
HAL Id: hal-02954492
https://hal.archives-ouvertes.fr/hal-02954492

Submitted on 1 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

All You Need Is CONSTRUCT
Dominique Duval, Rachid Echahed, Frederic Prost

To cite this version:
Dominique Duval, Rachid Echahed, Frederic Prost. All You Need Is CONSTRUCT. [Research Re-
port] LIG (Laboratoire informatique de Grenoble); LJK / Grenoble University - INRIA. 2020. �hal-
02954492�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362230805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02954492
https://hal.archives-ouvertes.fr

All You Need Is CONSTRUCT

Dominique Duval1, Rachid Echahed2, and Frédéric Prost2

1LJK, Univ. Grenoble Alpes and CNRS, France
2LIG, Univ. Grenoble Alpes and CNRS, France

Abstract

In SPARQL, the query forms SELECT and CONSTRUCT have been
the subject of several studies, both theoretical and practical. However, the
composition of such queries and their interweaving when forming involved
nested queries has not yet received much interest in the literature. We
mainly tackle the problem of composing such queries. For this purpose,
we introduce a language close to SPARQL where queries can be nested at
will, involving either CONSTRUCT or SELECT query forms and provide
a formal semantics for it. This semantics is based on a uniform interpre-
tation of queries. This uniformity is due to an extension of the notion of
RDF graphs to include isolated items such as variables. As a key feature
of this work, we show how classical SELECT queries can be easily encoded
as a particular case of CONSTRUCT queries.

1 Introduction

Graph databases [8] are becoming ubiquitous in our society. The success of
this recent trend in the organization of data stems from different scientific,
technological and societal factors. There are different ways to encode data in
terms of graphs as proposed in the literature, see e.g., RDF graphs [12] or
Property graphs [9]. Various query languages can be associated to each data
graph representation. In this paper, we consider the W3C standards, namely
RDF [8] formalism to represent data graphs and its associated query language
SPARQL [11].

An RDF graph is defined as a set of RDF triples, where an RDF triple has the
form (subject, predicate, object). The subject is either an IRI (Internationalized
Resource Identifier) or a blank node, the predicate is an IRI and the object is
either an IRI, a literal (denoting a value such as a string, a number or a date)
or a blank node.

Notice that a predicate in an RDF triple cannot be a blank. For example, a
triple such as (Paul, blankrel, Henry) standing for “there is some relationship
between Paul and Henry” is not allowed in RDF, but only in generalized RDF
[12, Section 7]. Following the theoretical point of view we propose in this paper,
there is no harm to consider blank predicates within RDF triples. We thus
consider data graphs in a more general setting including RDF graphs.

The language SPARQL, which is the standard query language associated to
RDF, features different query forms such as SELECT or CONSTRUCT forms,

1

among others. Besides the W3C specifications of SPARQL [11], different authors
investigated formal semantics of the language [6, 10]. The semantics associated
to SPARQL queries are not uniform in general. Indeed, for instance the result
of a SELECT query is a multiset of mappings [3] while the result of a CON-
STRUCT query is a data graph [5]. Because of these differences between the
semantics of the different forms of queries, building nested queries becomes a
bit cumbersome.

However, the need of nested queries as a feature of query languages is well
known [4] and nested SPARQL queries have already received some interest in the
litterature. For example, in [3], nesting SELECT queries has been investigated
throughoutly but CONSTRUCT queries have not been considered ; while in
[7, 2], either SELECT or CONSTRUCT queries can be nested but due to the
chosen semantics the FROM clause is required to nest CONSTRUCT queries.

In this paper, we consider query nesting for a core language close to SPARQL
and propose a new unified semantics for the main query forms SELECT and
CONSTRUCT. For this purpose, we clearly distinguish between the evaluation
of a query and its result. The evaluation of query over a data graph is a set
of mappings. Here a mapping should be understood algebraically as a graph
homomorphism and not as a simple assignement of variables. The result of query
is obtained by simply projecting the right answer as a multiset of assignements
of variables or as a data graph according to the form of the query. From such
semantics, one can compose queries of different forms to build involved nested
subqueries.

Example 1. To illustrate briefly our proposal, we consider Example 1 in [2] and
reformulate it in our framework without using FROM clauses. In this example,
one looks for emails of pairs of co-authors.

SELECT ?Mail1 ?Mail2
WHERE
{ { CONSTRUCT { ?Aut1 co-author ?Aut2. }

WHERE
{ { ?Art bib:has-author ?Aut1 . ?Art bib:has-author ?Aut2. }

FILTER (!(?Aut1 = ?Aut2)) }
}

AND
{ ?Per1 co-author ?Per2 . ?Per1 foaf:mbox ?Mail1 .
?Per2 foaf:mbox ?Mail2 . }
}

In order to build such a uniform semantics we had to extend the notion
of RDF graphs to include isolated items. As a key feature of this work, we
show how SELECT queries can be easily encoded as a particular case of CON-
STRUCT queries.

The paper is organized as follows. In the next section, we introduce the main
operators of a query graph algebra which are used later on when investigating
the semantics of the proposed graph query language. In Section 3, a SPARQL-
like language called GrAL is introduced where queries are defined as specific
patterns. This language is defined by its syntax and semantics together with
some illustrating examples. Concluding remarks and future work are given in
Section 4.

2

2 The Graph Query Algebra

The Graph Query Algebra is a family of operations which are used in Section 3
for defining the evaluation of queries in the Graph Algebraic Query Language
GrAL. First mappings are introduced in Section 2.1, then operations for com-
bining sets of mappings are defined in Section 2.2. It is usual to describe the
evaluation of queries in SPARQL in terms of mappings from variables to RDF
terms, following [6]. In this paper, more precisely, we consider each mapping as
a morphism between graphs.

