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Abstract 

Objective: Test a practical realignment approach to compensate the technical variability of MR 
radiomic features. 
 
Methods: T1 phantom images acquired on 2 scanners, FLAIR and contrast enhanced T1-weighted 
(CE-T1w) images of 18 brain tumor patients scanned on both 1.5T and 3T scanners, and 36 T2-
weighted (T2w) images of prostate cancer patients scanned in one of two centers were investigated. 
The ComBat procedure was used for harmonizing radiomic features. Differences in statistical 
distributions in feature values between 1.5 and 3T images were tested before and after 
harmonization. The prostate studies were used to determine the impact of harmonization to 
distinguish between Gleason grades (GG). 
 
Results: In the phantom data, 40 out of 42 radiomic feature values were significantly different 
between the 2 scanners before harmonization and none after. In white matter regions, the statistical 
distributions of features were significantly different (P<0.05) between the 1.5 and 3T images for 37 
out of 42 features in both FLAIR and CE-T1w images. After harmonization, no statistically significant 
differences were observed. In brain tumors, 41 (FLAIR) or 36 (CE-T1w) out of 42 features were 
significantly different between the 1.5 and 3T images without harmonization, against 1 (FLAIR) or 
none (CE-T1w) with harmonization. In prostate studies, 636 radiomic features were significantly 
different between GG after harmonization against 461 before. The ability to distinguish between GG 
using radiomic features was increased after harmonization. 
 
Conclusion: ComBat harmonization efficiently removes inter-center technical inconsistencies in 
radiomic feature values and increases the sensitivity of studies using data from several scanners. 
 
Keywords:   

• Magnetic Resonance Imaging 

• Neoplasms / diagnostic imaging  

• Image Processing, Computer-Assisted / methods*  

 

Key points: 

1. Radiomic feature values obtained using different MR scanners or imaging protocols can be 
harmonized by combining off-the-shelf image standardization and feature realignment 
procedures. 

2. Harmonized radiomic features enable one to pool data from different scanners and centers 
without substantial loss of statistical power caused by intra- and inter-center variability. 

3. The proposed realignment method is applicable to radiomic features from different MR 
sequences and tumor types and does not rely on any phantom acquisition. 
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Abbreviations:  

CT: computed tomography  

CE-T1w: contrast enhanced T1-weighted  

D1/D2: prostate cancer patient database 1/2 

GANs: generative adversarial networks 

GLCM: gray-level co-occurrence matrix  

hWS: hybrid white stripe 

LDA: Linear Discriminant Analysis 

MRI: magnetic resonance imaging 

PET: positron emission tomography 

ROI: regions of interest 

T2-w: T2-weighted 

VOI: volumes of interest  

WM: white matter  
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Introduction  

Radiomics faces the critical issue of lack of reproducibility that still hampers the successful translation 

of radiomic model discovery into better diagnosis, patient classification or monitoring radiomics-

based tools. Indeed, radiomic features values are significantly affected by the technical settings of the 

imaging devices and protocols, as demonstrated in Positron Emission Tomography (PET), Computed 

Tomography (CT), and Magnetic Resonance Imaging (MRI) [1–3]. To tackle the variability of radiomic 

features induced by different technical settings, radiomic models can be designed using a wide variety 

of images encompassing most technical settings, or image or radiomic feature values have to be 

harmonized before designing models. Ignoring the center effect, as is often observed in many papers, 

results in lack of generalization of the radiomic models [4]. 

In prospective studies, imaging protocols could be harmonized upstream between centers to minimize 

the impact of imaging protocols on feature values [5, 6], although harmonizing between machines of 

different generations often comes with degrading the image quality achieved by the most recent 

scanners [5]. In retrospective studies, this approach is not an option. Several groups have proposed to 

reduce the variability by resampling the images to a common voxel size or by filtering the images to 

match spatial resolution [7, 8]. However, this requires accessing the images retrospectively and the 

filtering procedure reduces the quality of images acquired using the most recent devices. Others apply 

a z-score transformation [9] to each feature value based on mean and standard deviations measured 

in each center for that feature, but this assumes that images produced by the different centers have 

been obtained in similar patient samples (eg, same proportion of advanced and early stage tumors), 

which is sometimes difficult to achieve.  

