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Abstract This software paper gives an overview of the features supported by the
Topology ToolKit (TTK), which is an open-source library for topological data
analysis (TDA). TTK implements, in a generic and efficient way, a substantial col-
lection of reference algorithms in TDA. Since its initial public release in 2017, both
its user and developer bases have grown, resulting in a significant increase in the
number of supported features. In contrast to the original paper introducing TTK [40]
(which detailed the core algorithms and data structures of TTK), the purpose of this
software paper is to describe the list of features currently supported by TTK, ranging
from image segmentation tools to advanced topological analysis of high-dimensional
data, with concrete usage examples available on the TTK website [42].
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2 TTK Contributors

Fig. 1 Extraction of the covalent and non-covalent interactions in a molecular system with TTK.
Covalent and hydrogen bonds are captured by the blue separatrices of the Morse-Smale complex,
and steric effects (repulsive forces induced by the carbon cycles) are captured by saddle-saddle
connectors (green).

1 Introduction

Topological data analysis (TDA) [10, 34, 38] is a vibrant field of study at the cross
roads between mathematics and computer science, which considers the structure of
complex data. In particular thanks to advanced concepts such as persistent homology
[10], TDA provides theories and algorithms for the multi-scale representation and
analysis of the structural features of interest present in the data. It has been shown to
be useful in a variety of fields, ranging from machine learning [7] to geometry pro-
cessing [49]. In scientific applications, TDA is particularly effective for the analysis
of large-scale data sets [16]. The Topology ToolKit (TTK) [40] is an open-source
library for TDA that has been released in 2017 under the permissive BSD license.
It features a substantial collection of generic and efficient implementations of ref-
erence TDA algorithms. TTK is mostly written in C++ (∼110k lines of code) to
offer the best possible performance. To date, 15 institutions have contributed code
to TTK, including 12 academic organizations (Arizona State University, CNRS,
Heidelberg University, INRIA, Linkoping University, Los Alamos National Labo-
ratory, Sorbonne Universite, TU Kaiserslautern, University of Arizona, University
of Leeds, University of Utah, Zuse Institute Berlin) and 3 companies (Kitware, To-
tal, ShapeShift3D). Since its initial release, TTK’s website has collected more than
135k page-views, from more than 25k unique visitors, and its video tutorials have
collected more than 16k Youtube views. TTK is accessible to developers through
several APIs: C++, VTK/C++ or Python. For end users, TTK is directly accessible
in the form of a plugin for ParaView [1] and an anaconda package [45]. Data can be
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Fig. 2 Persistence-driven analysis pipeline applied to vortex tracking in computational fluid
dynamics. Once TTK and its data package are installed, from the ttk-data/ directory, run the
following command to reproduce this example: “paraview states/BuiltInExample1.pvsm”
(see [42] for further details).

provided to TTK in multiple forms: it can be sampled along 1D, 2D, or 3D regular
grids (including periodic grids), or 1D, 2D, or 3D meshes (simplicial complexes). It
can also be provided as point clouds of arbitrary dimension.

The internal data structures and algorithms of TTK have already been presented
in its companion paper [40], its end-user features have not been formally presented,
other than in oral tutorials [15, 13, 12] or hackathons [28]. This software paper
fills this gap by describing the high-level features of TTK through a list of concrete
examples. Note that although the following examples will be discussed based on a
usage of TTK with ParaView, the entire discussion holds for all TTK’s APIs (C++,
VTK/C++, Python) as each TTK filter in the presented ParaView pipelines (green
box in the pipeline browser, top left of each screenshot) represents an individual
TTK object. We also note that ParaView state files can be automatically exported to
Python scripts. All the material necessary to reproduce the examples presented in
this paper (data and ParaView state files) is available on the TTK website (section
Tutorials [42]). Readers are invited to run these examples (see the caption of each
figure) to further inspect interactively the content of each illustration.

