given policy, it is critical
to minimise the uncertainty associated with our estimate of the expected return. Hence,
ALOQ selects θl | πl by minimising the posterior variance of f̄(πl):

θl|πl = argmin
θ

V(f̄(πl)|D1:l−1, πl, θ). (11)

As an alternative, we also tried uncertainty sampling in our experiments. Unsurprisingly,
it performed worse since it is not as good at reducing the uncertainty associated with the
expected return of a policy, as discussed in Section 4.2.

After (πl, θl) is selected, ALOQ evaluates it on the simulator and updates the GP with
the new datapoint ((πl, θl), f(πl, θl)). Our estimate of π∗ is thus:

π̂∗ = argmax
π

E[f̄(π)|D1:l]. (12)

5.1. Beta Warping

Although the approach described so far actively selects π and θ through BO and BQ, it is
unlikely to perform well in practice. A key observation is that the presence of SREs, which
we seek to address with ALOQ, implies that the scale of f varies considerably, e.g., returns
in case of collision versus no collision. This nonstationarity cannot be modelled with our
stationary kernel. Therefore, we must transform the inputs to ensure stationarity of f . In
particular, we employ beta warping, i.e., we transform the inputs using beta CDFs with
parameters (α, β) (Snoek et al., 2014). The CDF of the beta distribution on the support
0 < x < 1 is given by:

BetaCDF(x, α, β) =

∫ x

0

uα−1(1− u)β−1

B(α, β)
du, (13)

where B(α, β) is the beta function. The beta CDF is particularly suitable for our purpose
as it can model a variety of warpings based on the settings of only two parameters (α, β).
ALOQ transforms each dimension of π and θ independently and treats the corresponding
(α, β) as hyperparameters. In the rest of this article, we assume that we are working with
the transformed inputs.

9



Paul, Chatzilygeroudis, Ciosek, Mouret, Osborne, and Whiteson

Algorithm 1 ALOQ

input A simulator that outputs f = f(π, θ), initial data set D1:l, the maximum number of
trials L, and a GP prior.

1: for n = l + 1, l + 3, ..., L− 1 do
2: Update the beta warping parameters and transform the inputs.
3: Update the GP to condition on the (transformed) data set D1:n−1

4: Use (10) to estimate p(f̄ |D1:n−1)
5: Use the BO acquisition function (9) to select πn = argmaxπ αALOQ(π)
6: Use the BQ acquisition function (11) to select θn|πn
7: Perform a simulator call with (πn, θn) to obtain f(πn, θn) and update D1:n−1 to D1:n

8: Find π̂∗ = argmaxπi f̄(πi)|D1:n and θ∗|π̂∗ using the BQ acquisition function (11).
9: Perform a simulator call with (π̂∗, θ∗) to obtain f(π̂∗, θ∗) and update D1:n to D1:n+1

10: end for
output π∗ = argmaxπi f̄(πi) | D1:L i = 1, 2, ..., L

5.2. Intensification

While the resulting algorithm should be able to cope with SREs, the π̂∗ that it returns at
each iteration may still be poor, since our BQ evaluation of f̄(π) leads to a noisy approx-
imation of the true expected return. This is particularly problematic in high dimensional
settings. To address this, intensification (Bartz-Beielstein et al., 2005; Hutter et al., 2009),
i.e., re-evaluation of selected policies in the simulator, is essential. Therefore, ALOQ per-
forms two simulator calls at each timestep. In the first evaluation, (πl, θl) is selected via the
BO/BQ scheme described above. In the second stage, (π̂∗, θ∗) is evaluated, where π̂∗ ∈ π1:l

is selected using (12) and θ∗|π̂∗ using the BQ acquisition function (11).

6. TALOQ

ALOQ assumes access to a reliable simulator. In this section, we consider the setting
where this assumption does not hold and instead there exists a reality gap between the
simulator and the physical system. In this case, at each iteration we face the additional
choice to perform the evaluation on the simulator or on the physical system, which is even
more expensive. We present a variant of ALOQ called transferable ALOQ (TALOQ) that
addresses this setting.

6.1. BO with Reality Gap

Before presenting the full TALOQ method, we first formalise the problem setting and de-
scribe a simplified BO approach for coping with the reality gap but without considering
environment variables. We extend this method to TALOQ in Section 6.2.

Let δ ∈ {0, 1} denote the simulator or physical system respectively. Assume that at each
iteration we can choose to query the simulator or the physical system to obtain f(π, δ) for
an input π. Our objective is to find π∗ = argmaxπ f(π, δ = 1). In this setting we can model
f as a GP with inputs (π, δ). Observing the return of any π in the simulator gives us some
information about the corresponding return on the physical system. Since the lengthscale
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(a) (b) (c)

Figure 2: An illustrative example: (a) true and simulated function values for different α;
(b) the MLE of the lengthscale for δ wrt α; (c) γ for different settings of α for different
πeval.

for any dimension encodes the similarity of the function values along that dimension, we
can use the lengthscale for δ to quantify how well the simulator reflects reality. If the reality
gap is small the lengthscale should be long, and vice versa.

