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Abstract

The block maxima approach is one of the main methodologies in extreme value theory to obtain a

suitable distribution to estimate the probability of large values. In this approach, the block size is usually

selected in order to reflect the possible intrinsic periodicity of the studied phenomenon. The generalization

of this approach to data from non-seasonal phenomena is not straightforward. To address this problem, we

propose an automatic data-driven method to identify the block size to use in the generalized extreme value

(GEV) distribution for extrapolation. This methodology includes the validation of sufficient theoretical

conditions ensuring that the maximum term converges to the GEV distribution. The selected GEV model

can be different from the GEV model fitted on a sample of block maxima from arbitrary large block size.

This selected GEV model has the special property to associate high values of the underlining variable with

the corresponding smallest return periods. Such a model is useful in practice as it allows, for example,

a better sizing of certain structures of protection against natural disasters. To illustrate the developed

method, we consider two real datasets. The first dataset contains daily observations over several years

from some meteorological variables while the second dataset contains data observed at millisecond time

scale over several minutes from sensors in the field of vehicle engineering.
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1. Introduction1

Let X be a random variable (associated with the phenomenon of interest) for which we want to assess2

the probability of extreme events. Let X1, . . . , Xn be n independent copies of X. Define the sample3

maximum by Mn = max{X1, . . . , Xn}. The main goal of extreme value analysis is to appropriately4

estimate for a large value x ≥Mn the following probability5

P{X > x}. (1)
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The inverse of the probability (1) is defined as the return period T of x. In other words, T is the time6

period during which X is expected to exceed on average once the value x. It is clear that classical statistical7

methods are not applicable to solve the above problem. Indeed, for x ≥Mn the empirical estimation of8

the probability (1) is equal to zero as there is no observation beyond the sample maximum. Moreover,9

a parametric estimation may not be reliable either since a good fit in the distribution bulk does not10

necessarily yield a good fit in the tail. For instance, both Gaussian and Student distributions can fit very11

well a given set of observations whereas the behavior of large values from the fitted Student distribution is12

significantly different from the behavior of large values from the fitted Gaussian distribution. Extreme13

value theory provides the solid fundamentals needed for the statistical modeling of extreme events and14

the computation of probabilities such as (1). The strength of extreme value theory is that, ideally, the15

original parent distribution function of X needs not to be known, because the maximum term Mn, up16

to linear normalization, asymptotically follows a distribution nowadays called generalized extreme value17

(GEV) family (e.g. Fisher and Tippett, 1928; Gnedenko, 1943; Leadbetter et al., 1983; Embrechts et al.,18

1997; Coles, 2001; Beirlant et al., 2004). Consequently, a sample of Mn (also called block maxima) where19

the nonnegative integer n (referred to as block size) approaches infinity can be approximated by the GEV20

distribution as stated in Theorem 1.1 from Coles (2001).21

Theorem 1.1. If there exist sequences of constants an > 0 and bn ∈ R such that22

P

{
Mn − bn

an
≤ x

}
→ G(x) (2)

as n → +∞ for a non-degenerate distribution function G, then G belongs to the Generalized Extreme23

Value (GEV) family24

G(x) = G(x;µ, σ, γ) = exp

{
−
[
1 + γ

(
x− µ
σ

)]− 1
γ

}
, (3)

defined on
{
x ∈ R : 1 + γ

(
x−µ
σ

)
> 0
}
, where γ, µ ∈ R, σ > 0.25

The distribution G includes three parameters: the location parameter µ, the scale parameter σ and26

the shape parameter γ also referred to as the extreme value index. The GEV family can be divided into27

three families, namely the Fréchet family, the Weibull family and the Gumbel family. The Fréchet and28

the Weibull families correspond respectively to the cases where γ > 0 and γ < 0. The Gumbel family with29

γ = 0 is interpreted as the limit of (3) as γ → 0, leading to the distribution30

G(x) = exp

{
− exp

{
−
(
x− µ
σ

)}}
, x ∈ R. (4)

By Taylor expansion, one can observe that the Fréchet family has a power law decaying tail whereas the31

Gumbel family has an exponentially decaying tail (Embrechts et al., 1997). Consequently, the Fréchet32

family suits well heavy tailed distributions (e.g. the Pareto and the Loggamma distributions) while the33

Gumbel family characterizes light tailed distributions (e.g. the Gaussian and the Gamma distributions).34

Finally, the Weibull family is the asymptotic distribution of finite right endpoint distributions such as the35

Uniform and the Beta distributions.36
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Each of the extreme value models derived so far has been obtained through mathematical arguments37

that assume an underlying process consisting of a sequence of independent random variables. However,38

for some data to which extreme value models are commonly applied, temporal independence is usually an39

unrealistic assumption. Extreme conditions often persist over several consecutive observations, bringing40

into question the appropriateness of models such as GEV distributions. A detailed investigation of this41

question is given in Leadbetter et al. (1983). The dependence in stationary series can take many different42

forms, and it is impossible to develop a general characterization of the behaviors of extremes unless some43

constraints are imposed. These conditions aim to ensure that the gap to independence between sets of44

variables that are far enough apart is sufficiently close to zero to have no effect on the limit laws for45

extremes. A summary of the obtained results is given in Theorem 1.2 from Coles (2001).46

Theorem 1.2. Let X1, X2, . . . be a stationary process and X?
1 , X

?
2 , . . . be a sequence of independent vari-

ables with the same marginal distribution. Define Mn = max{X1, . . . , Xn} and M?
n = max{X?

1 , . . . , X
?
n}.