2 Scalar data

TTKsupports the computation of a large number of topological abstractions for scalar
data. In the applications, each topological abstraction supported by TTK serves a
specific purpose. Critical points [5] extract points of interest.Merge/contour trees and
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Reeb graphs [18, 19, 20, 21] estimate skeletons and meaningfully segment the input
data along level sets. Persistence diagrams [10] visually represent the population of
points of interest (critical points) as well as their salience (topological persistence).
The Morse-Smale complex can be used to extract filament structures in data.

Typically, as illustrated in Figure 2, to explore the data at multiple scales, the
persistence diagram [10] is first computed to identify the main topological features
present in the data and to discard the irrelevant features that correspond to noise.
In particular, long vertical bars in the diagram (Figure 2, bottom right) denote
topologically salient features, while small bars near the diagonal correspond to
spurious features. The persistence curve (Figure 2, top right) provides a visual
tool for inspecting relevant persistence thresholds, under which features should be
interpreted as noise. In particular, these curves often exhibit in practice flat plateaus,
which either separate features from noise (at persistence 0.07 in Figure 2), or which
separate group of features of different scales. Once a proper persistence threshold has
been identified by the user, to reflect the corresponding noise removal in the original
data, TTK’s support for topological simplification [41, 29] can be used. Then, any
topological object mentioned above (critical point, merge/contour tree, Reeb graph,
Morse-Smale complex) computed after this data simplification stepwill subsequently
be simplified, supporting multi-scale feature exploration. In Figure 2, selecting the
persistence threshold corresponding to the flat plateau located at the center of the
persitence curve (persistence threshold of 0.07) enables the simplification of all
spurious features, and robustly extracts the centers of the vortices of this fluid
mechanic example (persistent extrema of the flow orthogonal curl component).

Figures 3, 4, and 5 show further typical usage examples illustrating classical
topological data analysis pipelines, where data is pre-simplified by preserving only
the most persistent features (highlighted in the corresponding persistence diagrams).

In Figure 3, the simplification is combined with the Morse complex (bottom)
to extract cells in confocal microscopy (top left: input data). In this example, the
segmentation is illustrated by representing the manifold of each local maximum
with a distinct color. In particular, each maximum denotes the nucleus of a cell, its
manifold the geometry of the cell, and the network of filament structures extracted
from the separatrices of the Morse complex indicate the boundaries separating the
cells. In this application, the removal of the small bars from the persistence diagram
(top right) removes spurious maxima from the data and consequently resolves the
possible over-segmentation provided by the Morse complex alone.

In Figure 4, data pre-simplification is combined with the merge tree to extract
bones in medical imaging. In particular, in this example, the user segmented the
regions corresponding to each arc of the split tree containing a local maximum
(which corresponds to locally dense regions). Here the level of persistence has been
tuned to maintain only the five most persistent features (corresponding to the toes of
the foot). Maintaining more features (in this example, for a persistence threshold of
150) would precisely segment the bones along each joint, which further illustrates
the potential for multi-scale data exploration.

Note that TTK also offers functionality to design harmonic scalar fields by solving
the Laplace equations subject to Dirichlet constraints [50] provided by the user at key
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Fig. 3 Persistence-driven analysis pipeline, combined with Morse complex computation for cell
enumeration in confocal microscopy (example reproduced from [10], page 217). Once TTK and its
data package are installed, from the ttk-data/ directory, run the following command to reproduce
this example: “paraview states/tribute.pvsm” (see [42] for further details).

Fig. 4 Persistence-driven merge-tree based segmentation applied to bone extraction in medical
imaging. Once TTK and its data package are installed, from the ttk-data/ directory, run the
following command to reproduce this example: “paraview states/ctBones.pvsm” (see [42]
for further details).
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Fig. 5 Skeleton estimation from the Reeb graph [21] of a user designed harmonic field [50]. Once
TTK and its data package are installed, from the ttk-data/ directory, run the following command
to reproduce this example: “paraview states/harmonicSkeleton.pvsm” (see [42] for further
details).

locations (typically at extremities of prominent shape features). This is illustrated in
Figure 5 (left), which also illustrates skeleton extraction with the Reeb graph (right).