We develop a two-stage algorithm: at iteration l, first select πl for evaluation, and then
δl|πl. πl can be selected by maximising the UCB acquisition function:

α(π) = µ(f(π, δ = 1)) + κσ(f(π, δ = 1)), (14)

where δ = 1 since our objective is to maximise the performance on the physical system.

We define the relative reduction in uncertainty by evaluating πl in simulation vs. on the
physical system:

γ =
V[f(πl, 1)|D1:l−1]− V[f(πl, 1)|D1:l−1, πl, δl = 0]

V[f(πl, 1)|D1:l−1]− V[f(πl, 1)|D1:l−1, πl, δl = 1]
, (15)

and set δl = 0 if γ > k, and δl = 1 otherwise. Here k ∈ [0, 1] is a hyperparameter that
should be set based on the relative cost of running physical trials against simulated trials;
a large k encourages more physical evaluations, and vice versa. This formulation of γ as a
ratio of the relative reduction in variance ensures that it is less problem dependent than a
formulation with absolute reduction.

We illustrate this with an example in Figure 2. Let fα(π, δ) = (1−α1δ=0) sinπ. Here α ∈
[0, 1] is a proxy for the reality gap: α = 1 corresponds to an uninformative simulator, while
α = 0 to a perfect simulator with no reality gap. Note that fα(π, 1) is independent of α and
hence labelled f−(π, 1) in Figure 2a. Let fα(2, 0) and fα(2, 1) be observed. For each setting
of α, we can fit a GP to these two observed points and check how the learnt lengthscale
varies with α. This is shown in Figure 2b. Note how larger reality gap corresponds to
shorter lengthscale. Finally, lets assume that our acquisition function (15) suggests πeval
for evaluation. Figure 2c shows how γ varies with α (and hence the lengthscale for δ) for
three such πeval. This shows how the relative reduction in uncertainty drops as the reality
gap increases, but this drop is much sharper for πeval close to already observed points. Thus
our approach has a tendency to make use of the simulator more for unexplored regions, while
using reality to fine tune in well explored regions.

11



Paul, Chatzilygeroudis, Ciosek, Mouret, Osborne, and Whiteson

Algorithm 2 TALOQ

input A simulator and physical system that outputs f = f(π, θ), initial data set D1:l, the
maximum number of trials L, and a GP prior.

1: for n = l + 1, l + 3, ..., L− 1 do
2: Update the beta warping parameters and transform the inputs.
3: Update the GP to condition on the (transformed) data set D1:n−1

4: Use (10) to estimate p(f̄ |D1:n−1)
5: Use the BO acquisition function (9) to select πn = argmaxπ αALOQ(π)
6: Compute γ as per (16) and set δn = 1 if γ > k, and δn = 0 otherwise.
7: Use the BQ acquisition function (17) to select θn|πn, δn
8: Perform an evaluation with (πn, θn, δn) to obtain f(πn, θn, δn) and update D1:n−1 to

D1:n

9: Find π̂∗ = argmaxπi f̄(πi)|D1:n

10: Compute γ as per (16) and set δ∗ = 1 if γ > k, and δ∗ = 0 otherwise.
11: Use the BQ acquisition function (17) to select θ∗|π̂∗, δ∗
12: Perform a second evaluation with (π̂∗, θ∗, δ∗) to obtain f(π̂∗, θ∗, δ∗) and update D1:n

to D1:n+1

13: end for
output π∗ = argmaxπi f̄(πi) | D1:L i = 1, 2, ..., L

6.2. Complete TALOQ Method

In our setting with environment variables, our objective is to find π∗ = argmaxπ f̄(π, 1)
where f̄(π, δ = 1) = Eθ[f(π, θ, δ = 1)], and we can only evaluate f(π, θ, δ). To address this,
TALOQ combines the above selection method for δ|π with ALOQ.

First, we model the return as a GP with three inputs (π, θ, δ). Then, at iteration l, πl
is selected with the acquisition function presented in (9) with the additional condition that
δ = 1. Next, we modify the relative reduction in uncertainty for our acquisition function
for δl|πl to take into account that θ is yet to be selected:

γ =
V[f̄(πl, 1)|D1:l−1]− argminθ V[f̄(πl, 1)|D1:l−1, πl, θ, δl = 0]

V[f̄(πl, 1)|D1:l−1]− argminθ V[f̄(πl, 1)|D1:l−1, πl, θ, δl = 1]
, (16)

and select δl based on the hyperparameter k as earlier. Finally, we select θl|(πl, δl) using
the BQ acquisition function given in (11) with the slight modification that the conditioning
set now includes δl:

θl|πl, δl = argmin
θ

V[f̄(πl)|D1:l−1, πl, θ, δl]. (17)

Marco et al. (2017) propose a related acquisition function for δ for the simplified BO
setting described above. However, because it is entropy based, its application to TALOQ is
not straightforward, as it would require first integrating over θ. By contrast, our selection
criteria for δ is easy to implement and follows the same variance reduction principle as the
BQ aspect of selecting θ.
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7. Properties of ALOQ and TALOQ

Existing convergence guarantees for BO using αUCB (Srinivas et al., 2010) hold only for cases
with fixed hyperparameters. Similarly, existing convergence guarantees for BQ (Kanagawa
et al., 2016; Briol et al., 2015) apply only to methods that do not actively select points.
Since our methods rely on beta warping, active selection of quadrature points (whether for
simulated or real evaluation in TALOQ), and the hyperparameters of the GP are updated
after each iteration, these convergence guarantees for BO and BQ cannot be applied to
ALOQ and TALOQ. However, we expect such active selection to only improve the rate of
convergence of our algorithms over passive versions, and our empirical results in Section
8.2 show that in practice our methods efficiently optimise policies in the presence of SREs
across a variety of tasks.