Under suitable regularity conditions,

lim
n→+∞

P

{
M?
n − bn
an

≤ x
}

= G1(x)

for normalizing sequences an > 0 and bn ∈ R, where G1 is a non-degenerate distribution function, if and

only if

lim
n→+∞

P

{
Mn − bn

an
≤ x

}
= G2(x),

where47

G2(x) = Gθ1(x) (5)

for some θ ∈ (0, 1].48

Since the marginal distributions of the Xi and X?
i are the same, any difference in the limiting49

distribution of maxima must be attributable to the dependence of the Xi series. The parameter θ defined50

by (5) is called the extremal index. This quantity summarizes the strength of dependence between51

extremes in a stationary sequence. Theorem 1.2 implies that, if maxima of a stationary series converge,52

provided that an appropriate condition is satisfied, the limit distribution is related to the limit distribution53

of an independent series according to equation (5). The effect of dependence in stationary series is simply54

a replacement of G1 as the limit distribution, which would have arisen for the associated independent55

series with same marginal distribution, with Gθ1. This is consistent with Theorem 1.1, because if G1 is a56

GEV distribution, so is Gθ1. According to the foregoing, if the limiting distribution of a random sequence57

Mn = max{X1, · · ·Xn} from a stationary sequence X1, X2, · · · is non degenerate, then the probability58

distribution of the sample maxima Mn can be approximated by the continuous GEV distribution family59

for large values of n. One of the practical methodologies for statistical modeling of extreme values consists60

to apply the block maxima approach. In this method, data are splitted into sequences of observations of61

length n, for some large value of n, generating a series of m block maxima, Mn,1,Mn,2, . . . ,Mn,m, say, to62
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which the generalized extreme value distribution can be fitted. The choice of a block size n is equivalent63

to the choice of the number m of block maxima. The delicate point of this method is the appropriate64

choice of the time periods defining blocks. Indeed, a too high value of n results in too few block maxima65

and consequently high variance estimators. For too small n, estimators become biased. A similar issue is66

the selection of threshold in the peak over threshold (POT) method for fitting the generalized Pareto67

distribution to excesses (Tancredi et al., 2006; Scarrott and MacDonald, 2012; Wu and Qiu, 2018; Yang68

et al., 2018).69

The block maxima method has been widely used in extreme value modeling of seasonal data such70

as wind speeds, flood and rainfall by setting for example, with a year as block size when data are daily71

observed. For non seasonal data from other fields such as vehicle engineering, the selection of an optimal72

block size is still a problem. Some recent studies in the literature have attempted to solve this issue Wang73

et al. (2016); Esra Ezgi et al. (2018); Özari et al. (2019). The method proposed by Esra Ezgi et al. (2018)74

and Özari et al. (2019) can be summarized as follows. The last 10% part of the actual data is reserved as75

test data. GEV models are fitted to different samples of block maxima from the first 90% part of the76

actual data. The estimated GEV models are used to generate samples (also referred to as predicted data)77

of size equal to that of test data. The selected block size is associated with the GEV model for which the78

highest similarity is observed between large values from the predicted and test data. Our main comment79

about this method is that the use of only one test data may not be enough to guarantee that the resulting80

GEV model is suitable to characterize large values from future data. To continue reviewing the literature,81

one can sum up the method developed by Wang et al. (2016) as follows. GEV models are fitted on82

different samples of block maxima from the actual data. The goodness-of-fit (g.o.f.) of the estimated GEV83

models is evaluated by means of an entropy based indicator which includes three g.o.f. measures, namely84

the Kolmogorov Smirnov, the Chi-square and the average deviation in probability density function. The85

selected block size is associated with the GEV model for which the smallest value of the above mentioned86

g.o.f. indicator is observed. Our main comment about this method is that the resulting GEV model87

exhibits a better fitting result. However, the selected GEV distribution does not necessarily have desired88

property to associate high values of the underlining variable with the corresponding smallest return period.89

The rest of this study is designed to explain the theoretical and practical aspects of the methodology90

we propose to achieve this block size selection goal. Section 2 presents the proposed block size selection91

procedure along with the related theoretical framework. An approach to assess the practical performances92

of this methodology is described in Section 3. Section 4 illustrates the practical applications of the block93

size selection procedure on real datasets. Tables, figures and additional results are postponed to the94

appendix.95
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2. Block size selection procedure96

This section aims at providing an answer to the following natural question which arises in practice:97

“Given a continuous stationary sequence X1, X2, · · · , how can we choose the value of n which guarantees98

that the GEV model fitted to the sample maxima Mn = max{X1, · · ·Xn} is appropriate for extrapolation? ”99

2.1. Theoretical foundations100

In the sequel, we exploit Theorem 2.1 to provide an heuristic answer to the above question which is101

valid for both continuous and discrete random variables.102

Theorem 2.1. Let X1, X2, . . . , be a continuous stationary sequence. Let Mn = max{X1, . . . , Xn}. Under

suitable regularity conditions, suppose that for large n, there are constants an > 0 and bn ∈ R such that

for all x ∈ R

lim
n→+∞

P{Mn ≤ an x+ bn} = G(x;µ, σ, γ),

for some constants µ ∈ R, σ > 0 and γ ∈ R, where G is the GEV distribution function. Then for all103

non-negative integer j > 1, we have104

lim
n→+∞

P{Mj×n ≤ an x+ bn} = G(x;µj , σj , γj), (6)

where for γ 6= 0,105

µj = µ+ σ

(
jγ − 1

γ

)
, σj = σ jγ , γj = γ (7)

and for γ = 0,

µj = µ+ σ log(j), σj = σ.

Proof of Theorem 2.1. Let X?
1 , X

?
2 , . . . be a continuous sequence of independent and identically distributed

random variables whose common distribution is the marginal distribution of the stationary sequence

X1, X2, . . . . DefineM?
n = max{X?