TTK also implements efficient algorithms [33, 24, 36] for the estimation of
distances between persistence diagrams (such as the bottleneck and Wasserstein
distances [10]). Recently, efficient and progressive algorithms [48, 26] have been
integrated for the computation of barycenters of persistence diagrams [46, 27], which
visually summarize the topological features of an ensemble data set, andwhich enable
an efficient clustering of the ensemble members based on their persistence diagram.

3 Bivariate scalar data

TTK supports the computation of several topological abstractions for bivariate data
(where the data is characterized by two values defined at each vertex of the geo-
metrical domain). TTK provides a fast implementation of continuous scatterplots
[4], which can be interpreted as continuous histograms of bivariate data defined on
volumes. They are particularly useful for understanding where and how volumetric
data projects to the data range. Fiber surfaces [6, 25] extend the notion of isosurfaces
to bivariate data and enable users to explore the regions in the volume corresponding
to features of interest segmented manually in the continuous scatterplot. The Ja-
cobi sets [9] are also implemented in TTK. They are the bivariate analog of critical
points (points where both gradients are colinear), and they enable the extraction of
filament structures in bivariate data. They correspond to folds of the volume when
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Fig. 6 Gallery of bivariate scalar data analysis. Left: Continuous scatterplot (top) of the electron
density and reduced gradient of the ethane-diol molecule, some isosurfaces (bottom left) and fiber
surfaces [6, 25] (bottom right) corresponding to the curves of matching color in the scatterplot.
Right: Interactive continuous scatterplot peeling on fluid mechanics example (flow and curl magni-
tudes): a sheet of the simplified Reeb space [39] is selected by the user (orange), and its projection
is independently isolated in the scatterplot for further individual inspection. Once TTK and its data
package are installed (see [42] for further details), from the ttk-data/ directory, run the following
commands to reproduce these examples: “paraview states/BuiltInExample2.pvsm” (left)
and “paraview states/mechanical.pvsm” (right).

projecting it to the plane according to the bivariate data. TTK also supports the fast
computation of Reeb spaces of bivariate data [39], which allows the peeling of the
continuous scatterplot in regions that do not self-overlap during the projection of the
volume induced by the bivariate data. These capabilities are illustrated in Figure 6.
In the left image, the user provides a few strokes on the main visual features of the
continuous scatterplot (colored curves, top), and the corresponding structures in 3D
are extracted as fiber surfaces (surfaces of matching colors, bottom). This feature
definition captures subtle structures that are difficult to extract with the isosurfaces
of either of the two fields of the bivariate data (bottom left). In the right image,
the Reeb space segments the volume into regions that do not self-overlap when
projected onto the plane given the bivariate data. Such regions can be isolated from
the continuous scatterplot for further inspection. Furthermore, TTK also provides
heuristics for persistence-like simplification mechanisms on bivariate Reeb spaces
to enable multi-scale interactive exploration.

4 Uncertain scalar data

TTK supports the analysis of uncertain data, where the data is given as two scalar
fields, representing the bounds of the interval of possible data values for each vertex of
the domain. From this representation, mandatory critical points [17] can be extracted
(Figure 7). These objects correspond to regions where the appearance of at least one
critical point is guaranteed for any realization of the uncertain data (i.e., for any
scalar field randomly generated from the input intervals). This topological analysis
enables the estimation of the structures that always occur despite the uncertainty as
well as their geometrical variability. This construction can be used for instance to
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Fig. 7 Mandatory critical points [17] (colored regions) on the starting vortex example. Two
members of the ensemble are shown, along with their persistence diagrams and their critical points
in the domain. These critical points correspond to the vortices forming behind the wing. The most
salient critical points land in the colored regions predicted by the algorithm. In this example,
mandatory critical points (colored regions) help estimate visually the geometrical variability that
can be expected in the locations of these vortices, given the uncertainty of the data. Once TTK
and its data package are installed, from the ttk-data/ directory, run the following command to
reproduce this example: “paraview states/uncertainStartingVortex.pvsm” (see [42] for
further details).

analyze ensemble data sets, in conjunction with clustering techniques, as illustrated
by Favelier et al. [14].