The computational complexity of ALOQ and TALOQ is dominated by an O(l3) matrix
inversion, where l is the sample size of the data set D. This cubic scaling is common to all
BO methods involving GPs. The BQ integral estimation in each iteration requires only GP
predictions, which are O(l2).

8. Experimental Results

In this section, we empirically compare ALOQ and TALOQ to a number of baselines. Details
about the experimental setup, including the environments, choice of kernels, and treatment
of hyperparameters amongst others are presented in the Supplementary Materials.

8.1. Baseline Methods

A näıve approach is to directly apply a policy search algorithm (for example, BO, REIN-
FORCE (Williams, 1992), or Trust Region Policy Optimisation (TRPO) (Schulman et al.,
2015)) while treating the variability in returns caused by the environment variable as noise.

In particular, we can apply BO directly on f̄(π) = Eθ[f(π, θ)] and attempt to estimate
π∗. Formally, this approach models f̄ as a GP with a zero mean function and a suitable
covariance function k(π, π′). Since f is expensive to evaluate, at the lth BO iteration only
one f(πl, θl) with θl ∼ p(θ) is evaluated in the simulator and f̄(πl) is approximated by this
one sample Monte Carlo estimate. This approach will almost surely fail since the estimates
of f̄(π) are extremely noisy, especially in the presence of SREs.

For policy gradient methods like REINFORCE and TRPO, this translates to sampling
a batch of trajectories from the environment at each iteration, and then using the observed
returns to approximate gradient ascent on the policy. In general these methods suffer from
high variance in the gradient estimates, leading to slow learning (Glynn, 1990; Peters and
Schaal, 2006). In our setting with SREs, this problem is compounded by the variance due
to θ, which is not explicitly considered while approximating the gradient. Furthermore, if
SREs are not observed due to the random sampling from p(θ), these methods can converge
to a highly suboptimal policy. While these methods are not particularly sample efficient
and thus not suitable for our setting, we include them in our experiments for completeness.

We also compare ALOQ to several other baselines. The complete list of baselines is 1)
the näıve method described above with BO, REINFORCE, and TRPO as the underlying
policy search algorithms; 2) the method of Williams et al. (2000), which we refer to as
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WSN. To show the importance of each component of ALOQ, we also perform experiments
with ablated versions, namely: 1) random quadrature ALOQ (RQ-ALOQ), in which θ is
sampled randomly from p(θ) instead of being chosen actively; 2) unwarped ALOQ, which
does not perform beta warping of the inputs; and 3) one-step ALOQ, which does not use
intensification.

8.2. ALOQ Experiments

To evaluate ALOQ, we applied it to 1) artificial test functions, including those used by
Williams et al. (2000), who consider a setting very similar to ours, but without any potential
SREs, 2) a simulated robot arm control task, including a variation where p(θ) is not known
a priori but must be inferred from data, and 3) a hexapod locomotion task. All plotted
results are the median of 20 independent runs.

8.2.1. Artificial Test Functions

We begin with modified versions of the Branin and Hartmann 6 test functions used by
Williams et al. (2000). The modified Branin test function is a four-dimensional problem,
with two dimensions treated as discrete environment variables with a total of 12 support
points, while the modified Hartmann 6 test function is six-dimensional with two dimensions
treated as environment variables with a total of 49 support points. See Williams et al.
(2000) for the mathematical formulation of these functions.

The performance of the algorithms on the two functions is presented in Figure 3. In the
Branin function, ALOQ, RQ-ALOQ, unwarped ALOQ, and one-step ALOQ all substantially
outperform WSN. WSN performs better in the Hartmann 6 function as it does not get stuck
in a local maximum. However, it still cannot outperform one-step ALOQ. Note that ALOQ
slightly underperforms one-step ALOQ. This is not surprising: since the problem does not
have SREs, the intensification procedure used by ALOQ does not yield any significant
benefit.

Figure 4 plots in log scale the total runtime of each algorithm. WSN takes significantly
longer than ALOQ or the other baselines, and shows a clear increasing trend. The slow
runtime of WSN is as expected for the reasons mentioned in Section 2. However, its failure
to outperform RQ-ALOQ is surprising as these are the test problems Williams et al. use in
their own evaluation. However, they never compared WSN to these (or any other) baselines.
Consequently, they never validated the benefit of modelling θ explicitly, much less selecting
it actively. In retrospect, these results make sense because the function is not characterised
by significant rare events and there is no other a priori reason to predict that simpler
methods will fail.

