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Abstract

A nonsplit graph is a directed graph where each pair of nodes has a common

incoming neighbor. We show that the radius of such graphs is in O(log log n),

where n is the number of nodes. This is an exponential improvement on the

previously best known upper bound of O(log n). We then generalize the result

to products of nonsplit graphs.

The analysis of nonsplit graph products has direct implications in the context

of distributed systems, where processes operate in rounds and communicate via

message passing in each round: communication graphs in several distributed

systems naturally relate to nonsplit graphs and the graph product concisely

represents relaying messages in such networks. Applying our results, we obtain

improved bounds on the dynamic radius of such networks, i.e., the maximum

number of rounds until all processes have received a message from a common

process, if all processes relay messages in each round. We finally connect the
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dynamic radius to lower bounds for achieving consensus in dynamic networks.

Keywords: information dissemination, dynamic networks, graph radius

1. Introduction

Consider a distributed system of n ≥ 1 processes that operate in lock-step

synchronous rounds. Let [n] = {1, . . . , n} be the set of processes. In a round,

each process broadcasts a message and receives messages from a subset of other

processes, specified by the directed communication graph G = ([n], E) whose5

nodes are the processes and there is an edge (i, j) in E if and only if process j

receives the message sent by process i.

The radius of communication graph G is the minimum number of rounds

until all processes have (transitively) received a message from a common process.

Its value thus poses a lower bound on the number of rounds until information,10

originating at a single process, can be spread over the entire network. Related

applications are from disease spreading and opinion dynamics.

Of particular interest in distributed computing are networks that potentially

change during the execution of an algorithm, be it due to faulty processes, faulty

links, mobility of the involved agents, etc.; see, e.g., [1] for a comprehensive15

overview. We thus generalize the investigation of the radius of a communica-

tion graph G to the dynamic radius of a sequence of communication graphs

G1, G2, . . . . Here, it is assumed that in the above scenario of broadcasting

distributed processes, the communication graph for round t ≥ 1 is Gt. The dy-

namic radius of the sequence G1, G2, . . . is the minimum number of rounds until20

all processes have (transitively) received a message from a common process.

1.1. Radius of Nonsplit Digraphs

A nonsplit digraph is a directed graph where each pair of nodes has at least

one common incoming neighbor. In this work, we study the radius of nonsplit

digraphs: with `(i, j) denoting the length of the shortest path from node i to25

node j, the radius is mini maxj `(i, j).
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In the undirected case, the radius is trivially bounded by the diameter of the

graph, which is 2 in the case of nonsplit graphs. Undirected graphs where each

pair of nodes has exactly one common neighbor, have been studied by Erdős

et al. [2], who showed that they are exactly the windmill graphs, consisting of30

triangles that share a common node. Thus, their radius is 1.

As demonstrated by the example in Figure 1 with radius 3, these bounds do

not hold for nonsplit digraphs. We will show the following upper bound:

Theorem 1. The radius of a nonsplit digraph with n nodes is in O(log log n).

1 2 3

4 5 6

Figure 1: Nonsplit digraph with radius 3. For example, node 1 and 6 have common incoming

neighbor 6, while nodes 1 and 5 have node 4 as common incoming neighbor.

1.2. Communication over Nonsplit Digraphs35

Nonsplit digraphs naturally occur as communication graphs in classical fault-

models and as models for dynamic networks.

In fact, it was shown in [3] that, in the more general case where all com-

munication graphs are rooted, i.e., are required to contain a rooted spanning

tree, one can in fact simulate nonsplit communication graphs. Since, conversely,40

every nonsplit communication graph is rooted as well, nonsplit communication

graphs are a convenient and concise abstraction for the technically more cumber-

some rooted communication graphs. Furthermore, several classical fault-models

were shown to lead to nonsplit communication graphs [4], among them link

failures, as considered in [5], and asynchronous message passing systems with45

crash failures [1]. Nonsplit digraphs thus represent a convenient abstraction to
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these classical fault-models as well. We will show in Section 4 that nonsplit

digraphs arising from the classical model of asynchronous messages and crashes

have dynamic radius at most 2.