5 Time-varying scalar data

TTK also provides several features for the analysis and visualization of time-varying
data. The trajectory of critical points through time can be trackedwith theWasserstein
matcher method introduced by Soler et al. [36]. This technique enables for instance
to represent the path taken by vortices in computational fluid dynamics (Figure 8,
left). In addition, TTK supports the visualization and analysis of the topological
evolution through time of features of interest, with the notion of nested tracking
graphs [31] (Figure 8, right). These graphs encode the temporal evolution of the
connected components of sub-level sets, in the form of a nested hierarchy, where
each hierarchy level (each shade of blue in Figure 8, top right) correspond to a
distinct isovalue (and hence a specific sub-level set).
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Fig. 8 Gallery of feature tracking in time-varying data. Left: critical point trajectory tracking
with the Wasserstein matcher [36] (the height denote the temporal component). Right: Nested
tracking graph [31] (viscous fingering data). Once TTK and its data package are installed
(see [42] for further details), from the ttk-data/ directory, run the following commands to
reproduce these examples: “paraview states/timeTracking.pvsm” (left) and “paraview
states/nestedTrackingGraph.pvsm”.

Fig. 9 Examples of topological analysis of high-dimensional point cloud data. Left: Persistence-
driven clustering [7] of the “mfeat” data set (64 dimensions). The data is first projected to 2D with
the t-SNE method (available from TTK’s integration of scikit-learn [35]). Point colors indicate the
ground-truth classification, whereas the clustering computed by TTK is reported by the background
color (cells of the Morse complex). Right: Persistence-driven clustering [7] and beyond, on a toy
point cloud example. In addition to the extraction of the correct clusters, TTK can also extract
generators of the first homology group (1-dimensional cycles) with looping separatrices connecting
saddles to maxima of density estimation (Gaussian kernel). Once TTK and its data package are
installed (see [42] for further details), from the ttk-data/ directory, run the following commands
to reproduce these examples: “paraview states/karhunenLoveDigits64Dimensions.pvsm”
(left) and “paraview states/1manifoldLearningCircles.pvsm” (right).

6 High-dimensional point cloud data

TTK recently integrated the popular package scikit-learn [35], leveraging in par-
ticular its dimension reduction capabilities: Principal Component Analysis, Spec-
tral Embedding, Locally Linear Embedding, Isomap, Multi-Dimensional Scaling,
t-distributed Stochastic Neighbor Embedding. Then, high-dimensional point cloud
data (typically in the form of a CSV file) can be processed by TTK. Typically, the
data is first projected to 2D or 3D with one of the above dimension reduction meth-
ods (Figure 9). Next, a density estimation (e.g., Gaussian kernel) is performed on a
regular grid to describe the projection of the input point cloud (Figure 9, top right).
From this point, any tool of the TTK arsenal can be employed to further analyze,
visualize, and explore the data. For instance, persistence-driven clustering [7] can
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Fig. 10 Examples of in situ data reduction with TTK. Left: View-based surface approx-
imation [30] (top: ground-truth, bottom: approximation). Right: Topology-controlled lossy
compression [37]. Once TTK and its data package are installed (see [42] for fur-
ther details), from the ttk-data/ directory, run the following commands to reproduce
these examples: “paraview states/geometryApproximation.pvsm” (left) and “paraview
states/persistenceDrivenCompression.pvsm” (right).