These results underscore the fact that a meaningful evaluation must include a problem
with SREs, as such problems do demand more robust methods. To create such an evaluation,
we formulated two test functions, F-SRE1 and F-SRE2, that are characterised by significant
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Figure 3: Comparison of performance of all methods on the modified Branin and Hartmann
6 test functions used by Williams et al..
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Figure 4: Comparison of runtime of all methods on the modified Branin and Hartmann 6
test function used by Williams et al..

rare events. For π ∈ [−2, 2], F-SRE1 is defined as:

fF−SRE1(π, θ) =75π exp(−π2 − (4θ + 2)2)

+ sin(2π) sin(2.7θ),

with p(θ = θj) =

{
0.47% for θj = −1.00,−0.95, ..., 0.00

1.0% for θj = 0.05, 0.10, ..., 4.50.

(18)

For π ∈ [−2, 2], F-SRE2 is defined as:

fF−SRE2(π, θ) = sin2 π + 2 cos θ

+ 200 cos(2π)(0.2−min(0.2, |θ|)),

with p(θ = θj) =


1.2% for θj = −1.00,−0.98...,−0.22

0.2% for θj = −0.20,−0.18, ..., 0.20

1.2% for θj = 0.22, 0.24..., 1.00.

(19)
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Figure 5: Contour plot of F-SRE1 (values in SRE region have been reduced by a factor
of 10), and comparison of performance (higher is better) and runtimes of all methods on
F-SRE1.
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Figure 6: Contour plot of F-SRE1 (values in SRE region have been reduced by a factor
of 10), and comparison of performance (higher is better) and runtimes of all methods on
F-SRE2.

Figures 5a and 6a shows the contour plots of these two functions. Both functions have a
narrow band of θ that corresponds to the SRE regions, i.e., the scale of the rewards is much
larger in these regions. In F-SRE1 this is −1 < θ < 0 while in F-SRE2 this is −0.2 < θ < 0.2.
We downscaled the region corresponding to the SRE by a factor of 10 to make the plots more
readable. The final learned policy, i.e., π̂∗, of ALOQ and the Näıve approach is shown as a
vertical line, along with π∗ (the true maximum). These lines illustrate that not accounting
for SREs properly can lead to learning significantly suboptimal policies.

Figures 5b and 6b, which plot the performance of all methods for the two functions,
show that ALOQ substantially outperforms all the other algorithms except for one-step
ALOQ (note that both WSN and the näıve approach fail completely in these settings).
As expected, intensification does not yield any additional benefit in this low dimensional
problem. However, our experiments on the robotics tasks presented next show that inten-
sification is crucial for success in higher dimensional problems.

The total runtime is presented in Figures 5c and 6c (note the log scale). Again WSN is
significantly slower than all other methods. In fact, it was not computationally feasible to
run WSN beyond 100 data points for F-SRE2.
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Figure 7: Performance and learned configurations on the robotic arm collision avoidance
task. In (a) the performance of REINFORCE and TRPO is at convergence.
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Figure 8: Performance and learned configurations on the robotic arm joint breakage task.
In (a) the performance of REINFORCE and TRPO is at convergence.

8.2.2. Robotic Arm Simulator

In the next experiment, we evaluate ALOQ’s performance on a robot control problem
implemented in a kinematic simulator. The goal is to configure each of the three controllable
joints of a robot arm such that the tip of the arm gets as close as possible to a predefined
target point.

Collision Avoidance: In the first setting, we assume that the robotic arm is part of a
mobile robot that has localised itself near the target. However, due to localisation errors,
there is a small possibility that it is near a wall and some joint angles may lead to the arm
colliding with the wall and incurring a large cost. Minimising cost entails getting as close
to the target as possible while avoiding the region where the wall may be present.

Figures 7a and 7b show the expected cost (lower is better) of the arm configurations
after each timestep for each method. ALOQ, unwarped ALOQ, and RQ-ALOQ greatly out-
perform the other baselines. REINFORCE and TRPO are not sample efficient, exhibiting
a slow rate of improvement, while WSN fails to converge at all.

Figure 7c shows the learned arm configurations, as well as the policy that would be
learned by ALOQ if there was no wall (No Wall). The shaded region represents the possible
locations of the wall. This plot illustrates that ALOQ learns a policy that gets closest to
the target. Furthermore, while all the BO based algorithms learn to avoid the wall, active
selection of θ allows ALOQ to do so more quickly: smart quadrature allows it to more
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efficiently observe rare events and accurately estimate their boundary. For readability we
have only presented the arm configurations for algorithms with performance comparable
to ALOQ. Note that due to constraints on the joint angles, it is not possible to reach the
target while avoiding the region where the wall may be present.

Joint Breakage: To see how ALOQ performs in settings with continuous environment
variables, we consider a variation in which instead of uncertainty introduced by localisation,
some settings of the first joint carry a 5% probability of it breaking, which consequently
incurs a large cost. Minimising cost thus entails getting as close to the target as possible,
while minimising the probability of the joint breaking.