In genomics, researchers face a similar problem called batch effect and caused by the handling of 

samples by different laboratories, different technicians, on different days that can obscure individual 

variations. To deal with that problem in genomics, Johnson et al [10] introduced the ComBat 

realignment method. The method realigns all data in a single space in which the batch effect is 

discarded without altering the biological information. This approach has already been successfully 

validated for radiomic features measured from PET [11] and CT [12, 13] images of patient or phantom 

data in studies supporting the relevance of harmonization. 

In MR, the challenge is even more difficult as, unlike in PET and CT where images are expressed in 

kBq/mL and Hounsfield Units respectively, there is no standard MR intensity grey scale, implying the 

lack of a tissue-specific absolute intensity numeric meaning, even within the same MR imaging 

protocol, for the same body region, for images obtained on the same scanner, for the same patient. 

The standardization of image intensities among patients is therefore absolutely needed for comparing 
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values of intensity-based features. In brain MR, standardization approaches have been proposed to 

correct for the intensity variability [3, 14–16]. In particular, the hybrid white stripe (hWS) method 

proved to be successful in the context of neurodegenerative diseases and cancer [17, 18]. ComBat has 

been validated in MRI for the harmonization of cortical thickness measurements across scanners [19]. 

Although it has been used in MR radiomic studies [20–23], it has never been validated in that highly 

challenging context. 

Here, we extend this approach to provide a harmonization procedure applicable to any radiomic 

feature. We demonstrate that by combining the image standardization (such as hWS) with ComBat 

realignment, MR radiomic features can be pooled without being adversely impacted by multiple 

sources of variability, ensuring higher sensitivity and specificity of multicenter MR radiomic studies.  

 

Materials and Methods 

The study was carried out in accordance with the World Medical Association’s Declaration of Helsinki. 

For experiment 2 involving MRI brain studies, the institutional review board of the Fondation 

Ophtalmologique A. Rothschild approved the study (IRB No. 1512-016-726), and the requirement to 

obtain written informed consent was waived because of the retrospective nature of the study. For 

experiment 3 using MRI prostate studies, all patient data are publicly available in 

https://datadryad.org/resource/doi:10.5061/dryad.b3d257g and were initially studied in [24]. All 

patient data were anonymized. All authors had control of the data and information submitted for 

publication. 

Experiment 1: phantom studies 

The phantom data used in this study have been extracted from the RIDER Phantom MRI study [25] 

and are publicly available in the TCIA platform [26]. The phantom consists of 19 doped gel filled tubes 

containing a gadolinium-based contrast agent. We used the T1 acquisitions obtained with a 1.5T 

scanner and a 3T scanner (respectively scanners B and D in [25], details in Supplemental data 1). For 

each image, 19 spherical Volumes of Interest (VOI) of 3.5 mL centered on each tube were drawn. We 

computed 42 radiomic features (Supplemental data 2) using LIFEx freeware [27] (www.lifexsoft.org), 

including an open-source radiomic protocol compliant with the Image Biomarker Standardisation 

Initiative guidelines [28]. Radiomic features were calculated using a fixed bin size [3, 29] set to the 

average standard-deviation of the signal intensity, between the minimum and the maximum intensity 

measured in all VOI. This discretization step is required to set voxels with similar intensity to the same 

value hence to reduce the impact of noise. 

https://datadryad.org/resource/doi:10.5061/dryad.b3d257g
http://www.lifexsoft.org/


6 
 

Experiment 2: MRI brain studies 

For experiment 2, we retrospectively selected 18 patients (13 men; mean age, 50±18 years; age range, 

26-85 years; Table 1) with grade III and IV glial tumors from January 2017 to May 2018 from an 

institutional database. All patients underwent two MRI scans using the same protocol: one on a at 

1.5T scanner (Philips Achieva, Philips Medical Systems) and the other one on a 3T scanner (Philips 

Ingenia). The median delay between the two scans was 30 days (range: [4-93 days]) without 

chemotherapy, surgery, radiotherapy and any visual evolution of the tumor and tumor heterogeneity 

between the scans. Two MR sequences (details in Supplemental data 1) were acquired: a 3D FLAIR (17 

patients) and a 3D contrast enhanced T1-weighted (CE-T1w) scan (14 patients).  