The study of nonsplit digraphs is also motivated by the study of a central50

problem in distributed computing: Agreeing on a common value in a distributed

system is a problem that lies at the heart of many distributed computing prob-

lems, occurs in several flavors, and thus received considerable attention in dis-

tributed computing. However, even modest network dynamics already prohibit

solvability of exact consensus, where agents have to decide on a single output55

value that is within the range of the agents’ initial values [5]. For several prob-

lems, e.g., distributed control, clock synchronization, load balancing, etc., it

is sufficient to asymptotically converge to the same value (asymptotic consen-

sus), or decide on values not too far from each other (approximate consensus).

Charron-Bost et al. [3] showed that both problems are solvable efficiently in the60

case of communication graphs that may vary arbitrarily, but are required to be

nonsplit.

Motivated by this work on varying communication graphs, we will show that

the following generalization of Theorem 1 holds:

Theorem 2. The dynamic radius of a network on n nodes whose communica-65

tion graphs are all nonsplit is O(log log n).

Traditionally, information dissemination, also called rumor spreading, is

studied w.r.t. either all-to-all message relay or the time it takes for a fixed

process to broadcast its message to everyone [6, 7]. In dynamic networks with

nonsplit communication graphs, however, such strong forms of information dis-70

semination are impossible. This can easily be seen by constructing appropriate

sequences of star graphs (with self-loops), which are nonsplit graphs with ra-

dius 1. One possibility is to analyze information dissemination in dynamic

networks that (probabilistically) guarantee some stability from time k to time

k + 1; see, e.g., the work by Clementi et al. [8].75

In this work, we follow an alternative route: Indeed, one-to-all broadcast
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of some process is readily achieved in dynamic networks without any stabil-

ity guarantees, which is why we focus on this characteristic here. While it is

certainly not as universal as the previously mentioned primitives, it turns out

that this type of information dissemination is crucial for the termination time of80

certain consensus algorithms based on vertex-stable root components [9]. Fur-

thermore, we show the following theorem, relating the dynamic radius and the

termination time of arbitrary consensus algorithms:

Theorem 3. If the dynamic radius of a sequence of communication graphs

is k, then, in every deterministic consensus algorithm, some process has not85

terminated before time k.

Finally, we note that the dynamic radius is also an upper bound for the

number of rounds until a single process aggregates the data of all other processes,

when we use the dual interpretation of an edge (i, j) in a communication graph

as a message sent by j and received by i. Even though this might not be the90

desired form of data aggregation in a standard setting, in a scenario where the

communication is so constrained that aggregation by an a priori selected process

is simply unobtainable, such a weak form might still be useful to transmit the

collected data to a dedicated sink at regular intervals, for example.

We give a brief overview on related work in the next section.95

1.3. Related Work

Information dissemination among an ensemble of n participants is a funda-

mental question that has been studied in a grand variety of settings and flavors

(see [10, 6, 7, 11] for various reviews on the topic). While traditional approaches

usually assume a static underlying network topology, with the rise of pervasive100

wireless devices, more recently, focus has shifted to dynamically changing net-

work topologies [12]. A useful way of viewing the distribution of information

is to denote the pieces of information that should be shared among the par-

ticipants as tokens. For instance, the all-to-all token dissemination problem

investigates the complete dissemination of n initially distributed tokens. This105
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problem was studied in [12] with a focus on bounds for the time complexity of

the problem, i.e., how long it takes at least, resp. at most, until n tokens have

been received by everyone. Here, the participants employed a token-forwarding

algorithm mechanism, where tokens are stored and forwarded but not altered.

In the model of [12], it was assumed that the communication graphs are110

connected and undirected. For this, a lower bound of Ω(n log n) and an up-

per bound of O(n2) for all-to-all token dissemination was established in the

case where n is unknown to the participants, they have to terminate when the

broadcast is finished, and the system is 1-interval connected, i.e., the commu-

nication graphs are completely independent of each other. In contrast, if the115

communication graphs are weakly connected, directed, and rooted, in the worst

case only one of the tokens may ever be delivered to all participants. This can

be seen, for example, when considering a dynamic graph that produces the same

directed path for every round. We note that this example also provides a trivial

lower bound of Ω(n) rounds until one token is received by everyone for the first120

time. As far as we are aware, the best lower bound for directed paths of varying

linear order was established in [13, Theorem 4.3] to be d(3n− 1)/2− 2e rounds.