Figures 8a and 8b shows the expected cost (lower is better) of the arm configurations
after each timestep for each method. Since θ is continuous in this setting, and WSN requires
discrete θ, it was run on a slightly different version with θ discretised by 100 equidistant
points. The results are similar to the previous experiment, except that the baselines perform
worse. In particular, the Näıve baseline, WSN, and REINFORCE seem to converge to a
suboptimal policy since they have not witnessed any SREs.

Figure 8c shows the learned arm configurations together with the policy that would be
learned if there were no SREs (No break). The shaded region represents the joint angles
that can lead to failure. This figure illustrates that ALOQ learns a qualitatively different
policy than the other algorithms, one that avoids the joint angles that might lead to a
breakage while still getting close to the target faster than the other methods. Again, for
readability we only present the arm configurations for the most competitive algorithms.

Performance of REINFORCE and TRPO : Both REINFORCE and TRPO are relatively
sample inefficient. However, one question that arises is whether these methods eventually
find the optimal policy. To check this, we ran them for a total of 10000 simulator calls
each. We repeated this for both the Collision Avoidance and Joint Breakage settings.
To further check if the size of the neural net policy makes a difference, we repeated the
TRPO experiment with neural nets with two hidden layers with (5,5), (16,16), and (32,32)
units each. Of these three policies, the policy with (32,32) units performed the best in the
Collision Avoidance experiment, while the one with (5,5) was the best in the Joint Breakage
experiment. The learning curves for these are presented in Figure 9 (we only present the
results up to 1000 simulator calls for readability; there is no improvement beyond what can
be seen in the plot). Both baselines can solve the tasks in settings without SREs, i.e., where
there is no possibility of a collision or a breakage (No Wall and No Break in the figures).
However, in settings with SREs, they converge rapidly to a suboptimal policy from which
they are unable recover even if run for much longer, since they do not experience the SREs
often enough. This phenomenon has been explored further in Paul et al. (2019).

Setting with approximate p(θ): Now we consider the setting where the exact distribution
p(θ) is not known a priori, but only an approximation is available. In this setting, instead
of directly setting the robot arm’s joint angles, we set the torque applied to each joint (π).
The final joint angles are determined by the torque and the unknown friction between the
joints (θ). Setting the torque too high can lead to the joint being damaged or broken, which
incurs a large cost.

We use the simulator as a proxy for both real trials as well as the simulated trials. In
the first case, we simply sample θ from a uniform prior, run a baseline policy, and use
the observed returns to compute an approximate posterior over θ. We then use ALOQ to
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Figure 9: Performance of REINFORCE and TRPO on the robotic arm simulator.

compute the optimal policy over this posterior (‘ALOQ policy’). For comparison, we also
compute the maximum a posteriori (MAP) estimate of θ and the corresponding optimal
policy (MAP policy). To show that active selection of θ is advantageous, we also compare
against the policy learned by RQ-ALOQ.

Since we are approximating the unknown p(θ) with a set of samples, it makes sense to
keep the sample size relatively low for computational efficiency when finding the ALOQ
policy (50 samples in this instance). However, to show that ALOQ is robust to this ap-
proximation, when comparing the performance of the ALOQ and MAP policies, we used a
much larger sample size of 400 for the posterior distribution.

For evaluation, we drew 1000 samples of θ from the more granular posterior distribution
and measured the returns of the three policies for each of the samples. The average cost
incurred by the ALOQ policy (presented in Table 1) was 31% lower than that incurred by
the MAP policy and 23.6% lower than the RQ-ALOQ policy. This is because ALOQ finds
a policy that slightly underperforms the MAP policy in some cases but avoids over 95% of
the SREs (cost ≥70 in Table 1) experienced by the MAP and RQ-ALOQ policies.

Average % Episodes in Cost Range
Cost 0-20 20-70 ≥70

ALOQ Policy 19.82 61.3% 38.5% 0.2%
MAP Policy 28.76 67.1% 28.7% 4.2%
RQ-ALOQ 25.95 - 94.5% 5.5%

Table 1: Comparison of the performance of ALOQ, MAP, and RQ-ALOQ policies when
p(θ) must be estimated.

8.2.3. Hexapod Locomotion Task

As robots move from fully controlled environments to more complex ones, they have to face
the inevitable risk of getting damaged. However, it may be expensive or even impossible
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(a) Hexapod with a shortened and a missing leg.
(b) Expected value of π̂∗

Figure 10: Hexapod locomotion problem.

to decommission a robot whenever any damage condition prevents it from completing its
task. Hence, it is desirable to develop methods that enable robots to recover from failure.

Intelligent trial and error (IT&E) (Cully et al., 2015) has been shown to recover from
various damage conditions and thereby prevent catastrophic failure. Before deployment,
IT&E uses the simulator to create an archive of diverse and locally high performing policies
for the intact robot that are mapped to a lower dimensional behaviour space. If the robot
becomes damaged after deployment, it uses BO to quickly find the policy in the archive
that has the highest performance on the damaged robot. However, it can only respond
after damage has occurred. Though it adapts quickly, performance will be poor during the
initial trials after damage occurs as the initial deployed policy only optimises performance
on the undamaged robot. To mitigate this effect, we propose to use ALOQ to learn in
simulation the policy with the highest expected performance across the possible damage
conditions. By deploying this policy, instead of the policy that is optimal for the intact
robot, we can minimise in expectation the negative effects of damage in the period before
IT&E has learned to recover.