For each patient and each sequence, the 3T images were coregistered to the 1.5T images using rigid 

transformations in FSL-FLIRT [30]. Field inhomogeneity was corrected using the N4 algorithm [31] 

owing to the publicly available ANTs software (http://stnava.github.io/ANTs) with the standard setting 

of hyper-parameters. 

For each sequence, the tumor lesions were manually segmented based on a consensus of two 

radiologists (A.L. and L.D. with 9 and 2 years of experience, respectively) on the 1.5T images and the 

resulting regions were copied on the 3T images. Three slices (top, middle, bottom) were selected in 

each tumor to obtain three 2D-regions of interest (ROI) per tumor, yielding a total of 54 tumor ROI for 

FLAIR images (=3x18 tumors; one patient had two distinct lesions) and 51 tumor ROI for CE-T1w 

images (=3x17 tumors; one patient had two distinct lesions and another had three). In addition, in 

each patient, 6 regions of 0.5 mL each were drawn in the white matter (WM), yielding 102 WM VOI 

for FLAIR images and 84 WM-VOI for CE-T1w images that were copied onto the 3T images. 

Each patient image volume was standardized irrespective of the other patients using the hWS method 

[17] as previously described [3].  The hWS method applies a z-score transformation to the brain voxel 

values based on the normal-appearing WM intensities distribution. 

For each ROI and VOI based on native and hWS-standardized images resampled at 1x1x1 mm3, we 

computed 42 radiomic features using LIFEx. Radiomic features were calculated using a fixed bin size 

[3, 29] set to the average standard-deviation of the WM signal intensity, between the minimum and 

the maximum intensity measured in all WM and tumor VOI for each sequence separately (details in 

Supplemental data 1).  
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Experiment 3: MRI prostate studies 

Two prostate cancer patient databases (D1 and D2; Table 1) with publicly available radiomic features 

were used [24].  These two databases have been initially entirely studied by an independent team to 

investigate the relationship between features computed from MR images and from digitized tissue 

images in order to discriminate between prostate cancer grades, without taking into account that MRI 

scans were acquired in two different centers [24]. Here, we precisely investigate how accounting for 

the center effect actually changes the ability of each MRI feature to distinguish between tumor grades. 

The experimental protocols were approved under the IRB protocol #02-13-42C by the University 

Hospitals of Cleveland Institutional Review Board. Patients underwent T2-weighted (T2w) MRI before 

a radical prostatectomy. In D1, 23 patients from University of Pennsylvania were scanned between 

2009 and 2011 (3T Verios, Siemens Healthcare; echo time: [107-127ms]; repetition time: [3690-

7090ms]). In D2, 13 patients from St. Vincent’s Hospital were scanned between 2012 and 2014 (11 

patients: 3T, Philips Medical Systems; echo time: [67-100ms]; repetition time: [2525-3567ms] and 2 

patients: 1.5T, Siemens Healthcare; echo time: 119 ms; repetition time: 3760 ms). After surgery, the 

resected prostate gland was analyzed by pathologists to determine the Gleason scores, categorizing 

in low (score of 3+3) or intermediate/high-risk (score of 3+4, 4+3, 4+4 or higher). D1 consisted of 21 

low-risk regions and 44 intermediate/high-risk regions, while D2 included 26 low and 14 

intermediate/high-risk regions (Table 1). Based on a co-registration with histology images, the 

corresponding tumor regions were manually segmented by a radiologist. MR images were 

standardized to a template distribution based on the per-patient median of intra-prostatic pixel 

intensities of D1 [32]. For each region, 2379 radiomic features were computed using a home-made 

software (details of feature calculation described in [24]) and we selected the 2326 features available 

for all patients for our analysis. 