Studying directed graphs is desirable as they represent a weaker, more general

model and wireless communication is often inherently directed, for example due

to localized fading or interference phenomena [14, 15] such as the capture effect125

or near-far problems [16].

In [4], it was shown that the dynamic radius of a sequence of arbitrary

nonsplit communication graphs is O(log n). Later, it was shown in [3] that the

product of any n − 1 rooted communication graphs is nonsplit. Put together,

this means that the dynamic radius of a sequence of arbitrary rooted graphs is130

O(n log n). More recently, [13] provided an alternative proof for this fact that

does not rely on the reduction to nonsplit graphs but instead uses a notion of

influence sets. In addition to this, [13] provided linear O(n) bounds in sequences

of rooted trees with a constant number of leaves or inner nodes, established a

dependency on the size of certain subtrees in sequences of rooted trees where135

the root remains the same, and investigated sequences of undirected trees.
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2. Model and Definitions

We start with some definitions motivated by the study of information dis-

semination within a distributed system of n processes that operate in discrete,

lock-step synchronous communication rounds. Starting with information being140

available only locally to each process, processes broadcast and receive informa-

tion tokens in every round. We are interested in the earliest round where all

processes have received an information token from a common process.

Clearly, the dissemination dynamics depends on the dynamics of the un-

derlying network. For this purpose we define: A communication graph on145

n nodes is a directed graph G = (V,E) with self-loops and the set of nodes

V = [n] = {1, 2, . . . , n}. For i ∈ [n], let Ini(G) = {j ∈ [n] | (j, i) ∈ E} denote

the set of in-neighbors of i in G and Outi(G) = {j ∈ [n] | (i, j) ∈ E} denote

its set of out-neighbors. Intuitively, communication graphs encode successful

message reception within a round: an edge from i to j states that j received the150

message broadcast by i in this round.

A node i ∈ [n] is called a broadcaster in G if it has an edge to all nodes, i.e.,

∀j ∈ [n] : (i, j) ∈ E.

A communication graph G = ([n], E) is nonsplit if every pair of nodes has a

common incoming neighbor, i.e.,

∀i, j ∈ [n] ∃k ∈ [n] : (k, i) ∈ E ∧ (k, j) ∈ E .

Given two communication graphs G = ([n], EG) and H = ([n], EH) on n

nodes, define their product graph as G ◦H = ([n], EG◦H) where

(i, j) ∈ EG◦H ⇐⇒ ∃k ∈ [n] : (i, k) ∈ EG ∧ (k, j) ∈ EH .

The empty product is equal to the communication graph ([n], E⊥) which con-

tains the self-loops (i, i) for all nodes i and no other edges. The graph product155

we use here is motivated by information dissemination within distributed sys-

tems of processes that continuously relay information tokens that they received:

if k received i’s information token in a round, and j received k’s information to-
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ken in the next round, then j received i’s information token in the macro-round

formed by these two successive rounds.160

Motivated by modeling communication networks that potentially change in

each round, we call each infinite sequence G = (G1, G2, G3, . . . ) of communica-

tion graphs on n nodes a communication pattern on n nodes. For every node

i ∈ [n], define the broadcast time Ti(G) of node i in G as the minimum t such

that i is a broadcaster in the product of the first t communication graphs of G.165

If no such t exists, then Ti(G) = ∞. The dynamic radius T (G) of G is the

minimal broadcast time of its nodes, i.e., T (G) = min
i∈[n]

Ti(G). Note that T (G)

is the earliest time, in terms of rounds, until that all nodes have received an

information token from a common node, given that the communication pattern

is G.170

A network on n nodes is a nonempty set of communication patterns on n

nodes; modeling potential uncertainty in a dynamic communication network. A

network’s dynamic radius is defined as the supremum over all dynamic radii of its

communication patterns, capturing the worst-case of information dissemination

within this network.175

3. The Dynamic Radius of Nonsplit Networks

In this section we show an upper bound on the dynamic radius of nonsplit

networks.