2.1 Sets of mappings

Definition 1 (graph on A). For any set A and any element t = (s, p, o) in A3,
the elements s, p and o are called respectively the subject, the predicate and
the object of t. A graph X on A is made of a subset XN of A called the set of
nodes of X and a subset XT of A3 called the set of triples of X, such that the
subject and the object of each triple of X is a node of X. The nodes of X which
are neither a subject nor an object are called the isolated nodes of X. The set
of labels of a graph X on A is the subset A(X) of A made of the nodes and
predicates of X.

Remark 1. Given two graphs X1 and X2 on A their union X1∪X2 is defined by
(X1 ∪X2)N = (X1)N ∪ (X2)N and (X1 ∪X2)T = (X1)T ∪ (X2)T , and similarly
their intersection X1 ∩ X2 is defined by (X1 ∩ X2)N = (X1)N ∩ (X2)N and
(X1∩X2)T = (X1)T ∩ (X2)T . It follows that A(X1∪X2) = A(X1)∪A(X2) and
A(X1 ∩X2) = A(X1) ∩A(X2).

Definition 2 (morphism of graphs on A). Let X and Y be graphs on a set A.
A morphism f (of graphs on A) from X to Y , denoted f : X → Y , is a partial
function from A(X) to A(Y) which preserves nodes and preserves triples, in the
following sense. Let Dom(f) be the domain of definition of f , i.e., the subset
of A(X) where the partial function f is defined. Then f preserves nodes if
f(n) ∈ YN for each n ∈ XN ∩Dom(f) and f preserves triples if f3(t) ∈ YT for
each t ∈ XT ∩Dom(f)3. Then fN : XN → YN and fT : XT → YT are the partial
functions restrictions of f and f3, respectively. Note that when n is an isolated
node of X then the node f(n) does not have to be isolated in Y . The domain of
a morphism f : X → Y is X and its range is Y . A morphism f : X → Y fixes
a subset C of A if f(x) = x for each x in C ∩A(X). Then the partial function
f is determined by its restriction to A(X) \C. An isomorphism of graphs on A
is a morphism f : X → Y of graphs on A that is invertible, which means that
both fN : XN → YN and fT : XT → YT are bijections.

Definition 3 (image). The image of a graph X by any partial function f from
A(X) to A is the graph made of the nodes f(n) for n ∈ XN ∩Dom(f) and the
triples f3(t) for t ∈ XT ∩ Dom(f)3. It is also called the image of f and it is
denoted either Im(f) or Im(X) when f is clear from the context. Thus each
partial function f from A(X) to A is a morphism of graphs on A from X to
f(X).

3

Definition 4 (labels). From now on, the set A of labels of graphs is built from
three disjoint countably infinite sets I , B and V , called respectively the sets of
resource identifiers, blanks and variables. We denote IB = I ∪B, BV = B ∪V
and IBV = I ∪ B ∪ V . For each graph X on IBV and each subset Y of IBV ,
the set A(X) ∩ Y of labels of X which belong to Y is denoted Y (X).

Definition 5 (data and query graph, mapping). Data graphs are finite graphs
on IB and query graphs are finite graphs on IBV . Thus each data graph can
be seen as a query graph. A mapping m from a query graph X to a data graph
Y , denoted m : X → Y , is a morphism of query graphs from X to Y that fixes
I .

Remark 2. Intuitively, the resource identifiers are the “constants”, that are
fixed by morphisms, while both the blanks and variables are the “variables”, that
may be instantiated. It is only in construct queries (Section 3.1) that blanks and
variables play truly distinct roles. Thus, the precise symbol used for representing
a blank or a variable does not matter: a data graph is defined “ up to blanks”
and a query graph “ up to blanks and variables”, and some care is required when
several data or query graphs are in the context.

Remark 3. Definition 5 means that a mapping m : X → Y is a partial function
from IBV (X) to IB(Y) that fixes I and that preserves nodes and triples. Thus,
if there is a mapping from X to Y then I (X) ⊆ I (Y). Each mapping m : X → Y
determines a partial function µ : BV → IB, defined by µ(x) = m(x) when
x ∈ BV (X) and µ(x) is undefined when x ∈ BV \ BV (X). Conversely, each
partial function µ : BV → IB can be extended as µ : IBV → IB such that
µ(x) = x for each x ∈ I ; if µ : IBV → IB preserves nodes and triples from
X to Y then µ determines a mapping m : X → Y , defined by m(x) = µ(x)
for each x ∈ IBV (X). In [6] and in subsequents papers like [5, 3] a solution
mapping, or simply a mapping, is a partial function µ : V → IB; since it is
assumed in these papers that patterns are blank-free, such mappings are related
to our mappings in the same way as above, by extending µ as µ : IBV → IB by
µ(x) = x for each x ∈ IB.

Definition 6 (set of mappings). Let X be a query graph and Y a data graph.
A set of mappings from X to Y , denoted m : X ⇒ Y , is a finite set of mappings
m : X → Y . The domain of m : X ⇒ Y is X, its range is Y , and its image is
the subgraph of Y union of the images of the mappings in m.

Remark 4 (table). A set of mappings m : X ⇒ Y can be represented as a
table T (m) made of one line for each mapping m in m and one column for each
x ∈ BV (X), with the entry in line m and column x equal to m(x) ∈ IB(Y)
when it is defined and ⊥ otherwise. The order of the rows and columns of T (m)
is arbitrary. Note that m is determined by the table T (m) together with X and
Y , but in general m : X ⇒ Y cannot be recovered from T (m) alone.