We consider a hexapod locomotion task with a setup similar to that of Cully et al.
(2015) to demonstrate this experimentally. The objective is to cross a finish line a fixed
distance from its starting point. Failure to cross the line leads to a large negative reward,
while the reward for completing the task is inversely proportional to the time taken.

It is possible that a subset of the legs may be damaged or broken when deployed in a
physical setting. For our experiments, we assume that, based on prior experience, any of the
front two or back two legs can be shortened or removed with probability of 10% and 5% re-
spectively, independent of the other legs, leading to 81 possible configurations. We excluded
the middle two legs from our experiment as their failure has relatively little impact on the
hexapod’s movement. The configuration of the six legs acts as our environment variable.
Figure 10a shows one such setting. The environment variable here has a discrete support
with 81 states, one for each setting of the four legs with the corresponding probability for
that setting. For example, the probability of the setting {no damage, removed, shortened,
no damage} is 0.85× 0.05× 0.1× 0.85.
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We applied ALOQ to learn the optimal policy given these damage probabilities, but
restricted the search to the policies in the archive created by Cully et al. (2015).2 Figure
10b shows that ALOQ finds a policy with much higher expected reward than RQ-ALOQ.
It also shows the policy that generates the maximum reward when none of the legs are
damaged or broken (‘opt undamaged policy’ - this is the optimal policy that IT&E would
initially deploy).

As mentioned earlier, while IT&E can be used to search for a new policy once some
damage occurs, the returns during the initial phase of the search depends heavily on the
deployed policy. In this experiment, conditioned on a damage occurring, the ALOQ policy
gets an expected return of 77.7 while the optimal policy learned by MAP-Elites gets an
expected return of 65.5.

To check if a policy learnt by ALOQ in simulation transfers successfully, we ran an
experiment where we used ALOQ to learn a policy entirely in simulation and then deployed
the learnt policy on a real hexapod. In order to limit the number of physical trials required
to evaluate the ALOQ policy, we limited the possibility of damage to the rear two legs.
The learnt policy performed better than the opt undamaged policy (which was also learnt
only in simulation) on the physical robot because it optimised performance on the rare
configurations that matter most for expected return (e.g., either leg shortened). However,
the performance of both policies were worse than in simulation due to the reality gap.
For example, in simulation the undamaged hexapod traveled more than 1m with both the
ALOQ policy and the opt undamaged policy, while in reality it traveled no more than 0.75m.
These results underscore the need for an algorithm like TALOQ to bridge the reality gap.
In the next section we present an experiment using TALOQ with a robotic arm without
using MAP-Elites.

8.3. TALOQ Experiments

To see how well TALOQ learns transferable policies compared to ALOQ and other baselines,
we applied it to a robotic arm. The arm has actuators across 4 joints that control the
position of its end effector in 3D space. The objective is to strike a ball hanging from a rope
with its end effector and achieve a target velocity. The reward function is the sum of two
components: a squared exponential function of the velocity of the ball with a sharp peak at
0.75m/s, and a cost that increases linearly with the minimum distance of the end effector
from the centre of the ball (observed throughout the whole trajectory). The policy space is
5-D consisting of 4 joint angles and a frequency parameter for the arm to oscillate between
the initial configuration and the specified joint angles. As an SRE, we assume that the arm
is damaged with probability 5%, making the actuator for the third joint unresponsive and
stuck in the initial configuration. This can cause policies that perform well on the fully
functional arm to perform poorly on the damaged arm.

Since physical trials are too expensive to compare TALOQ against all the other baselines
on the physical robot, we first do an extensive evaluation of TALOQ in simulation, and then
compare TALOQ to ALOQ in an experiment on the physical robot.

2. These 12514 policies were generated by MAP-Elites (Mouret and Clune, 2015) using a model of the
intact robot in simulation using DART (Lee et al., 2018).
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(a) Physical robot (b) Simulated robot

Figure 11: Experimental setup for TALOQ: The objective is to learn a policy for striking the
ball and achieving a particular velocity. (a) The physical setup, (b) the setup in simulation.

8.3.1. Simulated Experiments

To enable extensive evaluation of TALOQ, we devised a simulated version of the experiment.
We used DART (Lee et al., 2018) to design a simulator for our experimental setup.3 Figures
11a and 11b show the physical robot and the simulated model.

We treated the simulator for the robotic arm as a proxy for reality, and developed
another version which we treated as the simulator. To create a reality gap between the two,
instead of the ball hanging from the rope we modelled it as a pendulum. We also set the
mass of the ball to 1kg compared to 60g in the proxy. Since simulated trials are relatively
cheap, we ran 20 random replicates and after each iteration evaluated the expected return
of the policy TALOQ specified as optimal.