During this section, let G = (G1, G2, G3, . . . ) be a communication pattern

on n nodes in which every communication graph Gt is nonsplit.180

In order to prove an upper bound on the dynamic radius of G, we will prove

the existence of a relatively small set of O(log n) nodes that “infects” all other

nodes within only O(log log n) rounds. Iteratively going back in time, it remains

to be shown that any such set is itself “infected” by an exponentially smaller

set within O(log log n) rounds, until we reach a single node. It follows that this185

single node has “infected” all nodes with its information token after O(log log n)

rounds.
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Note that the strategy to follow “infection” back in time rather than consid-

ering the evolution of infected sets over time is essential in our proofs: it may

very well be that a certain set of infected nodes cannot infect other nodes from190

some time on, since it only has incoming edges from nodes not in the set in all

successive communication graphs. Going back in time prevents us to run into

such dead-ends of infection.

For that purpose we define: Let U,W ⊆ [n] be sets of nodes. We say that U

covers W in communication graph G = ([n], E) if for every j ∈W there is some195

i ∈ U that has an edge to j, i.e., ∀j ∈W ∃i ∈ U : (i, j) ∈ E.

Now let 0 < t1 ≤ t2. We say that U at time t1 covers W at time t2 if U

covers W in the product graph Gt1 ◦Gt1+1 ◦ · · · ◦Gt2−1.

Note that U at time t covers U at time t for all sets U ⊆ [n] and all t ≥ 1,

by definition of the empty product as the digraph with only self-loops.200

We first show that the notion of covering is transitive:

Lemma 1. Let 0 < t1 ≤ t2 ≤ t3 and let U,W,X ⊆ [n]. If U at time t1 covers W

at time t2, and W at time t2 covers X at time t3, then U at time t1 covers X

at time t3.

Proof. By definition, for all k ∈ W there is some i ∈ U such that (i, k) is an205

edge of the product graph Gt1 ◦ · · · ◦ Gt2−1. Also, for all j ∈ X there is some

k ∈W such that (k, j) is an edge of the product graph Gt2 ◦ · · · ◦Gt3−1.

But, by the associativity of the graph product, this means that for all j ∈ X

there exists some i ∈ U such that (i, j) is an edge in the product graph

(
Gt1 ◦ · · · ◦Gt2−1

)
◦
(
Gt2 ◦ · · · ◦Gt3−1

)
= Gt1 ◦ · · · ◦Gt3−1 .

That is, U at time t1 covers X at time t3.

We continue with some basic technical lemmas that we prove here for com-

pleteness.210

Lemma 2. For all x ≥ 1 we have
⌈

log2 x
⌉

=
⌈

log2dxe
⌉
.
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Proof. We have dlog2 xe = min{k ∈ Z | x ≤ 2k} if x ≥ 1. Now, noting that the

inequality x ≤ p is equivalent to dxe ≤ p whenever p is an integer concludes the

proof.

Lemma 3. Let m and n be positive integers such that |m − n| ≤ 1. Then215

dlog2(m + n)e ≥ dlog2 me+ 1.

Proof. By assumption we have n ≥ m − 1. We distinguish between two cases

for the positive integer m:

(i) If m = 1 then n ∈ {1, 2}, and we immediately obtain the lemma from

dlog2 2e = dlog2 1e+ 1 and dlog2 3e = log2 4 = dlog2 2e+ 1.220

(ii) Otherwise, m ≥ 2. From n ≥ m−1 we deduce m+n ≥ 2m−1. This implies

⌈
log2(m + n)

⌉
≥
⌈

log2(2m− 1)
⌉

=

⌈
log2

(
m− 1

2

)⌉
+ 1 .

We are hence done if we can show
⌈

log2(m − 1
2 )
⌉

= dlog2 me. But this is just

Lemma 2 with x = m− 1
2 ≥ 1.

Lemma 4. Let n and m be positive integers such that n ≥ m. Then there exist

positive integers n1, n2, . . . , nm such that n = n1 + · · · + nm and dlog2
n
me ≥

dlog2 nie for all 1 ≤ i ≤ m.225

Proof. Let n = km+ r with k, r ∈ Z and 0 ≤ r < m be the integer division of n

by m. Set n1 = n2 = · · · = nr = k + 1 and nr+1 = nr+2 = · · · = nm = k.

By Lemma 2, we have

dlog2 nie ≤
⌈
log2

(
k +

⌈ r

m

⌉)⌉
=
⌈
log2

(
k +

r

m

)⌉
=
⌈
log2

n

m

⌉
for all 1 ≤ i ≤ m.