1 , . . . , X
?
n}. The idea is to considerM?

j×n, the maximum random variable

in a sequence of j × n variables for some large value of n, as the maximum of j maxima, each of which

is the maximum of n observations. From Theorem 1.2, there exists θ ∈ (0, 1] such that the following

equality holds true for all j > 1.

lim
n→+∞

P{Mj×n ≤ an x+ bn} =

[(
lim

n→+∞
P{M?

n ≤ an x+ bn}
)θ]j

.

Hence, one can write

lim
n→+∞

P{Mj×n ≤ an x+ bn} =

(
lim

n→+∞
P{Mn ≤ an x+ bn}

)j
= (G(x;µ, σ, γ))

j
.

The conclusion follows from a straightforward algebraic computation of (G(x;µ, σ, γ))
j

= G(x;µj , σj , γ).106

107
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A natural technique to identify potential candidates for the optimal block size consists in fitting the108

GEV distribution at a range of block sizes, and to look for stability of parameter estimates. The argument109

is as follows. By Theorem 2.1, if a GEV distribution is a reasonable model for block maxima of a block110

size n0, then block maxima of block size nj = j × n0 for any integer j > 1, should also follow a GEV111

distribution with the same shape parameters. However, the location parameter µj and the scale parameter112

σj are expected to change with j as in formula (6) and (7). By reparametrizing the GEV distribution113

parameters when γ 6= 0 as114

µ? = µj − σj j−γ
(
jγ − 1

γ

)
, σ? = σj j

−γ (8)

and when γ = 0 as115

µ? = µj − σj log(j), σ? = σj (9)

the estimates γ̂, σ̂? and µ̂?, of γ, σ? and µ? should be constant (up to estimation uncertainty) if n0 is a116

valid block size for sample maxima to follow the GEV distribution. This argument suggests plotting γ̂, σ̂?117

and µ̂?, together with their respective confidence intervals, and selecting for each normalized parameter118

an integer n0 as the lowest value for which these estimates remain approximately constant for almost all119

nj = j × n0 with j ≥ 1. Uncertainty in the estimation of the normalized GEV distribution parameters µ?120

and σ? can be assessed by using the delta method as follows. For γ = 0, the asymptotic variance of the121

rescaled location parameter is122

Var (µ̂?) = (∇µ̂?)T V(µ̂j , σ̂j)∇µ̂?, (10)

where V(µ̂j , σ̂j) is the asymptotic variance-covariance matrix of the joint estimate (µ̂j , σ̂j) of the parameter

(µj , σj). Here, the gradient is calculated by the following formula

(∇µ̂?)T =

[
∂µ̂?

∂µ̂j
,
∂µ̂?

∂σ̂j

]
= [1, − log(j)].

Similarly, for γ 6= 0, the asymptotic variances of the rescaled location parameter and the rescaled scale123

parameter are124


Var (µ̂?) = (∇µ̂?)T V(µ̂j , σ̂j , γ̂j)∇µ̂?

Var (σ̂?) = (∇σ̂?)T V(µ̂j , σ̂j , γ̂j)∇σ̂?
(11)

where V(µ̂j , σ̂j , γ̂j) is the asymptotic variance-covariance matrix of the joint estimate (µ̂j , σ̂j , γ̂j) of the

parameter (µj , σj , γj). Here, the gradients are calculated by the following formula in which γ̂j is denoted

by γ̂ for the sake of clarity

(∇µ̂?)T =

[
∂µ̂?

∂µ̂j
,
∂µ̂?

∂σ̂j
,
∂µ̂?

∂γ̂

]
=

[
1, −j−γ̂

(
jγ̂ − 1

γ̂

)
, σ̂j

(
1− j−γ̂(γ̂ log(j) + 1)

γ̂2

)]
,

and

(∇σ̂?)T =

[
∂σ̂?

∂µ̂j
,
∂σ̂?

∂σ̂j
,
∂σ̂?

∂γ̂

]
=
[
0, j−γ̂ , −σ̂j j−γ̂ log(j)

]
.
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Let Mnj =
(
Mnj ,1, · · · ,Mnj ,mj

)
be the sample maxima associated with the block size nj = j × n0125

with j ≥ 1, where n0 is the minimum block size which simultaneously stabilizes the three parameters γ̂,126

σ̂? and µ̂?. It is easily shown that the rescaled random variable M?
nj defined by127

M?
nj =

Mnj − µnj
σnj

(12)

is expected to follow the GEV model having the distribution function G(·; γ, σ = 1, µ = 0). It follows128

that the values of the random variable M?
nj are expected to be large as the shape parameter γ increases.129

Making use of transformation (12) together with formula (6), the sample maxima Mnj can be written as130

Mnj = σn0 j
γM?

nj + µn0 + σn0 j
γ

(
jγ − 1

γ

)
. (13)

By standard calculations, one can show that the values of the random variable Mnj are also expected131

to be large as the shape parameter γ increases. Besides, it is straightforward to see that for all n′0 ≥ n0132

and j ≥ 1, we have Mn′
j
≥Mnj where n′j = j × n′0 and nj = j × n0. Consequently, the GEV distribution133

fitted to any sample of block maxima Mn whose block size n is greater than n0 is expected to also have134

shape parameter γ. It results from the foregoing that the desired block size (that is, leading to the largest135

extrapolated values) must be greater than n0 and must be associated with the GEV distribution having136

the largest estimated shape parameter γ. In other words, the selected block size for extrapolation is137

associated with the heaviest tailed and stable fitted GEV distribution. With such a GEV model, two types138

of predictions can be made: the frequency associated with a given intensity phenomenon or the intensity139

of a phenomenon having a given frequency. In both cases, this GEV model will provide a prediction140

of the greatest possible quantity of interest (frequency or intensity) associated with the phenomenon141

under consideration. Such estimates should allow to make decisions that will significantly reduce the risks142

associated with increasingly extreme events.143

2.2. Algorithmic procedure144

In Section 2.1, we argued that the quality of a fitted GEV model to a sample maxima depends on145

the value of the considered block size. We also suggested therein the outline of a block size selection146

procedure. The main idea of this procedure consists of the following three stages. In the first stage, fit the147

