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Abstract. Specialized worker profiles of crowdsourcing platforms may
contain a large amount of identifying and possibly sensitive personal
information (e.g., personal preferences, skills, available slots, available
devices) raising strong privacy concerns. This led to the design of privacy-
preserving crowdsourcing platforms, that aim at enabling efficient crowd-
sourcing processes while providing strong privacy guarantees even when
the platform is not fully trusted. In this paper, we propose two contribu-
tions. First, we propose the PKD algorithm with the goal of supporting
a large variety of aggregate usages of worker profiles within a privacy-
preserving crowdsourcing platform. The PKD algorithm combines to-
gether homomorphic encryption and differential privacy for computing
(perturbed) partitions of the multi-dimensional space of skills of the actual
population of workers and a (perturbed) COUNT of workers per partition.
Second, we propose to benefit from recent progresses in Private Informa-
tion Retrieval techniques in order to design a solution to task assignment
that is both private and affordable. We perform an in-depth study of the
problem of using PIR techniques for proposing tasks to workers, show that
it is NP-Hard, and come up with the PKD PIR Packing heuristic that
groups tasks together according to the partitioning output by the PKD
algorithm. In a nutshell, we design the PKD algorithm and the PKD PIR
Packing heuristic, we prove formally their security against honest-but-
curious workers and/or platform, we analyze their complexities, and we
demonstrate their quality and affordability in real-life scenarios through
an extensive experimental evaluation performed over both synthetic and
realistic datasets.

1 Introduction

Crowdsourcing platforms are online intermediates between requesters and work-
ers. The former have tasks to propose to the latter, while the latter have profiles
(e.g., skills, devices, experience, availabilities) to propose to the former. Crowd-
sourcing platforms have grown in diversity, covering application domains ranging
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from micro-tasks1 or home-cleaning2 to collaborative engineering3 or specialized
software team design4.

The efficiency of crowdsourcing platforms especially relies on the wealth of
information available in the profiles of registered workers. Depending on the
platform, a profile may indeed contain an arbitrary amount of information:
professional or personal skills, daily availabilities, minimum wages, diplomas, pro-
fessional experiences, centers of interest and personal preferences, devices owned
and available, etc. This holds especially for platforms dedicated to specialized
tasks that require strongly qualified workers5. But even micro-tasks platforms
may maintain detailed worker profiles (see, e.g., the qualification system of
Amazon Mechanical Turk that maintains so-called premium qualifications6 - e.g.,
sociodemographic information such as age range, gender, employment, marital
status, etc. - in the profiles of workers willing to participate to surveys). The
availability of such detailed worker profiles is of utmost importance to both
requesters and platforms because it enables:

Primary usages of worker profiles: to target the specific set of workers rele-
vant for a given task (through e.g., elaborate task assignment algorithms [30]).

Secondary usages of worker profiles: to describe the population of workers
available, often through COUNT aggregates, in order e.g., to promote the
platform by ensuring requesters that workers relevant for their tasks are
registered on the platform7, or to participate to the task design by letting
requesters fine-tune the tasks according to the actual population of workers
(e.g., setting wages according to the rarity of the skills required, adapting
slightly the requirements according to the skills available).

Both primary and secondary usages are complementary and usually supported by
today’s crowdsourcing platforms, in particular by platforms dedicated to highly
skilled tasks and workers8.

However, the downside of fine-grained worker profiles is that detailed in-
formation related to personal skills can be highly identifying (e.g., typically a
unique combination of location/skills/centers of interest) or sensitive (e.g., costly
devices or high minimum wages may correspond to a wealthy individual, various
1 https://www.mturk.com/
2 https://www.handy.com/
3 https://www.kicklox.com/
4 https://tara.ai/
5 We adopt in this paper a broad definition of crowdsourcing, including in particular

freelancing platforms (similarly to [29]).
6 https://requester.mturk.com/pricing
7 See for example the Kicklox search form (https://www.kicklox.com/en/) that inputs

a list of keywords (typically skills) and displays the corresponding number of workers
available.