Definition 7 (compatible mappings). Two mappings m1 : X1 → Y1 and m2 :
X2 → Y2 are compatible, written as m1 ∼ m2, if m1(x) = m2(x) for each
x ∈ BV (X1) ∩ BV (X2). This means that for each x ∈ BV (X1) ∩ BV (X2),
m1(x) is defined if and only if m2(x) is defined and then m1(x) = m2(x).
Given two compatible mappings m1 : X1 → Y1 and m2 : X2 → Y2, there is a
unique mapping m1 ./ m2 : X1 ∪X2 → Y1 ∪ Y2 such that m1 ./ m2 ∼ m1 and

4

m1 ./ m2 ∼ m2, which means that m1 ./ m2 coincides with m1 on X1 and with
m2 on X2.

Remark 5 (About RDF and SPARQL). When dealing with RDF and SPARQL
[12, 11] the set I is the disjoint union of the set of IRIs (Internationalized
Resource Identifiers) and the set of literals. An RDF graph is a set of triples
on IB, that is, a graph on IB without isolated node, where all predicates are
IRIs and only objects can be literals. Thus an isomorphism of RDF graphs, as
defined in [12], is an isomorphism of graphs on IB as in Definition 2. The set
of RDF terms of an RDF graph X is the set IB(X). Similarly a basic graph
pattern of SPARQL is a set of triples on IBV where all predicates are IRIs or
variables and only objects can be literals. Thus data graphs and query graphs
generalize RDF graphs and basic graph patterns, respectively.

2.2 Operations on sets of mappings

In this Section we define some elementary transformations between sets of
mappings.

Remark 6 (expressions and values). We assume the existence of a set Expr of
expressions with subsets V (expr) of V and B(expr) of B for each expression
expr. For each query graph X the expressions on X are the expressions expr
such that V (expr) ⊆ V (X) and B(expr) ⊆ B(X). We assume that there is
a subset Val of I ∪ {⊥} called the set of values and that for each mapping
m : X → Y and each expression expr on X there is a value m(expr) ∈ Val. We
assume that the boolean values true and false are in Val, as well as the numbers
and strings.

The first transformation on sets of mappings is the fundamental join opera-
tion.

Definition 8 (join). Given two sets of mappings m1 : X1 ⇒ Y1 and m2 : X2 ⇒
Y2, the join of m1 and m2 is the set of mappings Join(m1,m2) : X1 ∪ X2 ⇒
Y1 ∪ Y2 made of the mappings m1 ./ m2 for all compatible mappings m1 ∈ m1

and m2 ∈ m2:
Join(m1,m2) = {m1 ./ m2 | m1 ∈ m1 ∧m2 ∈ m2 ∧m1 ∼ m2} : X1 ∪X2 ⇒

Y1 ∪ Y2.

Subsets of a set of mappings can be defined by a filter operation.

Definition 9 (filter). Let m : X ⇒ Y be a set of mappings and let expr be an
expression on X. The filter of m by expr is the set of mappings m in m where
m(expr) = true:

Filter(m, expr) = {m | m ∈ m ∧m(expr) = true} : X ⇒ Y .

Given a mapping m : X ⇒ Y and a query graph X ′ contained in X, let
m|X′ denote the restriction of m to X ′.

Definition 10 (restriction). Given a set of mappings m : X ⇒ Y and a query
graph X ′ contained in X, the restriction of m to X ′ is the set of mappings
RestrictX′(m) : X ′ → Y made of the restrictions m|X′ of the mappings m in m
to X ′:

5

Restrict(m,X ′) = {m|X′ | m ∈ m} : X ′ ⇒ Y .
Since different mappings in m may coincide on X ′, the number of mappings in
RestrictX′(m) may be smaller than the number of mappings in m.

Notation 1 (Notation). Given a mapping m : X → Y and a query graph X ′

containing X, there are several ways to extend m as m′ : X ′ → Y ∪ Im(X ′)
where Im(X ′) is the data graph image of X ′ by m′. For instance, depending on
the kind of labels in D = IBV (X ′) \ IBV (X):

• For any D, m can be extended as m′ : X ′ → Y ∪ Im(m′) such that
m′(x) = x for each x ∈ D∩I and m′(x) is undefined (denoted m′(x) = ⊥)
for each x ∈ D ∩ BV . This is denoted:

m′ = Ext⊥(m,X ′) : X ′ → Y ∪ Im(m′).

• If D ⊆ IB then m can be extended as m′ : X ′ → Y ∪ Im(m′) such that
m′(x) = x for each x ∈ D∩I and m′(x) is a fresh blank for each x ∈ D∩B.
This is denoted:

m′ = ExtIB (m,X ′) : X ′ → Y ∪ Im(m′).

• If D is made of one variable var and expr is an expression on X then m
can be extended as m′ : X ′ → Y ∪{m(expr)} such that m′(var) = m(expr).
This is denoted:

m′ = Extvar≈expr (m,X ′) : X ′ → Y ∪ {expr}.

Definition 11 (extension). Given a set of mappings m : X ⇒ Y and a query
graph X ′ containing X, let D = IBV (X ′) \ IBV (X). We define the following
extensions of m as m′ : X ′ ⇒ Y ∪ Im(X ′) where Im(X ′) = Y ∪m′(X ′):

• The extension of m to X ′ by undefined functions is:
Extend⊥(m,X ′) = {Ext⊥(m,X ′) | m ∈ m} : X ′ ⇒ Y ′.

• If D ⊆ IB then the extension of m to X ′ by fresh blanks is:
Extend IB (m,X ′) = {ExtIB (m,X ′) | m ∈ m} : X ′ ⇒ Y ′.