GEV distribution on samples of block maxima from a range of block sizes. In the second stage, identify148

the stabilizing block size as the minimum block size which simultaneously stabilizes the shape parameter149

γ 6= 0, the normalized location parameter µ? and scale parameter σ? defined by (8). In the third stage,150

the selected block size is the one associated with the largest estimated shape parameter which is not151

significantly different from the estimated shape parameter at the stabilizing block size. Obviously, the152

selected block size is expected to be greater than the stabilizing block size.153

To fit the GEV models on samples of block maxima, we apply the maximum likelihood estimation154

procedure, which is one of the most popular inference method for extreme value models (Hosking, 1985;155

Smith, 1985; Coles, 2001; Gilleland and Katz, 2016). To check the stability of the normalized GEV156
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distribution parameters it is sufficient to check if their estimated values are approximately constant when157

the block size is large enough so that the corresponding sequence of sample maxima is stationary and is158

well fitted by the GEV distribution. To check the goodness of fit, we use the Kolmogorov Simirnov (KS)159

test (Chakravarti et al., 1967; Durbin, 1973). In this case, the null hypothesis is that the distribution160

function which generates the sample maxima is the fitted GEV distribution. We use two tests to check161

the stationarity of a given sequence of block maxima. The first test is the Augmented Dickey-Fuller162

(ADF) test (Said and Dickey, 1984; Banerjee et al., 1993; Trapletti and Hornik, 2018). In this case,163

the null hypothesis is that the sequence of block maxima is non-stationary. The second test is the164

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992; Trapletti and Hornik, 2018).165

In this case, the null hypothesis is that the sequence of block maxima is stationary. We validate that a166

sequence of block maxima is stationary if at least one of these two tests does not reject this hypothesis at167

a given level of significance. Recall that the null hypothesis of a test is rejected if the obtained p-value168

is less than the considered value of the test significance level α ∈ (0, 1). Moreover, the probability of169

rejecting the null hypothesis when it is in fact false (a correct decision) is 1− α as the p-value of a test170

statistic is the probability of rejecting the null hypothesis when it is in fact true (an incorrect decision).171

Algorithm 1 describes the main steps of our procedure to select a block size to use in the block172

maxima modeling approach. The theoretical justifications are provided in Section 2.1. Consider a data set173

X = (x1, . . . , xn) of n observations whose extreme values are to be modeled with the aim to extrapolate174

beyond the largest observed value. Algorithm 1 can also be considered as a GEV model determination175

procedure. Indeed, the main output of the developed procedure is the heaviest tailed GEV distribution176

function Gzi? fitted to a specific sample of block maxima zi? , where all required theoretical properties are177

satisfied at the block size i?.178
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Algorithm 1 Block size selection

Stage 1: Obtain I samples of block maxima, denoted by zi =
(
zi,1, . . . , zi,m(i)

)
in which i = imin, imin +

1, . . . , I is the considered block size. The constants are explained below.

• m(i) = dni e. Here, dye is the smallest integer greater than or equal to y, and I is the largest

block size, that is the size m(I) of the corresponding sample maxima is the minimum size

required for the estimation of GEV distribution parameters by the maximum likelihood method.

In this study, we set m(I) to 25.

• imin is the smallest block size which ensures that all block maxima associated with higher block

sizes are strictly greater than the eventual excess of zero-counts from the X ′s observations.

This concerns a continuous random event containing excess zero-count data in unit time (e.g.

daily accumulated precipitation or snow amount). We refer to candidate GEV models all GEV

models fitted on samples of block maxima associated with block sizes i ≥ imin.

• zi,j is the maximum of the X ′s observations within the j-th block of size i.

Stage 2: For i = 1, . . . , I do the following tasks.

i) Carry out the ADF stationary test on the sample maxima zi and record the p-value, denoted

by pi,ADF, of the test statistic.

ii) Carry out the KPSS stationary test on sample maxima zi and record the p-value, denoted by

pi,KPSS, of the test statistic.

Stage 3: For i = 1, . . . , I do the following tasks.

i) Use the maximum likelihood estimation method to fit the GEV distribution with non zero

shape parameter to each sample maxima zi.

ii) Carry out the KS test to check the goodness-of-fit of the sample maxima zi with the GEV

distribution. Then record the p-value, denoted by pi,KS, of the test statistic.

iii) Construct a 100× (1− α)%-confidence interval for the normalized location parameter µ?, the

normalized scale parameter σ? and the (normalized) shape parameter γ? = γ 6= 0, denoted by

Ci(µ
?), Ci(σ

?) and Ci(γ?), respectively. To construct such confidence intervals, one can use

formula (11) provided in Section 2.1 to approximate the variance of the MLE of µ? and σ?.

9



Stage 4: Compute the subset S of block sizes defined by

S = {i = 1, . . . , I : pi,KS ≥ α, and (pi,ADF < α or pi,KPSS ≥ α)} ,

where α ∈ (0, 1) is the significance level for the tests. The set S contains all block sizes i for which

the sample maxima zi is stationary and is in adequacy with the GEV distribution.