8 See for example, Kicklox (https://www.kicklox.com/en/) or Tara (https://tara.ai/).
The secondary usage consisting in promoting the platform is sometimes performed
through a public access to detailed parts of worker profiles (e.g., Malt (https:
//www.malt.com/), 404works (https://www.404works.com/en/freelancers)).

https://www.mturk.com/
https://www.handy.com/
https://www.kicklox.com/
https://tara.ai/
https://requester.mturk.com/pricing
https://www.kicklox.com/en/
https://www.kicklox.com/en/
https://tara.ai/
https://www.malt.com/
https://www.malt.com/
https://www.404works.com/en/freelancers
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personal traits may be inferred from centers of interest9). Recent privacy scan-
dals have shown that crowdsourcing platforms are not immune to negligences or
misbehaviours. Well-known examples include cases where personally identifiable
information of workers is trivially exposed online [27] or where precise geoloca-
tions are illegitimately accessed10,11. It is noticeable that workers nevertheless
expect platforms to secure their data and to protect their privacy in order to
lower the privacy threats they face [40]. Moreover, in a legal context where laws
firmly require businesses and public organizations to safeguard the privacy of
individuals (such as the European GDPR12 or the California Consumer Privacy
Act13), legal compliance is also a strong incentive for platforms for designing
and implementing sound privacy-preserving crowdsourcing processes. Ethics in
general, and privacy in particular, are indeed clearly identified as key issues for
next generation future of work platforms [15]. Most related privacy-preserving
works have focused on the primary usage of worker profiles, such as the task-
assignment problem (e.g., based on additively-homomorphic encryption [21] or
on local differential privacy [5]14).

Our goal in this paper is twofold: (1) consider both primary and secondary
usages as first-class citizens by proposing a privacy-preserving solution for com-
puting multi-dimensional COUNTs over worker profiles and a task assignment
algorithm based on recent affordable Private Information Retrieval (PIR) tech-
niques, and (2) integrate well with other privacy-preserving algorithms possibly
executed by a platform without jeopardizing the privacy guarantees by requiring
our privacy model to be composable both with usual computational cryptographic
guarantees provided by real-life encryption schemes and with classical differential
privacy guarantees as well.

The two problems are not trivial. First, we focus on secondary usages. The
problem of computing multi-dimensional COUNTs over distributed worker pro-
files in a privacy-preserving manner is not trivial. Interactive approaches - that
issue a privacy-preserving COUNT query over the set of workers each time
needed (e.g., a requester estimates the number of workers qualified for a given

9 See, e.g., http://applymagicsauce.com/about-us
10 For example, internal emails that were leaked from Deliveroo indicate that the

geolocation system of Deliveroo was used internally for identifying the riders that
participated to strikes against the platform.
https://www.lemonde.fr/culture/article/2019/09/24/
television-cash-investigation-a-la-rencontre-des-nouveaux-proletaires-du-web_
6012758_3246.html

11 In another example, an Uber executive claimed having tracked a journalist using the
company geolocation system.
https://tinyurl.com/y4cdvw45

12 https://eur-lex.europa.eu/eli/reg/2016/679/oj
13 https://www.caprivacy.org/
14 Note that limiting the information disclosed to the platform (e.g., perturbed infor-

mation about worker profiles) relieves platforms from the costly task of handling
personal data. The European GDPR indeed explicitely excludes anonymized data
from its scope (see Article 4, Recital 26 https://gdpr-info.eu/recitals/no-26/).