• If D = {var} for a variable var and expr is an expression on X then the
extension of m to X ′ by binding var to the values of expr is:

Extendvar≈expr (m,X ′) = {Extvar≈expr (m,X ′) | m ∈ m} : X ′ ⇒
Y ∪ {expr}.

Note that the number of mappings in any extension of m is the same as in m.

For defining the union of two sets of mappings, we first extend them by
undefined functions in such a way that they both get the same domain and
range.

Definition 12 (union). The union Union(m1,m2) : X1 ∪X2 ⇒ Y1 ∪ Y2 of two
sets of mappings m1 : X1 ⇒ Y1 and m2 : X2 ⇒ Y2 is the set-theoretic union of
their extensions to X1 ∪X2 by undefined functions:

Union(m1,m2) = Extend⊥(m1, X1 ∪X2) ∪ Extend⊥(m2, X1 ∪X2) : X1 ∪
X2 ⇒ Y1 ∪ Y2.

Finally, we will use the well-known projection operation for building a mul-
tiset of mappings from a set of mappings.

6

Definition 13 (projection). The projection of a set of mappings m : X ⇒ Y
to a subgraph X ′ of X is the multiset of mappings Project(m,X ′) with base set
Restrict(m,X ′) : X ′ ⇒ Y and with multiplicity for each mapping m′ the number
of mappings m ∈ m such that m′ = m|X′ . Thus the number of mappings in
Project(m,X ′), counting multiplicities, is always the same as the number of
mappings in m.

3 The Graph Algebraic Query Language

In this Section we introduce the Graph Algebraic Query Language GrAL. Its
syntax and semantics for expressions and patterns are defined in a mutually
recursive way: this is mainly due to the fact that expressions can be defined from
patterns, using the EXISTS and NOT EXISTS syntactic blocks. Syntactically,
the queries of GrAL are seen as patterns from the beginning: a query is a
specific kind of pattern. Semantically, the value of a pattern over a data graph
is a set of mappings (Section 3.1). In addition, when a pattern is a query then
its result can be derived from its value: the result of a contruct-query is a data
graph, the result of a select-distinct-query is a set of mappings, and the result
of a select-query is a multiset of mappings, as in SPARQL (Section 3.2).

3.1 Expressions, patterns and queries

A basic expression is defined as usual from constants (numbers, strings,
boolean values) and variables (and blanks, which act as variables here), using
formal operations like +, −, concat , >, ∧,... The basic expressions on X are
defined as in Remark 6.

Definition 14 (Syntax of expressions). An expression expr in the language
GrAL is either a basic expression or an expression of the form EXISTS P1 or
NOT EXISTS P1 for some pattern P1, which are expressions on X for every
query graph X.

Definition 15 (Syntax of patterns). A pattern P in the language GrAL is
defined inductively as follows.

• A query graph is a pattern, called a basic pattern.

• If P1 and P2 are patterns then the following are patterns:

P1 AND P2

P1 UNION P2

• If P1 is a pattern and expr an expression on P1 then the following is a
pattern:

P1 FILTER expr

• If P1 is a pattern, expr an expression on P1 and var a fresh variable then
the following is a pattern:

P1 BIND (expr AS var)

7

• If P1 is a pattern and R a query graph such that V (R) ⊆ V (P1) then the
following is a pattern:

CONSTRUCT R WHERE P1

• If P1 is a pattern and S a finite set of variables such that S ⊆ V (P1) then
the following are patterns:

SELECT DISTINCT S WHERE P1

SELECT S WHERE P1

The semantics of expressions and patterns are defined in a mutually recursive
way. The value of an expression expr on X with respect to a set of mappings
m : X ⇒ Y is a family eval(m, expr) = (m(expr))m∈m of elements of Val
(Definition 16). The value of a pattern P over a data graph G is a set of
mappings [[P]]G : [P] ⇒ G(P) from a query graph [P] depending only on P to
a data graph G(P) that contains G (Definitions 18 and 19).

Definition 16 (Evaluation of expressions). The value of an expression expr on
X with respect to a set of mappings m : X ⇒ Y is the family eval(m, expr) =
(m(expr))m∈m of elements of Val defined as follows:

• If expr is a basic expression then m(expr) is the given value of expr with
respect to m.

• If expr = EXISTS P1 then m(expr) is true if there is some m1 ∈ [[P1]]G
such that m ∼ m1 and false otherwise.

• If expr = NOT EXISTS P1 then m(expr) is the negation of m(EXISTS P1).

Definition 17 (Equivalence of patterns). Two patterns are equivalent if they
have the same value over G for every data graph G, up to a renaming of blanks.

Definition 18 (Evaluation of non-query patterns). The value of a pattern P
of GrAL over a data graph G is a set of mappings [[P]]G : [P] ⇒ G(P) from
a query graph [P] depending only on P to a data graph G(P) that contains G.
Below is the first part of the recursive definition of the value of P over G, the
second part is given in Definition 19.

• If P is a basic pattern then [P] = P , G(P) = G and
[[P]]G : P ⇒ G is the set of all total mappings from P (as a query

graph) to G.

• If P1 and P2 are patterns then

[[P1 AND P2]]G = Join([[P1]]G, [[P2]]G(P1)) : [P1]∪ [P2]⇒ (G(P1))
(P2)

.

• If P1 and P2 are patterns then

[[P1 UNION P2]]G = Union([[P1]]G, [[P2]]G(P1)) : [P1]∪[P2]⇒ (G(P1))
(P2)

.

• If P1 is a pattern and expr an expression on P1 then
[[P1 FILTER expr]]G = Filter([[P1]]G, expr) : [P1]⇒ G(P1).