We continue with the following generalization of a result by Charron-Bost

and Schiper [4]. In particular (m = 1), it shows that any set of nodes can be230

“infected” by a single node in such a way that the set of infected nodes grows

exponentially in size per round.
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Lemma 5. Let W ⊆ [n] be nonempty and m be a positive integer. If t2 − t1 ≥

log2
|W |
m , then there exists some U ⊆ [n] with |U | ≤ m such that U at time t1

covers W at time t2.235

Proof. Using Lemma 4, we can assume without loss of generality that m = 1:

For m > 1, we would need to show that for every i ∈ U , there are ni distinct

processes covered by i, given that t2 − t1 ≥ log2 ni and
∑

i∈U ni = |W |. This,

however, is equivalent to the claim of the lemma for m = 1. We proceed by

induction on t2 − t1 ≥ 0.240

Base case: If t2−t1 = 0, i.e., t1 = t2, then |W | = 1 and the statement is trivially

true since we can choose U = W .

Inductive step: Now let t2 − t1 ≥ 1. Let W = W1 ∪W2 such that W1,W2 6= ∅

and
∣∣|W1| − |W2|

∣∣ ≤ 1. Using Lemma 3, we see that t2 − (t1 + 1) ≥ dlog2|Ws|e

for s ∈ {1, 2}. By the induction hypothesis, there hence exist nodes j1 and j2245

that at time t1 + 1 cover W1 and W2, respectively. But now, using the nonsplit

property of communication graph Gt1 , we see that there exists a node i that

covers {j1, j2} in Gt1 . An application of Lemma 1 concludes the proof.

Note that Lemma 5, by choosing W = [n] and m = 1, immediately provides

an upper bound on the dynamic radius of O(log n). To show an upper bound250

of O(log log n), we will apply this lemma only for the early infection phase of

O(log log n) rounds, and use a different technique, by the next two lemmas, for

the late phase. Note that, for a set N , we use
(
N
k

)
to denote all subsets of

N with cardinality k and for an integer n, we use
(
n
k

)
to denote the binomial

coefficient n choose k.255

Lemma 6. Let U and W be finite sets with |U | = k, |W | = n, and f :
(

U
blognc

)
→

W . If n ≥ 8, then there exists some w ∈W such that
∣∣⋃ f−1[{w}]

∣∣ ≥ k/e4.

Proof. By the pigeonhole principle and Stirling’s formula, we get the existence

of some w ∈W with

∣∣f−1[{w}]
∣∣ ≥ ( k

blognc
)

n
≥ kblognc

nblog ncblognc . (1)
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Write M =
⋃
f−1[{w}] and m = |M |. Since S ∈

(
M
blognc

)
for all S ∈ f−1[{w}],

we have

|f−1[{w}]| ≤
(

m

blog nc

)
≤ mblognceblognc

blog ncblognc ≤
mblogncn

blog ncblognc . (2)

Combining (1) and (2), we get

m ≥ k

n2/blognc =
k

e2 logn/blognc ≥
k

e2 logn/(logn−1)

=
k

e2/(1−1/ logn)
≥ k

e2/(1−1/2)
=

k

e4

(3)

where we used log n ≥ log 8 ≥ 2. This concludes the proof.

The next lemma shows that nodes are infected quickly in the late phase:

Lemma 7. There exists some C > 0 such that for all t ≥ 1 there exists a set260

of at most C log n nodes that at time t covers the set [n] of all nodes at time

t + dlog2 log ne.

Proof. For every set A ∈
(

V
blognc

)
of blog nc nodes, let f(A) ∈ V be a node that

at time t covers A at time t + dlog2 log ne, which exists by Lemma 5.

We recursively define the following sequence of nodes vi, ≥ 1 and sets of265

nodes Vi, i ≥ 0:

• V0 = V

• For i ≥ 1, we choose vi such that |
⋃

f−1[{vi}]| ≥ |Vi−1|/e4, which exists

by Lemma 6, and Vi = Vi−1 \
⋃
f−1[{vi}].