Stage 5: Compute the three subsets S(γ?), S(σ?) and S(µ?), where

S(γ?) = {i ∈ S : Ci(γ
?) ∩ Cj(γ?) 6= ∅, ∀ j ∈ S \ {i}} ,

S(σ?) = {i ∈ S : Ci(σ
?) ∩ Cj(σ?) 6= ∅, ∀ j ∈ S \ {i}} ,

S(µ?) = {i ∈ S : Ci(µ
?) ∩ Cj(µ?) 6= ∅, ∀ j ∈ S \ {i}} .

It results that S(γ?), S(σ?) and S(µ?) are the highest subsets of block sizes for which the confidence

intervals Ci(γ?), Ci(σ?) and Ci(µ?) respectively satisfy the conditions:⋂
i∈S(γ?)

Ci(γ
?) 6= ∅,

⋂
i∈S(σ?)

Ci(σ
?) 6= ∅,

⋂
i∈S(µ?)

Ci(µ
?) 6= ∅.

This means that the estimated values of the normalized GEV distribution parameters γ? 6= 0, σ? and

µ? are approximately constant for all block sizes in the sets S(γ?), S(σ?) and S(µ?), respectively.

Stage 6: Perform the following tasks.

i) Find the smallest elements of the sets S(γ?), S(σ?) and S(µ?), and denote them by i(γ?), i(σ?)

and i(µ?), respectively.

ii) Set i0 = max {i(γ?), i(σ?), i(µ?)} . It is natural to consider i0 as the block size which simulta-

neously stabilizes the normalized GEV distribution parameters γ? 6= 0, σ? and µ?. We refer to

equivalent GEV models all GEV models fitted on samples of block maxima associated with

block sizes i ≥ i0 and i ∈ S(γ?).

iii) Select the block size as i? = arg maxi≥i0 {γi : i ∈ S(γ?)} , where γi is the shape parameter of

the GEV distribution fitted to the sample maxima zi.
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3. Performance assessment179

Let (X1, X2, · · · ) be a continuous stationary sequence. Denote the corresponding sequence of maximum180

term by Mn = max{X1, · · · , Xn}, where n ∈ N. Recall that under some regularity conditions, the limiting181

distribution of the random variable Mn is expected to be a member of the GEV distribution family (3).182

The quantities of interest are not the GEV distribution parameters themselves, but the quantiles, also183

called return levels, of the estimated GEV distribution. The return level x(T ) associated with return184

period T > 1 of the stationary sequence X can be calculated from the GEV distribution as185

x(T ) = µ− σ

γ

{
1−

[
− log

(
1− 1

T

)]−γ}
. (14)

The maximum likelihood estimator (MLE) of the parameter vector ψ = (µ, σ, γ) requires a sample186

z = (z1, . . . , zm) of block maxima, where the block size is sufficiently large. It is worth noticing that187

the return period T in (14) is expressed in terms of number blocks. In some fields such as meteorology,188

hydrology and glaciology, it is often convenient to express this return period in terms of a unit time189

duration (second, minute, hour, day, month or year). Recall that the T -block return level is the level190

expected to be exceeded in average once every T blocks of raw observations. One can use the following191

relationship nb × T = nd ×D to convert a return period T whose unit is the number of block having size192

nb (also referred to as the number of raw observations per block) to the return period D whose unit is a193

given unit time duration in which there are nd raw observations.194

It is well known that under certain regularity conditions, the MLE of ψ is normally distributed as195

m approaches infinity. In such a case, the distribution of any functions of the MLE of ψ, such as return196

levels, can also be approximated by a Gaussian distribution. The performance of Algorithm 1 is assessed197

by comparing true return levels from the parent distribution of observations with those estimated from198

the selected GEV model. Consider a sample X = (x1, · · · , xn) of n observations from a known parametric199

probability distribution with cumulative distribution function F (·;φ), where φ ∈ Rd for some d ∈ N is the200

parameter. Set a desired level of significance α ∈ (0, 1). Our validation approach consists in showing that201

the 100× (1−α)%-confidence intervals of all estimated return levels from the selected GEV model contain202

the corresponding true return levels from the known distribution F (·;φ). For the sake of simplicity, we203

generate a sample X of independent observations. Moreover, the verification is performed by means of204

a bootstrap scheme to show that the conclusion is not specific to the considered sample X . The above205

procedure can be implemented and evaluated automatically thanks to Algorithm 2 in which we used the206

following quantities as input:207

• The sample size n = 2× 104.208

• The significance level α = 5%.209

• The bootstrap parameter B = 200.210
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• The known distribution F (·;φ) to generate samples and to compute the true return levels.211

• The discrete set T =
{
T (j), j = 1, . . . , J

}
of return periods to estimate the corresponding return212

levels, where n ≤ T (j) ≤ 1015 is the j-th smallest element of the set T. Here, we take 81 equispaced213

values of T (j) between two consecutive powers of ten. Thus, the set T contains J = 872 values.214

Density functions f(·;φ) associated with the considered known families of distribution functions F (·;φ)215

are listed below:216

1. The gamma distribution with shape parameter α > 0 and rate parameter β > 0 has probability217

density function defined for x > 0 by218

f(x;α, β) =
βα

Γ(α)
xα−1 exp{−β x}, (15)

where Γ(·) is the gamma function defined by

Γ(z) =

∫ +∞

0

xz−1 exp{−x}dx, z > 0.