• If P1 is a pattern, expr an expression on P1 and var a fresh variable then
[[P1 BIND (expr AS var)]]G = Extendvar≈expr ([[P1]]G, [P1] ∪ {var}) :

[P1] ∪ {var} ⇒ G(P1) ∪ {m(expr) | m ∈ [[P1]]G}.

8

Definition 18 and Remark 7 are illustrated by Examples 5 to 9.

Remark 7. Whenever [[P1]]G = G then [[P1 AND P2]]G and [[P1 UNION P2]]G
are symmetric in P1 and P2. This is the case when the pattern P contains
no BIND, CONSTRUCT, SELECT DISTINCT or SELECT. In particular, a
pattern composed of basic patterns related by ANDs is equivalent to the basic
pattern union of its components. But in general the data graph G(P1) may be
strictly larger than G, so that the semantics of P1 AND P2 and P1 UNION P2

is not symmetric in P1 and P2. The semantics of patterns in GrAL is a set
semantics: each set of mappings [[P1 UNION P2]]G is a set, not a multiset.
However for select-queries it is possible to keep the multiplicities, as explained
in Remark 11.

The value of P1 FILTER EXISTS P2 can be expressed without mentioning
expressions. Indeed, it follows from Definition 18 that

[[P1 FILTER EXISTS P2]]G = Restrict(Join([[P1]]G, [[P2]]G(P1)), [P1]).
In order to evaluate P1 BIND (expr AS var) over G, the fresh variable var

is added to the query graph [P1] as an isolated node and the values m(expr) are
added to the data graph G as nodes, which are isolated if they are not yet nodes
of G.

Definition 19 (Evaluation of query patterns). Below is the second part of the
recursive definition of the value of a pattern P of GrAL over a data graph G.
The first part is given in Definition 18.

• If P1 is a pattern and R a query graph such that V (R) ⊆ V (P1) then
[[CONSTRUCT R WHERE P1]]G = Restrict(Extend IB ([[P1]]G, [P1]∪

R), R) :
R⇒ G(P1) ∪ Im(R).

• If P1 is a pattern and S a finite set of variables such that S ⊆ V (P1) then
[[SELECT DISTINCT S WHERE P1]]G = Restrict([[P1]]G, S) :

S ⇒ G ∪ Im(S).

• If P1 is a pattern and S a finite set of variables such that S ⊆ V (P1) let
Gr(S) denote the query graph made of a fresh blank node s and a triple
(s, pvar , var) for some chosen element pvar of I for each variable var in
S, then

[[SELECT S WHERE P1]]G = Restrict(Extend IB ([[P1]]G, [P1]∪Gr(S)),Gr(S)) :

Gr(S)⇒ G ∪ Im(Gr(S))

Definition 19 and Remark 8 are illustrated by Examples 2 to 4.

Remark 8. In order to evaluate Q = CONSTRUCT R WHERE P over G one
has to look for the mappings of P in [[P]]G, then build a copy of R for each
such mapping and finally merge these copies by duplicating in a suitable way the
blanks of R. The construction of the set of mappings p = [[Q]]G : R ⇒ G(Q)

from m = [[P]]G : [P] ⇒ G(P) can be described as follows. First a family of
renaming functions (dm)m∈m is built, such that each dm is an injective function
from B(R) to the set of blanks which are fresh, i.e., the blanks which are not
used anywhere in the context (thus, specifically, not in G), and the functions dm
have pairwise disjoint images. For each m the function dm is used for extending

9

m as the unique mapping n on [P] ∪R such that n(x) = m(x) for each x ∈ [P]
and n(x) = dm(x) for each x ∈ B(R). Then n is restricted as p with domain R
by restricting each n ∈ n to the subgraph R of [P] ∪R.

[P]

ExtendIB

⊆

m

��

[P] ∪R

Restrictn

��

R⊇

p

��
G(P) ⊆ G(Q) G(Q)=

Figure 1: Evaluation of a construct query.

For select-distinct queries, Definition 19 implies that
SELECT DISTINCT S WHERE P1 ≡ CONSTRUCT S WHERE P1

Indeed, the set of variables S can be seen as a query graph made of isolated
nodes, all of them variables. Then the set IB(S) is empty and consequently
n = m: the extension step is useless.

For select-queries, Definition 19 implies that
SELECT S WHERE P1 ≡ CONSTRUCT Gr(S) WHERE P1

The set IB(Gr(S)) is non-empty: there is one blank s in Gr(S) and one element
pvar of I for each element var of S. It follows that n extends each m ∈ m with
a fresh blank, image of s, which can be seen as an identifier for each m ∈ m.
When restricting n for computing p this identifier is kept, so that all mappings
remain distinct.

3.2 Queries: value and result

Definition 15 says that each query is a pattern and Definition 19 says that the
value of a query is its value as a pattern, so that it is always a set of mappings,
whatever the query form is. But the result of a query, which is defined as a
by-product of its evaluation, does depend on the query form: it is a data graph
for construct-queries, a set of mappings for select-distinct-queries and a multiset
of mappings for select-queries.

Definition 20 (syntax of queries). A query in the language GrAL is a pattern
of one of the following forms, where P is a pattern, R a query graph and S a
finite set of variables.

• CONSTRUCT R WHERE P

• SELECT DISTINCT S WHERE P

• SELECT S WHERE P

The value of a query Q over a data graph G in the language GrAL is its
value as a pattern (Definition 19), it is the set of mappings [[Q]]G : [Q]⇒ G(Q).
In addition, each query Q has a result over G, which is defined below from its
value [[Q]]G in a way that depends on the form of the query.