 

Realignment method 

To correct for the scanner effect, the ComBat realignment method was used [10]. In the context of 

radiomics, ComBat has already been validated  for PET [11] and CT features [12, 13]. The method 

directly applies to the radiomic feature values and estimates the scanner-effect by matching the 

statistical distributions of the feature values measured in VOI j for each scanner i:  

yij=α+𝑋𝑖𝑗β+ γi+δiεij 

where α is the average value for feature yij, 𝑋 is a design matrix for the covariates of interest; 𝛽 is the 

vector of regression coefficients corresponding to each covariate, γi is an additive scanner effect, and 
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δi is a multiplicative protocol effect affected by an error term (εij). The model parameters α, 𝛽, γi and 

δi are estimated using a maximum likelihood approach based on the set of available observations from 

the two scanners in experiments 1 and 2 and based on the two patient databases for experiment 3. 

The corrected values are obtained using:  

yij
ComBat=

yij − α̂ − 𝑋𝑖𝑗𝛽̂ − γî

δî

+α̂ 

where α̂, 𝛽̂, γî and δî are estimators of α, 𝛽, γi and δi.  

The non-parametric form of the model was used, with no assumption regarding the statistical laws 

followed by the features and a transformation determined for each feature separately. For 

experiments 1 and 2, no biologic covariate was used (i.e. 𝑋=0) since the data came from the same 

patients or phantom scanned on 1.5T and 3T machines, and we realigned feature values computed 

from WM and tumor regions in patient data separately. For experiment 3, we introduced the Gleason 

grade as a binary covariate since the proportion of low vs intermediate/high-risk regions was very 

different between the 2 databases (32% low-risk VOI in D1, 68% in D2, Table 1).  

To facilitate the access to the ComBat method for medical imaging professionals, we provide a free 

on-line application (available at https://forlhac.shinyapps.io/Shiny_ComBat/), named ComBaTool, 

with example input files (Supplemental data 3-4) and a step-by-step tutorial (Supplemental data 5). 

This application embeds a free function called ComBat [19] 

(https://github.com/Jfortin1/ComBatHarmonization) based on the R software but running the 

application does neither require R or any third-party software to be installed, nor to have any 

programming skills. 

 

Statistical analysis 

Statistical analysis was performed with the R software (version 3.6.1).  

In experiment 1, we performed univariate two-sided Friedman tests before and after ComBat 

realignment between the two phantom scans. In experiment 2, we used two-sided Friedman tests for 

each radiomic feature to test whether the values derived from the 1.5T and 3T scans were significantly 

different both in the WM and in the tumor regions in three configurations: C1) native images without 

ComBat realignment; C2) hWS-standardized images without realignment; C3) hWS-standardized 

images with realignment. The Benjamini-Hochberg procedure was used to control the false discovery 

https://forlhac.shinyapps.io/Shiny_ComBat/
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rate [33]. P values less than 0.05 were interpreted as statistically significant. Bland-Altman graphs 

were plotted to demonstrate the differences in feature values calculated from the 1.5T and 3T scans.   

In experiment 3, we performed Wilcoxon tests with the Benjamini-Hochberg procedure for all 

radiomic features to distinguish between low and intermediate/high-risk groups when pooling 

patients from D1 and D2, without ComBat realignment, with realignment and with realignment 

including the Gleason grade as a covariate of interest. To show that ComBat does not create false 

positive results, we repeated these tests after randomly assigning a label to each VOI to get 53 sham 

low-risk VOI and 52 sham intermediate/high-risk VOI. To identify the risk group, we built a multivariate 

signature by means of a Linear Discriminant Analysis (LDA) using D1 dataset as a training set and 

including only the features with a p-value of univariate Wilcoxon test less than 5%. We tested the 

classification performance on D2 data by calculating the Youden Index (=Sensitivity+Specificity-1). We 

repeated this procedure in three configurations: without ComBat realignment, with realignment and 

with realignment including the Gleason grade as a covariate of interest. 