easily be deployed with TTK [8]. The : most persistent features can be selected from
the persistence diagram (Figure 9) to drive a pre-simplification of the data, in order to
control the number of clusters (where : is the number of desired clusters). Note that,
in practice, a relevant value of : can often be visually inferred from the flat plateaus
of the persistence curve (see Figure 2, top right). Similarly to the notion of eigen
gap [32] in spectral clustering, heuristics can be derived for an automatic selection
[8]. Next, the Morse complex can be extracted to isolate each basin of attraction
of each of the : remaining maxima (Figure 9, bottom right, where two clusters are
extracted, corresponding to the two rings present in the data). The final clustering
can be projected from the cells of the Morse complex to the input point cloud with
TTK’s generic interpolator. Note that TTK enables topological explorations that go
beyond simple clustering, such as the extraction of generators of homology groups,
as illustrated in Figure 9 (bottom, right), where looping separatrices linking saddles
to maxima are used to extract such generators, hence visually conveying to the user
additional information about the internal structure of each cluster. In particular, such
generators, when mapped back onto the data, provide visual hints that enable users
to identify to which cycle a given data point belongs to. Moreover, it also helps
users appreciate the importance of a given group of cycles, given the size of its
generator in the data. The left example of Figure 9 further illustrates the clustering
capabilities of TTK on the mfeat data set (64 dimensions, 2000 points). The ground-
truth classification is given by the colors on the points, whereas the non-supervised
classification obtained from the topological clustering is given by the background
color (one color per cell of the Morse complex). This example nicely illustrates how
TTK can effectively help visualize the intrinsic structure of high-dimensional data.

7 In situ topological analysis

TTK can be efficiently run in situ (i.e., directly from a simulation source codewithout
storing data to disk) using the Catalyst API [3]. TTK’s website reports a complete
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Fig. 11 Example of convenience TTK module: check for manifold-ness on several simplicial
complexes. Non-manifold vertices, edges and triangles are reported in green, white, and blue
respectively. Once TTK and its data package are installed, from the ttk-data/ directory, run the
following command to reproduce this example: “paraview states/manifoldChecks.pvsm”
(see [42] for further details).

tutorial [44] with the open-source fluid mechanic simulation code Code_Saturne
[11], where TDA capabilities are run on the file, without data storage, after each
computation of a simulation time step.

In addition, TTK offers lossy compression and data reduction tools, to allow
the in situ storage of reduced information. In particular, regular grid data can be
saved in the TTK file format (*.ttk), which implements the topologically controlled
compression framework by Soler et al. [37]. This framework enables to compress data
in a lossy way while guaranteeing the exact preservation of the persistence diagrams
of the most salient features. This methodology guarantees, in practice, that any
topological analysis run on the compressed data is faithful to the original data. TTK
also implements the award-winning image-based geometry approximation method
by Lukasczyk et al. [30]. Additionally, TTK implements the latest specification of
Cinema databases [2], which enables users to interactively explore large ensembles
of data sets stored as Cinema databases and to apply specific analysis pipelines to
selections ofmembers, expressedwith SQLqueries on themeta-data of themembers.

8 Convenience

Finally, TTK provides a number of features that make its deployment more con-
venient for users, including generic data interpolators (interpolating data from any
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Fig. 12 Integration of TTK in a software ecosystem other than VTK/ParaView: Inviwo [23], a
software framework for the rapid prototyping of visualizations, written in C++ and exploiting
modern graphics hardware. This example shows the topological analysis with the Morse-Smale
complex (with persistence-driven data pre-simplification) of charge densities in iron oxide [22].

type of object onto any type of object), convertors, mesh processing, and analysis
(subdivision, point merging, manifold checks, Figure 11, etc.).

9 Conclusion and perspectives

This paper presented a brief overview of the main end-user features available in the
Topology ToolKit (TTK) along with example application scenarios. The material
that is necessary to reproduce these examples is available on the TTK website [42].
The data analysis pipelines presented in this paper can be easily reproduced with
ParaView, with Python scripts (ParaView supports the automatic export of analysis
pipelines to Python scripts), with VTK or direct C++ code. The examples illustrated
in this paper ranged from basic image segmentation capabilities to the advanced
topological analysis of high-dimensional point cloud data. We refer the reader to
TTK’s online user forum for further discussions and usage examples [43].