Definition 21 (result of queries). The result of a query Q over a data graph
G is defined from the value [[Q]]G : [Q]⇒ G(Q) as follows:

10

• If Q = CONSTRUCT R WHERE P its result is the data graph image of
[Q] by [[Q]]G:

Result(Q,G) = Im([[Q]]G).

• If Q = SELECT DISTINCT S WHERE P its result is the set of mappings
[[Q]]G:

Result(Q,G) = [[Q]]G : S ⇒ G(Q).

• If Q = SELECT S WHERE P its result is the multiset of mappings pro-
jection of [[Q]]G:

Result(Q,G) = Project([[Q]]G, S) : S ⇒ G(Q).

CONSTRUCT SELECT DISTINCT

R

Imagep

��

R=

Im(p)

��
G(Q) Result(Q,G)⊇

S

=p

��

S=

Result(Q,G)
��

G(Q) G(Q)=

SELECT

Gr(S)

Projectp

��

S⊇

Result(Q,G)
��

G(Q) G(Q)=

Figure 2: Result of queries.

Remark 9 (RDF and SPARQL). When Q is a construct-query and the data
graph G is an RDF graph, it may happen that the data graph Result(Q,G) is
not an RDF graph. But the largest RDF graph included in Result(Q,G) is
the answer to Q over G in the sense of [5, Section 5]: this derives from the
description of Result(Q,G) in Remark 8. Using this Remark 8 we also get a
description of the result of select-distinct-queries and select-queries that is the
same as in [3, Section 2.3]: For select-distinct-queries, the result is the set of
mappings which consists of the restrictions of all mappings in [[P]]G. For select-
queries, the result is the multiset of mappings with base set the restrictions of
all mappings m in [[P]]G, each one with multiplicity the corresponding number
of m’s.

Proposition 1 (value). For any query Q with pattern P and any data graph G,
the number of mappings in [[Q]]G cannot be larger than the number of mappings
in [[P]]G.

Proof. Since select-queries and select-distinct-queries are equivalent to construct-
queries with the same pattern, we may assume thatQ = CONSTRUCT R WHERE P
for a pattern P and a query graph R. With the notations m = [[P]]G, n =
Extend IB (m, [P]∪R) and p = Restrict(n,R), so that p = [[Q]]G, we know from
Definitions 10 and 11 that Card(p) ≤ Card(n) = Card(m).

Remark 10 (result). In general the value of a construct-query cannot be de-
duced from its result alone. However, for select-distinct-queries the value is the

11

result and for select-queries the value may be recovered fom the result by choosing
any fresh blanks as the images of the unique blank of Gr(S).

Remark 11 (UNION and UNION ALL). The union of two multisets M1 and
M2, respectively based on the sets X1 and X2, is usually defined as the multiset
M based on the set X1∪X2 where the multiplicity of each element is the sum of
its multiplicities in M1 and M2. When dealing with select-queries, the keyword
UNION is used in SPARQL for the union as multisets. In SQL the union as
multisets is obtained via the keyword UNION ALL, while UNION returns the
union of the base sets. In GrAL, the keyword UNION always returns a set of
mappings. In order to get the union as multisets of mappings we define UNION
ALL as follows, with S = V (P1) ∪V (P2):

P1 UNION ALL P2 =
{SELECT S WHERE P1} UNION {SELECT S WHERE P2}.

See Examples 5 and 6.

Remark 12 (subqueries). Since queries are specific patterns, they can be com-
bined at will between themselves and with other patterns, using the various syn-
tactic building blocks for getting patterns. In particular, this provides various
kinds of subqueries. See Example 8. Note that for computing the value or the
result of a query, one must use the value of each subquery, not its result.

3.3 Some examples

In the examples we assume, as in RDF, that the set I is the disjoint union of
the set of IRIs and the set of literals, where the literals are strings, integers or
boolean values. The literals can be combined by the usual operations on strings,
integers and booleans.

We choose a concrete syntax that is similar to the syntax of SPARQL. For in-
stance a set of triples {(s1, p1, o1), (s2, p2, o2)} is written s1 p1 o1 . s2 p2 o2 . and
braces { } are used instead of parentheses (). The evaluation of a query
Q = CONSTRUCT R WHERE P is illustrated as in Figure 1, where each set
of mappings m is described by its table T (m), as in Remark 4:

[P] ⊆ [P] ∪R ⊇ R
‖ ‖ ‖

T (m) T (n) T (p)

⇓ ⇓ ⇓
G(P) ⊆ G(Q) = G(Q)

Example 2 (CONSTRUCT).
This example shows how blanks are handled, whether they are in G or in R.

Data G
_:a employeeName "Alice" .

_:a employeeId 12345 .

_:b employeeName "Bob" .

_:b employeeId 67890 .

Query Q
CONSTRUCT { ?x name _:z }

WHERE { ?x employeeName ?y }

12

?x employeeName ?y . ⊆ ?x employeeName ?y .

?x name _:z .
⊇ ?x name _:z .

‖ ‖ ‖
?x ?y

_:a "Alice"

_:b "Bob"

?x ?y _:z

_:a "Alice" _:z1

_:b "Bob" _:z2

?x _:z

_:a _:z1

_:b _:z2

⇓ ⇓ ⇓

G ⊆
G ∪
_:a name _:z1

_:b name _:z2

=
G ∪
_:a name _:z1

_:b name _:z2

It follows that the result of Q over G is the data graph Result(Q,G):

Result(Q,G)
_:a name _:z1 .

_:b name _:z2 .

Example 3 (SELECT DISTINCT).
A select-distinct-query is equivalent to a construct-query.

Data G
_:a1 name "Alice" .

_:a1 mbox alice@example.com .