 

Results 

Patient characteristics are shown in Table 1. 

Experiment 1 

In the phantom data, 40 out of 42 p-values of the Friedman test were lower than 5% without 

realignment. Only two p-values (Coarseness and Gray-level Non-Uniformity) were greater than 0.05 

between the two acquisitions. After ComBat, all p-values of Friedman tests were greater than 0.05, 

showing that the protocol effect was no longer detectable. 

Experiment 2 

A total of 37 out of 42 radiomic features (88%) computed from WM-VOI and 41 out of 42 (98%) from 

tumor lesions yielded Friedman tests’ P values less than 0.05 between 1.5T and 3T native FLAIR brain 

images without hWS standardization nor ComBat realignment (Table 2; Supplemental data 6). Using 

the hWS standardization of MR images, 29/42 (69%) of P values for WM-regions and 25/42 (60%) of P 

values for tumor lesions were less than 0.05. Combining the hWS standardization with the ComBat 

feature distribution realignment, only one P value (Long-Zone Emphasis) was less than 0.05 for tumor 

lesions (p=0.017), demonstrating that the scanner effect was no longer detectable for the vast 

majority of radiomic features. Figure 1 shows the evolution of the distribution of the Correlation 

radiomic feature calculated from the gray-level co-occurrence matrix (GLCM) . On native FLAIR images, 
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the plot shows a shift in distribution with greater values for WM-VOI and tumor lesions for 3T scans 

compared to 1.5T scans. After hWS standardization and realignment, the distributions between the 

two scanners better overlap. To clarify the respective role of hWS and ComBat, Figure 2 shows the 

Bland-Altman plots of the mean value measured in WM-VOI for FLAIR images based on 3T scans and 

1.5T scans. The hWS standardization within each patient rescaled the values to make them similar 

between the two scans. The realignment reduced the systematic difference between the two.   

The same trends were observed for CE-T1w images (Table 2; Supplemental data 7). 

 

Experiment 3 

On T2w prostate images after standardization performed by [24], 461 out of 2326 radiomic features 

had P values of Wilcoxon tests less than 0.05 for distinguishing between low and intermediate/high 

risk when pooling the two patient cohorts (D1+D2). After ComBat without any co-variate, 460 out of 

2326 P values were less than 0.05. Using the Gleason grade co-variate in ComBat, 636 out of 2326 P 

values were less than 0.05. Figure 3 demonstrates a better alignment of radiomic feature values 

extracted from low-risk VOI and intermediate/high-risk VOI separately between the two patient 

groups after using ComBat with a co-variate accounting for the recruitment specificity of each center. 

When a risk (low or moderate/high) was randomly assigned to each VOI, no P value was less than 0.05 

before and after ComBat without and with a co-variate representing the Gleason grade. 

The multivariate radiomic model identified using LDA on the D1 data to distinguish low versus 

intermediate/high risk was applied to D2 patients, yielding a Youden Index of 0.12 (Sensitivity=19%, 

Specificity=93%) before ComBat. After ComBat, the Youden Index increased to 0.20 (Sensitivity=27%, 

Specificity=93%) and to 0.43 (Sensitivity=58%, Specificity=86%) using the Gleason grade as co-variate 

in ComBat. 

 

Discussion 

The scanner effect affects the radiomic feature values extracted from MR images, introducing major 

confounding factors in multicentric or multi-protocol studies. Here, we validated a harmonization 

procedure combining ComBat realignment with MR-image standardization to co-analyze MR radiomic 

features extracted from different scanners. Using phantom data and brain scans acquired for the same 

patients (without any tumor evolution detected visually between the two scans) with 1.5T and 3T 

scanners, we showed that this harmonization procedure realigns radiomic feature distributions and 
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removes the scanner effect for T1, FLAIR and CE-T1w images. The goal was not to test our ability to 