In Figure 12a we compare the performance of TALOQ against three baselines: ALOQ,
RQ-ALOQ, and the näıve approach. We learnt two versions of each of the baseline, one
solely in simulation to check if the learnt policies transfer well, and the other solely on
the proxy for reality to check that TALOQ indeed makes use of the simulated trials to
improve sample efficiency on the proxy. Note that the x-axis is the number of physical
trials. The policy learnt only in simulation using ALOQ (ALOQ Sim)/RQ-ALOQ (RQ-
ALOQ Sim)/Näıve (Näıve Sim) approach does not transfer at all to the proxy for reality,
since the reality gap is quite large. Learning a policy with ALOQ exclusively in this proxy
(ALOQ Real) performs better since there is no reality gap. However it is less sample efficient
than TALOQ since it does not leverage the information provided by the simulator. This
shows that TALOQ can effectively leverage simulated trials to improve sample efficiency on
the physical system. On the other hand, the näıve approach (Näıve Real) does not learn at
all due the presence of the SRE.

To see how the performance of TALOQ varies based on the choice of k in (16), we ran
also the experiment with different values of k. The results presented in Figure 12b shows
that performance is stable across a wide range of k, though higher values can lead to slightly
faster learning.

3. We used the robot dart wrapper: https://github.com/resibots/robot_dart.
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(a) Comparison of performance (b) Effect of k on TALOQ’s performance

Figure 12: Performance of TALOQ on the simulated experiments.

Physical Replicate #
trials 1 2 3

1 -2.19 -6.07 -4.98
≤ 10 7.99 -6.07 35.85
≤ 20 28.18 -6.07 35.85
≤ 35 28.18 89.18 56.40
≤ 50 28.18 89.18 93.60

Table 2: Evolution of the expected reward on the physical robot using TALOQ

8.3.2. Physical Experiments

Next we used TALOQ to learn a policy that is transferable to the real physical robot using
simulated and physical trials. We compare its performance to that of the policy learnt by
ALOQ only in simulation. Policies learnt by ALOQ only in simulation with a budget of
200 trials achieved a median return of 4.23 on the robot across 20 random replicates, which
shows that it transfers poorly. This is unsurprising since the reality gap can be significant
due to the modelling errors and the differences in the controller. Compared to this, across 3
random replicates with a total budget of 200 trials, TALOQ needed 13, 34, and 48 physical
trials to find policies with expected returns of 28.18, 89.18, and 93.60 (see Table 2). This
demonstrates that combining physical and simulated trials during the learning process using
TALOQ learns a much better policy.4

9. Conclusions

In this article, we presented ALOQ, a novel approach using BO and BQ to perform sample-
efficient RL in a way that is robust to the presence of significant rare events. We also
presented TALOQ, an extension to ALOQ that addresses the problem of the reality gap by
actively selecting when to evaluate on the physical system instead of the imperfect simulator.

4. A video of one learnt policy is available at https://youtu.be/R8Ss-dhDCmo.
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We empirically evaluated ALOQ on different simulated tasks involving a robotic arm
simulator, and a hexapod locomotion task and showed how it can be also be applied to
settings where the distribution of the environment variable is unknown a priori. Our results
demonstrated that ALOQ outperforms multiple baselines, including related methods pro-
posed in the literature. Further, ALOQ is computationally efficient and does not require
any restrictive assumptions to be made about the environment variables. We also showed
that TALOQ can be used to successfully learn a policy that is robust to the SREs while
addressing the challenge posed by the reality gap.
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Appendix A. Beta Warping

As mentioned earlier, warping the inputs with a Beta CDF can be used to transform non-
stationary function into a stationary one. An example of such a transformation is provided
in Figure 13.

Appendix B. General Experimental Details

We provide further details of our experiments in this section.

Covariance function: Across all experiments we use a squared exponential covariance
function given in (3).

Treatment of hyperparameters: Algorithms 1 and 2 requires all the hyperparame-
ters to be updated after every iteration. While this update can be performed using MLE or
MAP, we follow a full Bayesian approach and compute the marginalised posterior distribu-
tion p(f | D) by first placing a hyperprior distribution on ζ, the set of all hyperparameters
(including beta warping parameters and lengthscale δ for TALOQ), and then marginalising
it out from p(f | D, ζ). In practice, an analytical solution for this is unlikely to exist so
we approximate it using random samples from the posterior p(ζ | D) drawn using slice
sampling (Neal, 2000).

Choice of hyperpriors: We assume a log-normal hyperprior distribution for all the
above hyperparameters. For the variance we use (µ = 0, σ = 1), while for the lengthscales
we use (µ = 0, σ = 0.75) across all experiments. For the beta warping parameters we
used (µ = 2, σ = 0.5) for all artificial test functions, and (µ = 0, σ = 0.5) for the robotic
simulator tasks.

Optimising the BO/BQ acquisition functions: We used DIRECT (Jones et al.,
1993) to maximise the BO acquisition function αALOQ. To minimise the BQ acquisition
function, we exhaustively computed V(f̄(πt+1)|D1:t, πt+1, θ) for each θ since this was com-
putationally very cheap.

Appendix C. Robotic Arm Simulator

The configuration of the robot arm is determined by three joint angles, each of which is
normalised to lie in [0, 1]. The arm has a reach of [−0.54, 0.89] on the x-axis. We set κ = 1.5
for all three experiments in this section.