Note that, setting r = 1 + log n/ log e4

e4−1 , we have Vr = ∅. Hence the set270

{v1, . . . , vr} at time t covers all nodes at time t + dlog2 log ne. Noting r =

O(log n) concludes the proof.

We are now ready to combine Lemma 5 for the early phase and Lemma 7

for the late phase to prove the main result of this section, Theorem 2.

Proof of Theorem 2. Let t = dlog2(C log n)e where C is the constant from275

Lemma 7.
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By Lemma 7, there is a set A of nodes with |A| ≤ C log n that at time t

covers all nodes at time t + dlog2 log ne. By Lemma 5, a single node at time 1

covers A at time t.

Combining both results via Lemma 1 shows that a single node at time 1280

covers all nodes at time dlog2(C log n)e+ dlog2 log ne = O(log log n).

4. Nonsplit Networks from Asynchronous Rounds

We now show that in an important special case of nonsplit networks, namely

those evolving from distributed algorithms that establish a round structure over

asynchronous message passing in the presence of crashes, the dynamic radius is285

at most 2.

In the classic asynchronous message passing model with crashes, it is as-

sumed that all messages sent have an unbounded but finite delay until they are

delivered. Furthermore, processes do not operate in lock-step but may perform

their computations at arbitrary times relative to each other. In addition, some290

processes may be faulty in the sense that they are prone to crashes, i.e., they

may seize to perform computations at an arbitrary point in time.

This means that in a system where up to f processes may be faulty, in order

to make progress in a distributed algorithm, a process may wait until it received

a message from n − f different processes but no more: If a process waits for295

a message from > n − f different processes, but there were in fact f crashes,

this process will wait forever. For this reason, algorithms for this asynchronous

model often employ the concept of asynchronous rounds, sometimes realized as

a local round counter variable ti, which is held by each process i ∈ [n] and

appended to every message. A process i increments ti only if it received a300

message containing a round counter ≥ ti from n− f different processes.

One may now ask how fast information can spread in this distributed com-

puting model.

For this purpose, we consider a network whose communication patterns are

induced by n processes communicating in asynchronous rounds. Here, an edge305
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(i, j) in the communication graph Gt represents that j, before incrementing

its round counter from tj = t to tj = t + 1, received a message from i and

the round counter, appended to this message, was ti = t. When deriving the

communication graph Gt of such an asynchronous round t, we get a digraph

where each correct process has at least n− f incoming neighbors. In fact, when310

we slightly abuse notation and define the arrival of a message at a crashed

process as a (virtual) reception that is represented in the communication graph

Gt as well, we get that Gt is actually a digraph where all processes have at least

n− f incoming neighbors.

We restrict our attention to the case where n > 2f , i.e., a majority of the315

processes is correct. This implies that the sets of incoming neighbors of any

two processes in a communication graph have a non-empty intersection, which

means that the communication graph is nonsplit. Note that if n ≤ 2f , then

the network is not necessarily nonsplit. In fact, it can be disconnected into two

disjoint sets of processes that do not receive messages from each other until320

termination of the algorithm. Below, we establish a constant upper bound on

the dynamic radius of this important class of nonsplit graphs.

Theorem 4. Let f ≥ 0, n > 2f , and (Gt)t≥1 be a sequence of communication

graphs with Ini(Gt) ≥ n− f for all t and all i. The dynamic radius of (Gt)t≥1

is at most 2.325

Proof. To show the bound on the radius, we prove that there exists a center

node m that realizes the dynamic radius, i.e.,

∃m ∈ [n] ∀i ∈ [n] ∃j ∈ [n] : m ∈ Inj(G1) ∧ j ∈ Ini(G2) . (4)

Equation (4) now follows from

∃m ∈ [n] : |Outm(G1)| ≥ f + 1 , (5)

by the following arguments: Equation (5) states that the information at m has

been transmitted to at least f + 1 nodes. By assumption Ini(G2) ≥ n − f for

all i ∈ [n]. Thus each i must have an incoming neighbor j in digraph G2 such

that j ∈ Outm(G1); equation (4) follows.
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It remains to show (5). Suppose that the equation does not hold, i.e.,

∀j ∈ [n] : |Outj(G1)| ≤ f . (6)

By assumption on digraph G1, we have∑
i∈[n]

| Ini(G1)| ≥ n(n− f) (7)

By the handshake lemma,∑
i∈[n]

| Ini(G1)| =
∑
j∈[n]

|Outj(G1)|

and, using (6),

∑
i∈[n]

| Ini(G1)| ≤ nf .