reproduce feature values measured in 3T MR images from 1.5T images, since we expect different 

signals from the two devices with more details in the 3T images (cf Figure 1). Yet, in the context of 

radiomics, pooling images acquired using different devices, different acquisition and reconstruction 

protocols is often needed to increase the size of cohort. In that context, we demonstrated that ComBat 

could realign feature values so that all data could be analyzed together, even if images had been 

acquired with different magnetic fields. It is important to underline that a different ComBat 

transformation is estimated for each sequence and each tissue type independently because imaging 

protocols do not have the same effect on each tissue. Using the prostate scans acquired in different 

patients from two centers, we confirmed the effectiveness of the harmonization for T2w images and 

demonstrated that harmonization did not alter the discriminant information conveyed by the 

features. This experiment also shows that pooling data corrected for the scanner effect could increase 

the statistical power, identify more radiomic features able to distinguish between the low-risk and 

intermediate/high-risk regions in prostate lesions and yield a more discriminant multivariate model. 

Importantly, we showed that when no difference between groups was expected, here between the 

sham low-risk and intermediate/high-risk VOI, ComBat did not introduce any false positive differences. 

The ComBat realignment method is fast, easy to use and operates directly on radiomic feature values 

(no training set needed, no phantom acquisition, no need to access images). It is applicable to radiomic 

features extracted from different MR sequences after a first step of image standardization, as 

previously described [3]. We also demonstrated the added value of the covariate in the realignment 

process when patient characteristics are different between centers (here Gleason grade) for 

univariate and multivariate analyses. To deal with the center effect, other authors reported the 

potential of Generative Adversarial Networks (GANs) to transform images from one imaging protocol 

(or a domain) to another [34]. Although promising results have been reported in the literature [35, 

36], these techniques require access to the images, unlike ComBat. The ComBat realignment method 

has been previously used in MR radiomic studies [20–23] without any explicit validation or 

investigation of the respective role of the image standardization and of the scanner/protocol effect 

compensation as studied here (Figures 1 and 2). In [20], authors reported an increased accuracy of 

Entropy extracted from apparent diffusion coefficient MR images to predict the locoregional control 

in cervical cancer after ComBat, fully consistent with our findings.  

Our study has some limitations. We could only include 18 patients in Experiment 2 because it is very 

uncommon for patients to undergo MR both on 1.5 and 3T scanners within a time lapse during which 

the tumor has not visually evolved. Still, this small sample allowed us to confirm results obtained using 

the phantom data. In addition, such a small number allowed us to demonstrate that ComBat 
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performed well even with a limited number of cases, confirming results published in genomic 

applications [10]. Another limitation is that our findings should still be validated for other cancer types, 

MR sequences and devices.    

In conclusion, we demonstrated that the ComBat realignment method in combination with intra-

patient image standardization could efficiently remove the scanner/protocol effect while preserving 

the individual variations in phantom, brain and prostate MR scans. This approach enables large MR 

multicentric studies to investigate the added value of radiomic analysis in patient management. To 

facilitate large multicenter/multi-protocol radiomic studies, we provide the ComBat method as an on-

line ComBaTool application. 
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Table 1: patient characteristics. 

Parameter MRI brain studies MRI prostate studies 

Sex     

  Men 13 D1 = 23; D2 = 13 

  Women 5 0 

Mean age (y) 50±18 Not reported 

No. of tumor regions     

  FLAIR images 18 3D-regions (54 2D-regions) - 

  CE-T1w images 17 3D-regions (51 2D-regions) - 

  T2w images - D1 = 65; D2 = 40 

Gleason grade     

  Low risk - D1 = 21(32%); D2 = 26 (65%) 

  Intermediate/high risk - D1 = 44 (68%); D2 = 14 (35%) 

Note. -- Mean age of patients is not reported in [Penzias et al. PlosOne 2018]. CE-T1w = Contrast 

Enhanced T1-weighted; D1 = prostate dataset 1; D2= prostate dataset 2; T2w = T2-weighted.  
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Table 2: significant Friedman tests (P<0.05) without and with hybrid White Stripe (hWS) 

standardization and/or ComBat realignment for brain scans. 

