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Abstract

PTOPO is a maple package computing the topology and describing the geometry of a parametric
plane curve. The algorithm behind PTOPO constructs an abstract graph that is isotopic to the curve.
PTOPO exploits the benefits of the parametric representation and performs all computations in the
parameter space using exact computing. PTOPO computes the topology and visualizes the curve in
less than a second.

Comparison of maple parametric plot vs PTOPO
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1 Topology of Parametric Curves

The study of parametric curves is a classical topic in computational algebra and geometry Sendra and
Winkler (1999); Boissonnat and Teillaud (2006); Busé et al. (2019). The interest for computing with
parametric curves has been motivated, among others, by the omnipresence of parametric representations
in computer modeling and computer aided geometric design, e.g., Farouki et al. (2010).

PTOPO allows the computation of the topology of a real parametric plane curve in maple. In
particular, it computes an abstract graph that is isotopic (Boissonnat and Teillaud, 2006, p. 184) to the
curve in the embedding space.

Let C̃ be an algebraic curve over C2, parametrized by the map

φ : C 99K C̃

t 7→
(
φ1(t), φ2(t)

)
=
(p1(t)
q1(t)

,
p2(t)

q2(t)

)
, (1)

where pi, qi ∈ Z[t] are of size (d, τ) for i = 1, 2 , and C̃ is the Zariski closure of Im(φ). We call φ(t) a
parametrization of C̃. We study the real trace of C̃, that is C := C̃ ∩ R2.

The theoretical background of the PTOPO package, together with a detailed complexity analysis, is
given in Katsamaki et al. (2020).

PTOPO computes all points necessary for representing the geometry of the curve, as well as for
producing a certified visualization of plane curves. We call them special points and these are the cusps,
the multiple, the extreme and the isolated points. On top of that, PTOPO constructs a planar graph
whose vertices correspond to points on the curve connected accordingly. The drawing of the graph offers
a visualization of the curve in an R2-area that contains all its special points.

The computation of the parameters of special points is done by solving over R a bivariate system
of polynomials and univariate real solving. Using SLV ? and RootFinding[Isolate], we have a certified
implementation of general purpose exact computations with one and two real algebraic numbers, like
comparison and sign evaluations. For a parametrization φ, we consider the following system of bivariate
polynomials:

hi(s, t) =
pi(s)qi(t)− qi(s)pi(t)

s− t
, for i = 1, 2. (2)

We partition the roots of the bivariate system according to the kind of special point they correspond
to, denoting the sets by TC (cusps), TM (multiple points), TE (extreme points), TI (isolated points) and
TRP (real poles). Then, we compute the set of all intersections of the curve with a box containing all
special points, denoted by TB. Within this box, called characteristic box, the topology of the curve is fully
described.

Let T be the union of the above sets of parameters. Add a vertex vi for every distinct point corresponding
to a parameter in T and let λ(vi) be its label set (containing the parameter values giving the point). If for
two consecutive elements t1 < t2 in T there exists a pole s ∈ TRP such that t1 < s < t2, then we split T into
two lists: T1 containing the elements ≤ t1 and T2 containing the elements ≥ t2. Continue recursively for T1
and T2, until there are no poles between any two elements of the resulting list. This procedure partitions
T into T1, . . . , T`.

Consider each Ti with more than one element separately. For any two consecutive elements t1 < t2 in
Ti, with t1 ∈ λ(vi,1) and t2 ∈ λ(vi,2), we add the edge {vi,1, vi,2}. If p∞ exists, we add an edge to the graph
connecting the vertices corresponding to the last element of T` and the first element of the T1.

For plane curves, if N = max{d, τ}, the complexity of computing the topology becomes ÕB(N6).
However, visualizing the curve on top of the abstract graph construction, increases the bound to ÕB(N7).
We tested PTOPO for many parametric curves from the literature. In practice, for all examples, PTOPO
computes the topology in less than a second.