_:a2 name "Alice" .

_:a2 mbox asmith@example.com .

Query Q
SELECT DISTINCT { ?y }

WHERE { ?x name ?y }

Equivalent construct-query:

Query Q1
CONSTRUCT { ?y }

WHERE { ?x name ?y }

The value of Q1 over G is computed as in Example 2, it is also the value of Q
over G:

?x name ?y . =
?x name ?y .

?y .
⊇ ?y .

‖ ‖ ‖
?x ?y

_:a1 "Alice"

_:a2 "Alice"

?x ?y

_:a1 "Alice"

_:a2 "Alice"

?y

"Alice"

⇓ ⇓ ⇓
G = G = G

It follows that the result of Q over G is the set of mappings with table:

Result(Q,G)
?y

"Alice"

Example 4 (SELECT).
A select-query is equivalent to a construct-query, using the query graph Gr(S).
The data graph G is the same as in Example 3 and the query Q is a select-query,
equivalent to the construct-query Q1:

13

Query Q
SELECT ?y

WHERE { ?x name ?y }

Query Q1
CONSTRUCT { _:s py ?y }

WHERE { ?x name ?y }

The value of Q1 over G is computed as in Examples 2 and 3, it is the value of
Q over G:

?x name ?y . ⊆ ?x name ?y .

_:s py ?y .
⊇ _:s py ?y .

‖ ‖ ‖
?x ?y

_:a1 "Alice"

_:a2 "Alice"

?x ?y _:s

_:a1 "Alice" _:s1

_:a2 "Alice" _:s2

?y _:s

"Alice" _:s1

"Alice" _:s2

⇓ ⇓ ⇓

G ⊆
G ∪
_:s1 py "Alice" .

_:s2 py "Alice" .

=
G ∪
_:s1 py "Alice" .

_:s2 py "Alice" .

It follows that the result of Q over G is the multiset of mappings with table:

Result(Q,G)
?y

"Alice"

"Alice"

Example 5 (UNION).
This example has to be compared with Example 6.

Data G
a b c .

Query Q
SELECT ?x

WHERE { { ?x ?y ?z } UNION { ?x ?y ?z } }

Definition 18 implies that P UNION P ≡ P for any basic pattern P , so that
here the query Q is equivalent to Q1:

Query Q1
SELECT ?x

WHERE { ?x ?y ?z }

The evaluation of Q1 over G runs as follows:

?x ?y ?z . ⊆ ?x ?y ?z .

_:s px ?x .
⊇ _:s px ?x .

‖ ‖ ‖
?x ?y ?z

a b c

?x ?y ?z _:s

a b c _:s1

?x _:s

a _:s1

⇓ ⇓ ⇓

a b c . ⊆ a b c .

_:s1 px a .
=

a b c .

_:s1 px a .

Thus, the result of Q over G is the multiset of mappings with table:
Result
?x

a

14

Example 6 (UNION ALL).
This example has to be compared with Example 5.

Data G
a b c .

Query Q
SELECT ?x

WHERE { { ?x ?y ?z } UNION ALL { ?x ?y ?z } }

As in Remark 11 this means that the query Q is equivalent to Q1:
Query Q1

SELECT ?x

WHERE {

{ SELECT { ?x ?y ?z } WHERE { ?x ?y ?z } }

UNION

{ SELECT { ?x ?y ?z } WHERE { ?x ?y ?z } } }

Here the pattern P = SELECT {?x?y?z}WHERE {?x?y?z} is not basic, and
we now check that in fact P UNION P is not equivalent to P .
The following diagram illustrates the value of P over G, then the value of P
over G(P) and finally their union as sets of mappings, which is the value of
P UNION P over G. The difference between [[P]]G and [[P]]G(P) is that the
value of _:s must be a fresh blank, so that once some blank, say _:s1, is chosen
for [[P]]G then another blank, say _:s2, must be chosen for [[P]]G(P) .

[[P]]G [[P]]G(P) [[PUNIONP]]G

_:s px ?x .

_:s py ?y .

_:s pz ?z .

_:s px ?x .

_:s py ?y .

_:s pz ?z .

_:s px ?x .

_:s py ?y .

_:s pz ?z .

‖ ‖ ‖

?x ?y ?z _:s

a b c _:s1

?x ?y ?z _:s

a b c _:s2

?x ?y ?z _:s

a b c _:s1

a b c _:s2

⇓ ⇓ ⇓
a b c .

_:s1 px a .

_:s1 py b .

_:s1 pz c .

a b c .

_:s1 px a . _:s2 px a .

_:s1 py b . _:s2 px b .

_:s1 pz c . _:s2 px c .

a b c .

_:s1 px a . _:s2 px a .

_:s1 py b . _:s2 px b .

_:s1 pz c . _:s2 px c .

Finally, by projecting on ?x, the result of Q over G is the multiset of mappings
with table:

Result
?x

a

a

Example 7 (EXISTS).
This example is based on Example 4.6 in [3]. The query in [3] is similar to the
query Q0 below, however in the language GrAL this query is not syntactically
valid since V (BOUND(?x)) is not included in V ({(?y, ?y?y)}). A valid query
Q is obtained by shifting braces.

15

Data G
a a a .