http://applymagicsauce.com/about-us
https://www.lemonde.fr/culture/article/2019/09/24/television-cash-investigation-a-la-rencontre-des-nouveaux-proletaires-du-web_6012758_3246.html
https://www.lemonde.fr/culture/article/2019/09/24/television-cash-investigation-a-la-rencontre-des-nouveaux-proletaires-du-web_6012758_3246.html
https://www.lemonde.fr/culture/article/2019/09/24/television-cash-investigation-a-la-rencontre-des-nouveaux-proletaires-du-web_6012758_3246.html
https://tinyurl.com/y4cdvw45
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.caprivacy.org/
https://gdpr-info.eu/recitals/no-26/
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task) - are inadequate because the number of queries would be unbounded. This
would lead to out-of-control information disclosure through the sequence of
COUNTs computed [8,11]. Non-interactive approaches are a promising avenue
because they compute, once for all and in a privacy-preserving manner, the
static data structure(s) which are then exported and queried by the untrusted
parties (e.g., platform, requesters) without any limit on the number of queries.
More precisely, on the one hand, hierarchies of histograms are well-known data
structures that support COUNT queries and that cope well with the stringent
privacy guarantees of differential privacy [34]. However, they do not cope well
with more than a few dimensions [34], whereas a worker profile may contain more
skills (e.g., a dozen), and they require a trusted centralized platform. On the
other hand, privacy-preserving spatial decompositions [9,42] are more tolerant
to a higher number of dimensions but require as well a trusted centralized plat-
form. Second, algorithms for assigning tasks to workers while providing sound
privacy guarantees have been proposed as alternatives against naive spamming
approaches - where all tasks are sent to all workers. However they are either
based (1) on perturbation only (e.g., [5]) and suffer from a severe drop in quality
or (2) on encryption only (e.g., [21]) but they do not reach realistic performances,
or (3) they focus on the specific context of spatial crowdsourcing and geolocation
data (e.g., [39]).
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Fig. 1. Overview of the PKD algorithm: supporting secondary usages of worker profiles
with privacy guarantees

Our Contribution. First, we propose to benefit from the best of the two non-
interactive approaches described above by computing a privacy-preserving space
partitioning of the worker profiles (for coping with their dimensionality) based
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on perturbed 1-dimensional histograms (for their nice tolerance to differentially
private perturbations). We propose the Privacy-preserving KD-Tree algorithm
(PKD for short, depicted in Figure 1), a privacy-preserving algorithm for comput-
ing a (perturbed) multi-dimensional distribution of skills of the actual population
of workers. The PKD algorithm is distributed between mutually distrustful
workers and an untrusted platform. It consists in splitting recursively the space of
skills in two around the median (similarly to the KD-tree construction algorithm)
based on the 1-dimensional histogram of the dimension being split, and it protects
workers’ profiles all along the computation by combining additively-homomorphic
encryption together with differentially private perturbation. No raw worker pro-
file is ever communicated, neither to the platform nor to other workers. The
output of the PKD algorithm is a hierarchical partitioning of the space of skills
together with the (perturbed) COUNT of workers per partition (see Figure 1).
The PKD algorithm is complementary to privacy-preserving task assignment
works and can be used in conjunction with them provided that the privacy models
compose well. In particular, since our privacy model is a computational variant
of differential privacy, the PKD algorithm composes well with state-of-the-art
approaches [5,21] since they are based on usual computational cryptographic
model or differential privacy model. Second, we propose to benefit from recent
progresses in Private Information Retrieval techniques [2] in order to design a
solution to task assignment that is both private and affordable. We perform an
in-depth study of the problem of using PIR techniques for proposing tasks to
workers, show that it is NP-Hard, and come up with the PKD PIR Packing
heuristic that groups tasks together according to the partitioning output by the
PKD algorithm. Obviously, the PKD PIR Packing heuristic composes well with
the PKD algorithm.

More precisely, we make the following contributions:
1. We design the PKD algorithm, a distributed privacy-preserving algorithm

for computing a multi-dimensional hierarchical partitioning of the space of
skills within a population of workers.