C.1. Collision Avoidance

In this setting the environment variable θ is the location of the wall. It is discrete with 20
support points logarithmically distributed in [−0.2, 0.14]. The first 10 locations closest to
the arm have a probability of 0.75% each, the next 7 have 1.5% each, and final 3 locations
furthest from the arm have a probability of 27.33% each. The cost incurred is 100 times the
distance between the target and the final position of the end effector, and collisions with
the wall yield a cost of 2500.
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(a) Fitting a GP to the un-
warped function

(b) Warping function
(c) GP fitted to the warped
function

Figure 13: Effect of beta warping: (a) A GP (blue line) is fitted to the observations (marked
with x) from the original function (red line). Note how it struggles to model the function
because of the non-stationary nature. (b) The warping function β(2, 0.8) used to transform
the input space. It contracts the space closer 0, while stretching it closer to 1. (c) The GP
fitted to the transformed observations is able to model the function much better.

C.2. Joint Breakage

Angles between [0.3, 0.7] for the first joint have an associated 5% probability of breakage
which leads to a cost of 2000. Otherwise the agent incurs a cost of 100 times the distance
between the target and the final position of the end effector. Thus, in this case p(θ) ∼
Bin(1, 0.05), while during learning ALOQ can set it to Bin(1, q) where q ∈ [0, 1].

C.3. REINFORCE and TRPO

For TRPO we used a neural net with two hidden layers with 5 units each, and had a KL
constraint of 0.01. For REINFORCE we used a linear Gaussian policy and set the learning
rate to 10−4.

C.4. Setting with approximate p(θ)

As described in the paper, in this setting we assume that π ∈ [0, 1]3 is the torque applied
to the joints, and θ ∈ [0.5, 1] controls the rigidity of the joints. The final joint angle is
determined as π/θ. If the torque applied to any of the joints is greater than the rigidity,
(i.e. any of the angles end up > 1), then the joint is damaged, incurring a large cost.

To simulate a set of n physical trials with a baseline policy πb, we sample θ from U(0.5, 1)
and observe the return f(πb, θ) and add iid Gaussian noise to them. The posterior can be
computed as p(θ|Db1:n, πb) ∝ p(θ)p(Db1:n|πb, θ), where Db1:n = {(πb, f1), (πb, f2), ..., (πb, fn)}.
We can approximate this using slice sampling since both the prior and the likelihood are
analytical.

An alternative formulation would be to corrupt the joint angles with Gaussian noise
instead of the observed returns. The posterior can still be computed in this case, but instead
of using slice sampling, we would have to make use of approximate Bayesian computation
Rubin (1984); Tavaré et al. (1997), which would be computationally expensive.
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To ensure that only the information gained about θ gets carried over from the physical
trials to the final ALOQ/MAP policy being learned, the target for the baseline policy was
different to the target for the final policy.

As mentioned in the paper, to find the optimal policy using ALOQ, we approximated
the posterior with 50 samples using a slice sampler. However, for evaluation and comparison
with the MAP policy, we used a much more granular approximation with 400 samples.

Appendix D. Hexapod Locomotion Task

The robot has six legs with three degrees of freedom each. We built a fairly accurate model
of the robot which involved creating a URDF model with dynamic properties of each of the
legs and the body, including their weights, and used the DART simulator for the dynamic
physics simulation.5 We also used velocity actuators.

The low-level controller (or policy) is the same open-loop controller as in Cully and
Mouret (2015) and Cully et al. (2015). The position of the first two joints of each of the
six legs is controlled by a periodic function with three parameters: an offset, a phase shift,
and an amplitude (we keep the frequency fixed). The position of the third joint of each
leg is the opposite of the position of the second one, so that the last segment always stays
vertical. This results in 36 parameters.

The archive of policies in the behaviour space was created using the MAP-Elites algo-
rithm Mouret and Clune (2015). MAP-Elites searches for the highest-performing solution
for each point in the duty factor space Cully et al. (2015), i.e., the time each tip of the leg
spent touching the ground. MAP-Elites also acts as a dimensionality reduction algorithm
and maps the high dimensional controller/policy space (in our case 36D) to the lower dimen-
sional behaviour space (in our case 6D). We also used this lower dimensional representation
of the policies in the archive as the policy search space (π) for ALOQ.

For our experiment, we set the reward such that failure to cross the finish line within 5
seconds yields zero reward, while crossing the finish line gives a reward of 100 + 50v where
v is the average velocity in m/s.

Appendix E. TALOQ - Physical Experiment

In our experiments, each episode lasted for 4 seconds and the reward function was defined
as follows:

r = −25dmin + 100exp(−10(vx − vtarget)
2) (20)

where dmin is the minimum distance between the end-effector and the ball observed throught
the episode, vx is the velocity of the ball (in the x-direction) at the time of the impact with
the robotic arm (if there is no impact, vx = 0) and vtarget is the target velocity. In essence,
we want to hit the ball with the arm and generate a velocity of vtarget in the x-direction.
In the simulated experiments (Sec. 8.3.1) we set vtarget = 1m/s, whereas in the physical
experiments (Sec. 8.3.2) we set vtarget = 0.75m/s.

5. https://dartsim.github.io
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