In the future, we are looking forward to further extending TTK’s developer and
user communities. We see TTK as an opportunity to grow as a community by feder-
ating our software engineering efforts, to make our research more accessible, repro-
ducible and visible to others. In that regard, we warmly welcome any contributors
(see TTK’s contribution page: https://topology-tool-kit.github.io/contribute.html),
especially with experience in vector and tensor data analysis. We will also work

https://topology-tool-kit.github.io/contribute.html
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toward the improved integration of TTK in third-party data analysis and visualiza-
tion tools, as done, for example, in collaboration with the Inviwo [23] development
team (Figure 12). Future directions of development of TTK include an improved
support for statistical tasks based on topological data representations as well as an
improved integration of TTK on supercomputers. Such improvements will be par-
tially conducted in the context of the VESTEC project [47], which focuses on novel
supercomputing methodologies for urgent decision making, and for which TTK is
one of the core software technologies.

Acknowledgments

We would like to thank the anonymous reviewers for their thoughtful remarks and
suggestions. This work is partially supported by the European Commission grant
H2020-FETHPC-2017 “VESTEC” (ref. 800904).

References

1. Ahrens, J., Geveci, B., Law, C.: Paraview: An end-user tool for large-data visualization. The
Visualization Handbook (2005)

2. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., Petersen, M.: An image-based
approach to extreme scale in situ visualization and analysis. In: IEEE SuperComputing (2014)

3. Ayachit, U., Bauer, A.C., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., Mauldin, J.:
Paraview catalyst: Enabling in situ data analysis and visualization. In: In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization, ISAV 2015 (2015)

4. Bachthaler, S., Weiskopf, D.: Continuous scatterplots. IEEE Transactions on Visualization
and Computer Graphics (Proc. of IEEE VIS) (2008)

5. Banchoff, T.F.: Critical points and curvature for embedded polyhedral surfaces. Amer. Math.
Monthly (1970)

6. Carr, H., Geng, Z., Tierny, J., Chattopadhyay, A., Knoll, A.: Fiber surfaces: Generalizing
isosurfaces to bivariate data. Computer Graphics Forum (Proc. of EuroVis) (2015)

7. Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian
manifolds. J. ACM (2013)

8. Cotsakis, R., Shaw, J., Tierny, J., Levine, J.A.: Implementing Persistence-Based Clustering of
Point Clouds in the Topology ToolKit. In: TopoInVis Book (2020)

9. Edelsbrunner, H., Harer., J.: Jacobi Sets of Multiple Morse Functions. Cambridge Books
Online (2004)

10. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS (2009)
11. EDF: Code_saturne. https://www.code-saturne.org/cms/
12. Falk, M., Garth, C., Gueunet, C., Guillou, P., Gyulassy, A., Hofmann, L., Kappe, C.,

Levine, J.A., Lukasczyk, J., Tierny, J., Vidal, J.: Topological Data Analysis Made Easy
with the Topology ToolKit, What is New? In: Proc. of IEEE VIS Tutorials (2020).
https://topology-tool-kit.github.io/ieeeVis2020Tutorial.html

13. Falk, M., Garth, C., Gueunet, C., Levine, J.A., Lukasczyk, J., Tierny, J., Vidal, J.: Topological
DataAnalysisMadeEasywith the TopologyToolKit, A Sequel. In: Proc. of IEEEVISTutorials
(2019). https://topology-tool-kit.github.io/ieeeVis2019Tutorial.html

14. Favelier, G., Faraj, N., Summa, B., Tierny, J.: Persistence Atlas for Critical Point Variability in
Ensembles. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE VIS)
(2018)

https://www.code-saturne.org/cms/
https://topology-tool-kit.github.io/ieeeVis2020Tutorial.html
https://topology-tool-kit.github.io/ieeeVis2019Tutorial.html


14 TTK Contributors

15. Favelier, G., Gueunet, C., Gyulassy, A., Jomier, J., Levine, J., Lukasczyk, J., Sakurai, D., Soler,
M., Tierny, J., Usher, W., Wu, Q.: Topological data analysis made easy with the Topology
ToolKit. In: Proc. of IEEE VIS Tutorials (2018). https://topology-tool-kit.github.
io/ieeeVis2018Tutorial.html