2



Author’s Name

2 Using PTOPO

The PTOPO package can be obtained from https://webusers.imj-prg.fr/~christina.katsamaki/

ptopo/. PTOPO requires the SLV package.

> r e s t a r t ;
LIBPATH := ” . . . the path to ptopo . . . ” :
read ( cat (LIBPATH, ”SLV. mpl ” ) ) ;
read ( cat (LIBPATH, ”ptopo . mpl ” ) ) ;
> with (PTOPO) ;

The easiest way to see the topology of a curve using PTOPO is to call the draw function with arguments

the parametrization of the curve φ =
(
p1
q1
, p2q2

)
.

The draw function can be called in two ways. It can take as arguments a list of numerators and a list
of denominators.

> p := [ t ˆ2 + 1 , 1 ] ;
q := [ t ˆ4 + 1 , t ˆ 3 ] ;
PTOPO:−draw (p , q ) ;

Alternatively, the argument can be a list of rational functions.

> phi := normal ( [ seq (p [ i ] / q [ i ] , i = 1 . . 2 ) ] ) ;
PTOPO:−draw ( phi ) ;

It is possible to use different variable names, the defaults are ’t’ and ’s’. The number of points to be
drawn within the smooth arcs is controlled by the last argument. If the argument is n ,then 2n+ 1 points
are computed. Increasing n increases the computational cost, but improves the drawing. Note that it does
not affect the topological correctness of the drawing.

> PTOPO:−draw (p , q , ’ t ’ , ’ s ’ , 5 ) ;

Although the draw command is enough, if a picture of the topology is needed, PTOPO provides
commands for obtaining the topologically interesting points separately. In that case, we initialize by giving
a parametrization, and just as like for the draw command, the parametrization can be given as a pair of
lists, the first containing the numerators and the second the denominators, or as a list of rational functions.

> p := [ t ˆ2 + 1 , 1 ] ;
q := [ t ˆ4 + 1 , t ˆ 3 ] ;
PTOPO:−parametr i za t i on (p , q ) ;
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> phi := [ ( 3∗ tˆ4+ 4∗ t ˆ3 + 32∗ t ˆ2 + 28∗ t + 99)/( tˆ2+t +7)∗( t ˆ2 + 1) ,
( ( t ˆ2 + t + 7 )ˆ3 )/ ( ( t +6)∗( t ˆ2 +1)ˆ2) ] ;

PTOPO:−parametr i za t i on ( phi ) ;

There is a point at infinity. We reparametrize....

----****---- The parametrization is proper ----****----

...

To compute the topology of the given parametric curve, we call

> PTOPO:− topo logy ( ) ;

After the topology is computed we can see a summary of the points of interest.

> PTOPO:−point summary ( ) ;

* Isolated points:

: [ -0.618034, -0.485868] i

: [ -0.618034, +0.485868] i

* Point at infinity:

: [ +0.020816, +0.002915]

* Poles:

: t: -0.142857 p

* Extreme points:

: [ +1.207107, +3.751142], t: -0.866081 e

: [ +1.207107, -3.751144], t: +0.458575 e

* Boundary points:

: [ +1.201470, +5.000000], t: -0.793994 b

: [ +1.201470, -5.000000], t: +0.407871 b

* Cusps:

: [ +0.000000, +0.000000], t: +7.000000 c

* Double points:

The output contains points in 2D (except for poles) and the corresponding parameter values (when
applicable). The labels are i for isolated points, p for poles, e for extreme points, d for double points, c
for cusps, b for boundary points.

Alternatively, can get separately isolated points, point at infinity, poles, extreme points, double points
and cusps. Moreover, we can see points intersecting the boundary of the box containing everything
topologically interesting.

3 Conclusion

The PTOPO package is practical and easy to use. It computes the topology of a curve and can also
visualize it. It is fast enough to make its use practical for most applications.

Since the algorithmic foundations for plane and space curves are not different, we plan to extend the
implementation to handle space curves in the future.
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