Query Q0
SELECT ?x

WHERE

{ ?x ?x ?x

FILTER EXISTS

{ ?y ?y ?y

FILTER BOUND(?x)

}

}

Query Q
SELECT ?x

WHERE

{ { ?x ?x ?x

FILTER EXISTS { ?y ?y ?y }

}

FILTER BOUND(?x)

}

Thus Q = SELECT ?x WHERE { {P1 FILTER EXISTS P2} FILTER BOUND (?x) }
with P1 = {(?x, ?x, ?x)} and P2 = {(?y, ?y, ?y)}. The unique mapping m1

from P1 to G is such that m1(?x) = a and the unique mapping m2 from
P2 to G is such that m2(?y) = a, they are compatible, so that the value of
P1 FILTER EXISTS P2 over G is {m1}. Since m1 binds ?x to a, the value of
the expression BOUND (?x) is true, thus the value of Q over G is [[Q]]G =
{m1} : {(?x, ?x, ?x)} ⇒ {(a, a, a)}.

Example 8 (subquery).
This example is based on the example following Example 4.6 in [3].

Data G
a a a .

Query Q
SELECT ?x

WHERE

{ ?x ?x ?x

FILTER EXISTS

{ ?y ?y ?y

AND

{ SELECT ?x

WHERE { ?x a ?y }

}

}

}

Here Q = SELECT ?x WHERE P with P = P1 FILTER EXISTS P2

and P2 = P3 AND P4 where P4 is a select-query.

Since P1 is a basic pattern [[P1]]G : P1 ⇒ G is such that T ([[P1]]G) =
?x

a

Similarly [[P3]]G : P3 ⇒ G is such that T ([[P3]]G) =
?y

a

The value of query P4 over G is [[P4]]G : {(:s, px, ?x)} ⇒ G ∪ {(:s1, px, a)}

such that (as in Example 4) T ([[P4]]G) =
?x _:s

a _:s1

Thus [[P2]]G : P2 ⇒ G is such that T ([[P2]]G) =
?x ?y _:s

a a _:s1

and finally [[P]]G : P1 ⇒ G is such that T ([[P]]G) =
?x

a

When this table is seen as a multiset of mappings, it is the result of Q over G:

Result
?x

a

Example 9 (assignment).
This example is based on Example 5.4 in [3].

16

Data G
e a b .

e c d .

f f f .

Query Q
SELECT ?x

WHERE

{ ?x a b

FILTER EXISTS

{ ?x c d

AND

{ ?y ?y ?y BIND (?y AS ?x)

}

}

}

Note that the query Q is syntactically correct since ?x 6∈ V ({(?y, ?y, ?y)}). The
main point in the evaluation of Q over G is that the subexpression EXISTS P
evaluates to false, as explained below. Then clearly the result of the query is the
empty multiset of mappings. The unique mapping in [[{(?x, c, d)}]]G sends ?x
to e. The unique mapping in [[{(?y, ?y, ?y)}]]G sends ?y to f then BIND (?y
AS ?x) extends this mapping by sending ?x to f . Thus the mappings are not
compatible and the join is the empty set of mappings, as required.

4 Conclusion

We proposed a core language GrAL close to SPARQL for which we proposed
a uniform semantics. This semantics allows one to compose different queries
and patterns regardless the different forms of the queries. In this paper we
did not include all SPARQL query forms such as ASK or DESCRIBE, nor did
we mention aggregates or so. We intend to include such SPARQL features in
a forthcoming report. The proposed framework has been illustrated on RDF
graphs and SPARQL queries but it is tailored to fit any kind of graph structures
with a clear notion of graph homomorphism, see e.g., the different structures
mentioned in [1]. Coming back to the title of the paper, which might be a bit
provocative, it emphasizes on a feature of our semantics which makes it possible
to encode easily any SELECT or SELECT DISTINCT query as a CONSTRUCT
query.

References

[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reut-
ter, and Domagoj Vrgoc. Foundations of modern query languages for graph
databases. ACM Comput. Surv., 50(5):68:1–68:40, 2017.

[2] Renzo Angles and Claudio Gutiérrez. Subqueries in SPARQL. In Pablo
Barceló and Val Tannen, editors, Proceedings of the 5th Alberto Mendel-
zon International Workshop on Foundations of Data Management, Santi-
ago, Chile, May 9-12, 2011, volume 749 of CEUR Workshop Proceedings.
CEUR-WS.org, 2011.

[3] Mark Kaminski, Egor V. Kostylev, and Bernardo Cuenca Grau. Query
nesting, assignment, and aggregation in SPARQL 1.1. ACM Trans.
Database Syst., 42(3):17:1–17:46, 2017.

[4] Won Kim. On optimizing an sql-like nested query. ACM Trans. Database
Syst., 7(3):443–469, 1982.

17

[5] Egor V. Kostylev, Juan L. Reutter, and Mart́ın Ugarte. CONSTRUCT
queries in SPARQL. In 18th International Conference on Database Theory,
ICDT 2015, March 23-27, 2015, Brussels, Belgium, pages 212–229, 2015.

[6] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and com-
plexity of SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45, 2009.

[7] Axel Polleres, Juan L. Reutter, and Egor V. Kostylev. Nested constructs vs.
sub-selects in SPARQL. In Reinhard Pichler and Altigran Soares da Silva,
editors, Proceedings of the 10th Alberto Mendelzon International Workshop
on Foundations of Data Management, Panama City, Panama, May 8-10,
2016, volume 1644 of CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[8] Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases. O’Reilly
Media, Inc., 2013.

[9] Marko A. Rodriguez and Peter Neubauer. Constructions from dots and
lines. CoRR, abs/1006.2361, 2010.

[10] Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of
SPARQL query optimization. In Luc Segoufin, editor, Database Theory -
ICDT 2010, 13th International Conference, Lausanne, Switzerland, March
23-25, 2010, Proceedings, ACM International Conference Proceeding Se-
ries, pages 4–33. ACM, 2010.

[11] SPARQL 1.1 Query Language. W3C Recommendation, march 2013.

[12] RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, February
2014.

18