Together with (7), we have n(n − f) ≤ nf ; a contradiction to the assumption330

that n > 2f .

5. A Lower Bound for Consensus in Dynamic Networks

We now show that the dynamic radius of a network provides a lower bound

on the time complexity of a consensus algorithm for this network.

Let [n] = {1, . . . , n} be a set of processes that operate in lock-step syn-335

chronous rounds t = 1, 2, . . . delimited by times t = 0, 1, . . . where, by conven-

tion, round t happens between time t − 1 and time t. Each round consists of

a phase of communication, followed by a phase of local computation. Like in

the previous sections, a communication pattern defines, for each round, which

messages reach their destination.340

In the (exact) consensus problem, every node i ∈ [n] starts with an input

value xi ∈ X from an arbitrary domain X and holds a unique write-once variable

yi, initialized to yi = ⊥, where ⊥ denotes a special symbol s.t. ⊥ /∈ X. Since

we are concerned with an impossibility result here, we may restrict ourselves

without loss of generality to the binary consensus problem, i.e., the case where345
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X = {0, 1}. An execution of a deterministic consensus algorithm is a sequence

of state transitions according to the algorithm and determined by the input

assignment and the communication pattern. An algorithm solves consensus if

it satisfies in all of its executions:

(Termination) Eventually for every i ∈ [n], yi 6= ⊥.350

(Validity) If yi 6= ⊥ then yi = xj for some j ∈ [n].

(Agreement) For every i, j ∈ [n], if yi 6= ⊥ and yj 6= ⊥ then yi = yj .

Theorem 5. If the dynamic radius of the network is k, then, in every deter-

ministic consensus algorithm, not all processes can have terminated before time

k.355

Proof. Let G be a communication pattern with dynamic radius k, which occurs

in the network by assumption. Suppose, in some deterministic consensus algo-

rithm A, all i ∈ [n] have terminated by time k−1 in every execution based on G.

Let C0 be the input assignment where xi = 0 for all i ∈ [n] and C1 be the input

assignment where xi = 1 for all i ∈ [n]. By validity, when running A under G360

and starting from C0, all i ∈ [n] have yi = 0 by time k − 1 and when starting

from C1, they have yi = 1. Thus, there are input assignments C,C ′ that differ

only in the input assignment xj of a single process j and, for all i ∈ [n], at time

k − 1, yi = 0 when applying A under G when starting from C and yi = 1 when

starting from C ′. Since there is no broadcaster in G before round k, there is365

some process i′ that did not receive a (transitive) message from j and thus i′ is

in the same state in both executions. Therefore, i′ decides on the same value in

both executions, which is a contradiction and concludes the proof.

6. Conclusion

In this paper, we studied nonsplit networks, which are a convenient ab-370

straction that arises naturally when considering information dissemination in

a variety of dynamic network settings. Since classic information dissemination
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problems are trivially impossible in these nonsplit dynamic networks, it made

sense to study the more relaxed dynamic radius here. As we showed in The-

orem 5, this is an important characteristic with respect to the impossibility of375

exact consensus. For our main technical contribution, we proved a new upper

bound in Theorem 2, which shows that the dynamic radius of nonsplit networks

is in O(log log n). This is an exponential improvement of the best previously

known upper bound of O(log n).

We also showed an upper bound of 2 asynchronous rounds for the dynamic380

radius in the asynchronous message passing model with crash failures. Thus, in

this important class of nonsplit networks, information dissemination is consid-

erably quicker than what is currently known for the general case.

Combining our Theorem 2 with the result from [3] that established a O(n)

simulation of nonsplit networks in rooted networks, i.e., networks where every385

communication graph contains a rooted spanning tree, yields an improvement

of the best previously known upper bound for the dynamic radius of rooted

dynamic networks from O(n log n) to O(n log log n):

Theorem 6. The dynamic radius of a dynamic networks whose communication

graphs are rooted is O(n log log n).390

While this is another hint at the usefulness of the nonsplit abstraction for

dynamic networks, the tightness of this bound remains an open question.
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