The validation results are gathered in the top panel of Figures C1-C2 when using this distribution219

with the following parameters: α = 2 and β = 1.220

2. The loggamma distribution with shape parameter α > 0 and rate parameter β > 0 has probability221

density function defined for x > 0 by222

f(x;α, β) =
βα

Γ(α)

(log x)α−1

xβ+1
. (16)

The validation results are gathered in the center panel of Figures C1-C2 when using this distribution223

with the following parameters: α = 2 and β = 5.224

3. The normal distribution with location parameter µ ∈ R and scale parameter σ > 0 has probability225

density function defined for x > 0 by226

f(x;µ, σ) =
1√

2π σ2
exp

{
− (x− µ)2

2σ2

}
. (17)

The validation results are gathered in the bottom panel of Figures C1-C2 when using this distribution227

with the following parameters: µ = 0 and σ = 1.228

4. The generalized extreme value (GEV) distribution with parameters µ ∈ R, σ > 0 and γ ∈ R has229

probability density function defined for γ 6= 0 and x ∈ R such that 1 + γ
(
x−µ
σ

)
> 0 by230

f(x;µ, σ, γ) =
1

σ

[
1 + γ

(
x− µ
σ

)]−1/γ−1
exp

{
−
[
1 + γ

(
x− µ
σ

)]−1/γ}
. (18)

The case where γ = 0 corresponds to the Gumbel distribution whose density is defined for x ∈ R by231

f(x;µ, σ) =
1

σ
exp

{
−
(
x− µ
σ

)}
exp

{
− exp

{
−
(
x− µ
σ

)}}
. (19)

The validation results are gathered in Figures C3-C4 when using this distribution with the three232

following vectors of parameters, namely (γ = −0.2, σ = 1, µ = 0), (γ = 0, σ = 1, µ = 0) and233

(γ = +0.2, σ = 1, µ = 0).234
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The methods developed in this work have been implemented in R (R Core Team, 2020). The code235

is available upon request. The following packages are used: tseries (Trapletti and Hornik, 2018) and236

extRemes (Gilleland and Katz, 2016). One can see on Figures C1–C4 (Appendix C) that the true values237

of the shape parameter as well as the true values of extrapolated return levels belong at least to 95% of238

their respective 95%-confidence intervals constructed from the selected GEV models. This allows us to239

validate the procedure described in Algorithm 1 on classical continuous probability distributions.240
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Algorithm 2 Performance assessment of Algorithm 1

Stage 1: Generate several samples, say x(b) =
(
x
(b)
1 , · · · , x(b)n

)
of n independent observations from the

true distribution F (·;φ), where b = 1, · · · , B.

Stage 2: Run Algorithm 1 on the sample x(b) and denote the output by

Gzi?(b)
(
·; γ̂i?(b), σ̂i?(b), µ̂i?(b)

)
which is the selected GEV distribution estimated on the sample of block maxima zi?(b) associated

with the block size i?(b).

Stage 3: Estimate all return levels x(b)GEV,j associated with the return periods T (j), namely

x̂
(b)
GEV,j = G−1zi?(b)

(
1− i?(b)

T (j)
; γ̂i?(b), σ̂i?(b), µ̂i?(b)

)
and construct its corresponding 100× (1− α)%-confidence interval, namely[

x
(b,−)
GEV,j , x

(b,+)
GEV,j

]
. (20)

To construct confidence interval (20), one can use formula (27) provided in Appendix A to approximate

the variance of the estimated return level x̂(b)GEV,j .

Stage 4: Compute all quantities x(+)
GEV,j,α which are the α-quantiles of the following set of return level

upper confidence bounds {
x
(b,+)
GEV,j , b = 1, · · · , B

}
.

Stage 5: Compute the true return levels xφ,j from the known distribution F (·;φ) associated with the

return period T (j) by

xφ,j = F−1
(

1− 1

T (j)
;φ

)
, j = 1, . . . , J. (21)

Stage 6: Evaluate the truthfulness of all inequalities xφ,j ≤ x
(+)
GEV,j,α for j = 1, · · · , J. If all these

inequalities hold true, it will follow that

P
{
xφ,j ≤ x(b,+)

GEV,j,α

}
= 1− α

as 100 × α% of optimal GEV models were discarded. Such a conclusion is exactly the expected

guarantee to validate Algorithm 1.
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4. Applications to real datasets241

To illustrate the developed method, we consider two types of real datasets. The first dataset contains242

daily observations over several years from some meteorological variables while the second dataset contains243

observations at millisecond scale over several minutes from sensors in the field of vehicle engineering.244

We would like to determine GEV models for extrapolation corresponding to some variables from these245

datasets. Recall that each of these selected GEV models has the property to associate high values of the246

underlining variable with the corresponding smallest return periods. This makes it different from the247

GEV model fitted on a sample of block maxima from arbitrary large block size.248

4.1. Applications to the assessment of extreme meteorological events249

In this section, we consider the daily weather data from Fort Collins, Colorado, U.S.A. from january 1,250

1900 to december 31, 1999. This dataset can be downloaded from Dkengne Sielenou (2020) and it is also251

available in Gilleland and Katz (2016). In this dataset we consider the following three variables. The252

first one (MxT) is the daily maximum temperature (degrees Fahrenheit). The second one (Snow) is the253

daily accumulated snow amount and the third one (Prec) is the daily accumulated precipitation (inches).254

Katz et al. (2002) showed that the annual maxima of this daily precipitation amount is associated with a255

heavy tailed GEV distribution having γ̂ = 0.174 as estimate of the shape parameter. The basic summary256

statistics of the three variables MxT, Snow and Prec can be found in Table B1 (Appendix B). The main257

goal of this section is to estimate GEV models to characterize suitably extreme values of the three above258

mentioned weather variables.259

We address this problem by mean of Algorithms 1 separately applied to each sample of raw observations.260