 

    

w/o hWS 

standardization 

with hWS 

standardization 

with hWS 

standardization 

    w/o ComBat  w/o ComBat with ComBat 

FLAIR images       

  WM 37/42 (88) 29/42 (69) 0/42 (0) 

  

Tumor 

lesions 
41/42 (98) 25/42 (60) 1/42 (2) 

          

CE-T1w images       

  WM 37/42 (88) 27/42 (64) 0/42 (0) 

  

Tumor 

lesions 
36/42 (86) 2/42 (5) 0/42 (0) 

          

Note. -- Data are numerator/denominator; data in parentheses are percentage. WM = White 

Matter. CE-T1w = Contrast Enhanced T1-weighted. w/o = without. 
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Figure 1: Experiment 2: 18 patients with brain lesions were scanned on both 1.5T and 3T scanners. 

Based on native or for hybrid White Stripe (hWS)-standardized, 42 radiomic features were computed 

in a tumor region and in a white matter region. As an example, the probability density function (%) 

of the Correlation radiomic feature calculated from the gray-level co-occurrence matrix (GLCM) on 

FLAIR images is plotted here without and with ComBat realignment (ComBaTool was applied 

separately on the two tissue types: white matter and tumor) for 1.5T MRI (in orange) and 3T MRI (in 

blue). P values are for Friedman tests of each tissue between the two MRI devices. 
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Figure 2: Experiment 2: Bland-Altman plots of the mean value computed in white matter regions 

based on 1.5T and 3T scans for FLAIR native images (A), for hybrid White Stripe (hWS)-standardized 

images (B) and for hWS-standardized images with ComBat realignment (C). 
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Figure 3: Experiment 3: boxplots of Feature #20 (called Gabor:cos:theta=0:lambda=2:Standard 

Deviation in [24]) for low-risk VOI and intermediate/high-risk VOI, before ComBat realignment (A, D), 

after ComBat realignment without covariate (B, E) and after ComBat realignment with covariate (C, 

F) for the prostate patient cohorts D1 and D2 separately (A, B, C) or together (D, E, F). P values are 

from Wilcoxon tests. 
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Supplemental data legends 

 

Supplemental data 1: MR acquisition and radiomic analysis parameters for experiments 1 and 2. 

 

Supplemental data 2: List of radiomic features computed for experiments 1 and 2. Full description 

on https://www.lifexsoft.org/index.php/resources/19-texture/radiomic-features. 

 

Supplemental data 3: examples of .txt input files for the “ComBaTool” application corresponding to 

3 simulated features computed from 50 regions of interest for one imaging protocol (25 regions of 

type A and 25 regions of type B) and 50 regions of interest for another protocol (25 regions of type A 

and 25 regions of type B). First column of data.txt file corresponds to the imaging protocol (=batch), 

here 1 or 2. 

 

Supplemental data 4: examples of .txt input files for the “ComBaTool” application corresponding to 

3 simulated features computed from 110 regions of interest for one imaging protocol (10 regions of 

type A and 100 regions of type B) and 110 regions of interest for another protocol (100 regions of 

type A and 10 regions of type B). First column of data.txt file corresponds to the imaging protocol 

(=batch), here 1 or 2. 

 

Supplemental data 5: a step-by-step tutorial. 

 

Supplemental data 6: P values of Friedman tests without/with hWS image standardization and 

without/with ComBat realignment, corrected using Benjamini-Hochberg procedure for brain FLAIR 

images. Values in red demonstrate significant differences at P < 0.05. 

 

Supplemental data 7: P values of Friedman tests without/with hWS image standardization and 

without/with ComBat realignment, corrected using Benjamini-Hochberg procedure for brain CE-T1w 

images. Values in red demonstrate significant differences at P < 0.05. 

 

https://www.lifexsoft.org/index.php/resources/19-texture/radiomic-features?filter_tag%5b0%5d=