16. Favelier, G., Gueunet, C., Tierny, J.: Visualizing ensembles of viscous fingers. In: IEEE SciVis
Contest (2016)

17. Guenther, D., Salmon, J., Tierny, J.: Mandatory critical points of 2D uncertain scalar fields.
Computer Graphics Forum (Proc. of EuroVis) (2014)

18. Gueunet, C., Fortin, P., Jomier, J., Tierny, J.: Contour Forests: Fast Multi-threaded Augmented
Contour Trees. In: Proc. of IEEE Large Data Analysis and Visualization (2016)

19. Gueunet, C., Fortin, P., Jomier, J., Tierny, J.: Task-based Augmented Merge Trees with Fi-
bonacci heaps. In: Proc. of IEEE Large Data Analysis and Visualization (2017)

20. Gueunet, C., Fortin, P., Jomier, J., Tierny, J.: Task-based Augmented Contour Trees with
Fibonacci heaps. IEEE Transactions on Parallel and Distributed Systems (2019)

21. Gueunet, C., Fortin, P., Jomier, J., Tierny, J.: Task-based Augmented Reeb Graphs with Dy-
namic ST-Trees. In: Eurographics Symposium on Parallel Graphics and Visualization (2019)

22. Jakobsson, E., Bin-Masood, T., Hotz, I., Abrikosov, I., Steneteg, P.: Topology-guided analysis
and visualization of charge density fields : A case study (2019). Submitted manuscript.

23. Jönsson, D., Steneteg, P., Sundén, E., Englund, R., Kottravel, S., Falk, M., Ynnerman, A.,
Hotz, I., Ropinski, T.: Inviwo – a visualization system with usage abstraction levels. IEEE
Transactions on Visualization and Computer Graphics (2019). DOI 10.1109/TVCG.2019.
2920639. https://inviwo.org/

24. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams.
ACM Journal of Experimental Algorithmics (2016)

25. Klacansky, P., Tierny, J., Carr, H.A., Geng, Z.: Fast and exact fiber surfaces for tetrahedral
meshes. IEEE Transactions on Visualization and Computer Graphics (2017)

26. Kontak, M., Vidal, J., Tierny, J.: Statistical Parameter Selection for Clustering Persistence
Diagrams. In: Proc. of SuperComputing workshop on Urgent HPC (2019)

27. Lacombe, T., Cuturi, M., Oudot, S.: Large Scale computation of Means and Clusters for
Persistence Diagrams using Optimal Transport. In: NIPS (2018)

28. Lukasczyk, J., Beran, J., Engelke, W., Falk, M., Friederici, A., Garth, C., Hofmann, L., Hotz,
I., Hristov, P., Köpp, W., Masood, T.B., Olejniczak, M., Rosen, P., Sohns, J.T., Weinkauf,
T., Werner, K., Tierny, J.: Report of the TopoInVis TTK Hackathon: Experiences, Lessons
Learned, and Perspectives. In: TopoInVis (2019)

29. Lukasczyk, J., Garth, C., Maciejewski, R., Tierny, J.: Localized Topological Simplification of
Scalar Data. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE VIS)
(2020)

30. Lukasczyk, J., Kinner, E., Ahrens, J., Leitte, H., Garth, C.: Voidga: A view-approximation
oriented image database generation approach. In: Proc. of IEEE Large Data Analysis and
Visualization (2018)

31. Lukasczyk, J., Weber, G.H., Maciejewski, R., Garth, C., Leitte, H.: Nested tracking graphs.
Computer Graphics Forum (Proc. of EuroVis) (2017)

32. von Luxburg, U.: A tutorial on spectral clustering. In: Statistics and Computing (2007)
33. Morozov, D.: Dionysus. http://www.mrzv.org/software/dionysus (2010)
34. Pascucci, V., Tricoche, X., Hagen, H., Tierny, J.: Topological Data Analysis and Visualization:

Theory, Algorithms and Applications. Springer (2010)
35. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in python. JMLR (2011)

36. Soler, M., Plainchault, M., Conche, B., Tierny, J.: Lifted wasserstein matcher for fast and robust
topology tracking. In: Proc. of IEEE Large Data Analysis and Visualization (2018)

37. Soler, M., Plainchault, M., Conche, B., Tierny, J.: Topologically controlled lossy compression.
In: Proc. of PacificVis (2018)

38. Tierny, J.: Topological Data Analysis for Scientific Visualization. Springer (2018)

https://topology-tool-kit.github.io/ieeeVis2018Tutorial.html
https://topology-tool-kit.github.io/ieeeVis2018Tutorial.html
https://inviwo.org/
http://www.mrzv.org/software/dionysus


An Overview of the Topology ToolKit 15

39. Tierny, J., Carr, H.: Jacobi fiber surfaces for bivariate reeb space computation. IEEE Transac-
tions on Visualization and Computer Graphics (Proc. of IEEE VIS) (2016)

40. Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The Topology
ToolKit. IEEE Transactions on Visualization and Computer Graphics (2017). https:
//topology-tool-kit.github.io/

41. Tierny, J., Pascucci, V.: Generalized topological simplification of scalar fields on surfaces.
IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE VIS) (2012)

42. TTK-Contributors: TTK Online Tutorials. https://topology-tool-kit.github.io/
tutorials.html

43. TTK-Contributors: TTK User Forum. https://groups.google.com/forum/#!forum/
ttk-users

44. TTK-Contributors: Tutorial on In-situ Topological Data Analysis with TTK and Catalyst.
https://topology-tool-kit.github.io/catalyst.html

45. TTK-Contributors: TTK Anaconda package (2019). https://anaconda.org/
conda-forge/topologytoolkit

46. Turner, K.,Mileyko,Y.,Mukherjee, S., Harer, J.: FréchetMeans forDistributions of Persistence
Diagrams. Disc. Compu. Geom. (2014)

47. VECSTEC-Consortium: Visual Exploration and Sampling ToolKit for Extreme Computing.
https://vestec-project.eu/

48. Vidal, J., Budin, J., Tierny, J.: Progressive Wasserstein Barycenters of Persistence Diagrams.
IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE VIS) (2019)

49. Vintescu, A., Dupont, F., Lavoué, G., Memari, P., Tierny, J.: Conformal factor persistence for
fast hierarchical cone extraction. In: Eurographics (short papers) (2017)

50. Xu, K., Zhang, H., Cohen-Or, D., Xiong, Y.: Dynamic harmonic fields for surface processing.
Computers & Graphics (2009)

https://topology-tool-kit.github.io/
https://topology-tool-kit.github.io/
https://topology-tool-kit.github.io/tutorials.html
https://topology-tool-kit.github.io/tutorials.html
https://groups.google.com/forum/#!forum/ttk-users
https://groups.google.com/forum/#!forum/ttk-users
https://topology-tool-kit.github.io/catalyst.html
https://anaconda.org/conda-forge/topologytoolkit
https://anaconda.org/conda-forge/topologytoolkit
https://vestec-project.eu/

	An Overview of the Topology ToolKit
	 Talha Bin Masood, Joseph Budin, Martin Falk, Guillaume Favelier, Christoph Garth, Charles Gueunet, Pierre Guillou, Lutz Hofmann, Petar Hristov, Adhitya Kamakshidasan, Christopher Kappe, Pavol Klacansky, Patrick Laurin, Joshua A. Levine, Jonas Lukasczyk, Daisuke Sakurai, Maxime Soler, Peter Steneteg, Julien Tierny, Will Usher, Jules Vidal, Michal Wozniak
	Introduction
	Scalar data
	Bivariate scalar data
	Uncertain scalar data
	Time-varying scalar data
	High-dimensional point cloud data
	In situ topological analysis
	Convenience
	Conclusion and perspectives
	Acknowledgments
	References
	References