The results are gathered in Figures C5-C6 (Appendix C). Figure C5 illustrates the last stage of Algorithm 1261

to select block sizes. Figure C6 shows the adequacy of sample maxima associated with the optimal block262

sizes to the GEV distribution as well as the estimated return levels along with their 97.5%-upper confidence263

bounds from the selected GEV models. One can conclude from the results that at the studied location,264

the unknown parent distribution of daily maximum temperature has a finite right endpoint whereas the265

unknown parent distributions of daily accumulated snow amount and precipitation are light and heavy266

tailed, respectively.267

4.2. Application to the assessment of sensors reliability268

In this experiment, two sensors are embedded on the same vehicle. The first one is the sensor of269

interest. Its measurements are considered as observations from a random variable, say Y. The second one is270

a high-precision sensor which serves as a reference. Its measurements are considered as observations from a271

random variable, say Z. The sensors provide approximately 36 measures every second. Ignoring all missing272

values, the dataset includes n = 113, 133 observations of the random pair (Y, Z). These observations are273

associated with 920 objects identified in time by 21, 523 distinct timestamps (in millisecond) ranging274
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between 1, 347, 571 and 3, 329, 292. Adding up the differences of consecutive timestamps, it follows that the275

time period during which both values of Y and Z collected in the set {(yi, zi), i = 1, . . . , n} are observed276

is 1, 981, 721 milliseconds, namely 33.03 minutes or 0.55 hour. Define the random variable V of errors277

associated with the sensor of interest by V = Z − Y. Obviously, the sample v = (v1, · · · , vn) of size n,278

where vi = zi − yi contains observations from the random variable V.279

Consider the magnitude or absolute value of V as the random variable X = |V | also defined by280

X = max{V,−V }. The random variable V is assumed to be continuous so that P{V = 0} = 0. Hence, the281

positive part of V is the random variable X+ defined by X+ = max{V, 0} whereas the negative part of V282

is the random variable X− defined by X− = max{−V, 0}. Let X = (x1, . . . , xn), X+ = (x+,1, . . . , x+,n)283

and X− = (x−,1, . . . , x−,n) be the samples of n = 113, 133 observations from the random variables X,284

X+ and X−, respectively. Here, the quantities xi, x+,i and x−,i are defined by xi = max{vi,−vi},285

x+,i = max{vi, 0} and X−,i = max{−vi, 0} for i = 1, · · · , n. It is worth noticing that there are 81, 891286

nonzero values in the sample X+ and 31, 242 nonzero values in the sample X−. The basic summary287

statistics of the four variables V, X, X+ and X− are provided in Table B1 (Appendix B). The main goal288

of this section is to estimate the selected GEV models to characterize extreme values of the three types of289

the above mentioned errors.290

The magnitudes of errors as well as the negative and positive parts of absolute errors can impact291

differently the system under consideration when large critical values are observed. Furthermore, in this292

field of vehicle engineering, there is no trivial way to prefer a particular block size to another one. To293

overcome this issue, we thus apply Algorithm 1 to the samples X , X+ and X−. The results are collected in294

Figures C7-C8 (Appendix C). The graphs of Figure C7 illustrate the last stage of Algorithm 1 to identify295

optimal block sizes. The graphs of Figure C8 show the adequacy of sample maxima associated with296

the selected block sizes to the GEV distribution as well as the estimated return levels along with their297

97.5%-upper confidence bounds from the selected GEV models. It follows from the obtained GEV models298

that for the studied sensor of interest, the unknown parent distributions of the three types of errors are299

heavy tailed.300

5. Conclusion301

In the block maxima approach, we showed that, when the goal is to obtain a generalized extreme302

value model for extrapolation beyond the sample maximum, the size of blocks can be specified thanks303

to an algorithmic procedure. We clearly established and justified the theoretical foundations of this304

methodology. We successfully demonstrated the efficiency of the method on several samples from some305

classical continuous probability distributions. The proposed scheme has been illustrated on two real306

datasets. By definition, the selected GEV model is likely to generate larger values than competing GEV307

models. However, large values above an eventual unknown threshold might be unrealistic for the studied308

phenomenon. Our next study will focus on the determination of such a threshold which is also termed as309

16



the extrapolation limit.310

Appendix A Inference for the return levels based on the GEV distribution311

Let p ∈ (0, 1). The quantile zp of the GEV family is obtained by solving the equation312

G(zp) = 1− p, (22)

where G is the GEV distribution function. For γ 6= 0, the solution of equation (22) is313

zp = µ− σ

γ

{
1− [− log(1− p)]−γ

}
(23)

and for γ = 0, the solution of equation (22) is314

zp = µ− σ log {− log(1− p)} . (24)

In common terminology, zp is the return level associated with the return period T = p−1. This means315

that the level zp is expected to be exceeded on average once every T blocks of observations. It is easy to316

see that the return level zT is strictly increasing with the return period T. Consequently, one can estimate317

the frequency of events associated with values larger than the highest observation of the studied random318

variable. Let us denote by (µ̂, σ̂, γ̂) the maximum likelihood estimate of the discrete GEV distribution319

parameters (µ, σ, γ) obtained when fitting a sample of m block maxima zi, i = 1, . . . ,m with a GEV320

distribution, where the block size is equal to n. By substituting (µ̂, σ̂, γ̂) into (23) and (24), the maximum321

likelihood estimate of zp is obtained for γ 6= 0 as322

ẑp = µ̂− σ̂

γ̂

[
1− y−γ̂p

]
(25)

and for γ = 0, the maximum likelihood estimate of zp is obtained as323

ẑp = µ̂− σ̂ log yp, (26)

where yp = − log(1− p). Furthermore, by the delta method,324

Var (ẑp) ≈ ∇zTp V∇zp, (27)

where V is the asymptotic variance-covariance matrix (Coles, 2001) of the joint estimate (µ̂, σ̂, γ̂) of the325

parameter (µ, σ, γ) and326

∇zTp =

[
∂zp
∂µ

,
∂zp
∂σ

,
∂zp
∂γ

]
=

[
1,−γ−1

(
1− y−γp

)
, σγ−2

(
1− y−γp

)
− σγ−1y−γp log yp

]
evaluated at (µ̂, σ̂, γ̂) . In the particular case where γ = 0, V stands for the asymptotic variance-covariance

matrix (Coles, 2001) of the joint estimate (µ̂, σ̂) of the parameter (µ, σ) and

∇zTp =

[
∂zp
∂µ

,
∂zp
∂σ

]
= [1,− log yp]

evaluated at (µ̂, σ̂) .327
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Appendix B Basic statistics of variables from the real datasets328

MxT Snow Prec V X X+ X−

Mean 62.403 4.181 1.349 1.013 2.549 0.768 1.781
Std.Dev 18.816 16.677 7.749 4.309 3.618 2.856 2.769

Min -10.000 0.000 0.000 -50.341 0.000 0.000 0.000
Q1 49.000 0.000 0.000 -0.141 0.744 0.000 0.000

Median 64.000 0.000 0.000 1.154 1.577 0.000 1.154
Q3 78.000 0.000 0.000 2.155 2.741 0.141 2.155

Max 102.000 463.000 211.000 55.061 55.061 50.341 55.061
MAD 22.239 0.000 0.000 1.726 1.373 0.000 1.711
IQR 29.000 0.000 0.000 2.296 1.997 0.141 2.155
CV 0.302 3.988 5.743 4.255 1.420 3.719 1.555

Skewness -0.369 8.859 9.685 -1.390 4.684 7.591 4.510
SE.Skewness 0.013 0.013 0.013 0.007 0.007 0.007 0.007

Kurtosis -0.524 123.329 128.941 24.185 33.274 77.697 35.256
N.Valid 36524.000 36524.000 35794.000 113133.000 113133.000 113133.000 113133.000

Pct.Valid 100.000 100.000 98.001 100.000 100.000 100.000 100.000

Table B1: Basic summary statistics of the variables studied in Sections 4.1-4.2. These common descriptive statistics for

numerical variables can be organized into 4 main types of measures, namely the measures of frequency (N.Valid: number of

valid observations, Pct.Valid: percentage of valid observations), the measures of central tendency (Mean: average value,

Median: middle value), the measures of variability (Min: minimum value, Max: maximum value, Q1: first quartile, Q3:

third quartile, IQR: inter quartile range, MAD: mean absolute deviation, Std.Dev: standard deviation, CV: coefficient of

variation) and the shape measures (Skewness: degree of asymmetry, Kurtosis: degree of tail heaviness).

Appendix C Graphical results from illustrations on simulated and real datasets329
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Figure C1: From top to bottom, validation results of Algorithm 2 when using the gamma distribution (15), the loggamma

distribution (16) and the normal distribution (17). Each panel displays the 95%-confidence intervals of the estimated shape

parameters γ̂i?(b) from the selected GEV models obtained in Stage 2 of Algorithm 2. Selected block sizes i?(b) are indicated

on the top margin.

19



Figure C2: From top to bottom, validation results of Algorithm 2 when using the gamma distribution (15), the loggamma

distribution (16) and the normal distribution (17). Graphs display the upper confidence bounds x(+)
GEV,j,0.05 obtained in

Stage 4 of Algorithm 2 as well as the true return levels xφ,j .

20



Figure C3: From top to bottom, validation results of Algorithm 2 when using the GEV distributions (18-19) with a negative,

zero and positive shape parameter γ. Each panel displays the 95%-confidence intervals of the estimated shape parameters

γ̂i?(b) from the selected GEV models obtained in Stage 2 of Algorithm 2. Selected block sizes i?(b) are indicated on the top

margin.
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Figure C4: From top to bottom, validation results of Algorithm 2 when using the GEV distributions (18-19) with a negative,

zero and positive shape parameter γ. Graphs display the upper confidence bounds x(+)
GEV,j,0.05 obtained in Stage 4 of

Algorithm 2 as well as the true return levels xφ,j .
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Figure C5: 95%-confidence intervals Ci(γ?) for the shape parameters associated with equivalent GEV models obtained in

Stage 6 of Algorithm 1 applied on the real dataset described in Section 4.1. The horizontal dotted line displays the selected

GEV distribution shape parameter and the vertical dotted line displays the selected block size i?.
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Figure C6: Left panel: graphical display of the goodness of fit of the selected GEV distributions obtained as output of

Algorithm 1 applied on the real dataset described in Section 4.1 (blue: fitted GEV density, black: kernel density estimate).

Right panel: graphical display of the corresponding estimated return levels (blue) along with their 95%-upper confidence

bounds from the estimated selected GEV models (green).
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Figure C7: 95%-confidence intervals Ci(γ?) for the shape parameters associated with equivalent GEV models obtained in

Stage 6 of Algorithm 1 applied on the real dataset described in Section 4.2. The horizontal dotted line displays the selected

GEV distribution shape parameter and the vertical dotted line displays the selected block size i?.
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Figure C8: Left panel: graphical display of the goodness of fit of the selected GEV distributions obtained as output of

Algorithm 1 applied on the real dataset described in Section 4.2 (blue: fitted GEV density, black: kernel density estimate).

Right panel: graphical display of the corresponding estimated return levels (blue) along with their 95%-upper confidence

bounds from the estimated selected GEV models (green).
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