2. We formally prove the security of the PKD algorithm against honest-but-
curious attackers. The PKD algorithm is shown to satisfy a computational
variant of differential privacy called the εκ-SIM-CDP model. We provide a
theoretical analysis of its complexity.

3. We provide an in-depth study of the problem of using PIR techniques for
proposing tasks to workers and design the PKD PIR Packing heuristic that
benefits from the partitioning computed by the PKD algorithm for grouping
tasks together. We show that the PKD PIR Packing heuristic satisfies our
privacy model.

4. We provide an extensive experimental evaluation of the PKD algorithm and
of the PKD PIR Packing heuristic over synthetic and realistic data that
demonstrates their quality and performance in various scenarios. Our realistic
skills dataset is built from data dumps of StackExchange online forums.
The paper is organized as follows. Section 2 introduces the participant model,

the security and privacy models, and the technical tools necessary in the rest of
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the paper. Section 3 describes the PKD algorithm in details and formally analyzes
its cost and security. Section 4 studies the problem of using PIR techniques for
task assignment, describes the PKD PIR Packing heuristic, and formally analyzes
its security. Section 5 experimentally validates their quality and efficiency. We
discuss updates in the contexts of the PKD algorithm and of the PKD PIR
Packing heuristic in Section 6. In Section 7, we survey the related work. Finally,
Section 8 concludes and discusses interesting future works.

2 Preliminaries

2.1 Participants Model

Three types of participants collaborate together during our crowdsourcing pro-
cess. Workers are interested in solving tasks that are relevant to their profiles;
requesters propose tasks to be solved by relevant workers; and the platform is an
intermediary between them.

A worker profile pi ∈ P is represented by an n-dimensional vector of floats,
where each float value pi[j] ∈ [0, 1] represents the degree of competency of the
worker i with respect to the jth skill. The set of skills available and their indexes
within workers’ profiles is static and identical for all profiles.

A task tk ∈ T is made of two parts. First, the metadata part is a precise
description of the worker profiles that are needed for the task completion. More
precisely it is an n-dimensional subspace of the space of skills. This work does
not put any constraint on the kind of subspace described in the metadata part
(e.g., hyper-rectangles, hyper-spheres, arbitrary set operators between subspaces).
However, for the sake of concreteness, we focus below on metadata expressed as
hyper-rectangles. More formally, the metadata mk ∈M of a task tk ∈ T is an
n-dimensional vector of ranges over skills where the logical connector between
any pair of ranges is the conjunction. We call mk[j] the range of float values
(between 0 and 1) for task k and skill j. The second part of a task consists in the
necessary information for performing the task and is represented as an arbitrary
bitstring {0, 1}∗. In this work, we essentially focus on the metadata part of tasks.
We say that a worker and a task match if the point described by the worker
profile belongs to the subspace described by the task metadata, i.e., worker pi
and task tk match if and only if ∀j ∈ [0, n− 1], then pi[j] ∈ mk[j].

We do not make strong assumptions on the resources offered by participants.
Workers, requesters, and the platform are equipped with today’s commodity
hardware (e.g., the typical CPU/bandwidth/storage resources of a personal
computer). However, we expect the platform to be available 24/7 - contrary to
workers or requesters - similarly to a traditional client/server setting.

We assume that all participants follow the honest-but-curious attack model in
that they do not deviate from the protocol but make use of the information dis-
closed, in any computationally-feasible way, for inferring personal data. Workers
may collude together up to a reasonable bound denoted by τ in the following.
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2.2 Privacy Tools

Computational Differential Privacy. Our proposal builds on two families of
protection mechanisms: a differentially private perturbation scheme and a se-
mantically secure encryption scheme. The resulting overall privacy model thus
integrates the two families of guarantees together. The original ε-differential
privacy model [12] (Definition 1) applies to a randomized function f and aims at
hiding the impact of any possible individual value on the possible outputs of f.
In our context, the function f is the PKD algorithm. The ε-differential privacy
model requires that the probability that any worker profile pi ∈ P participates
to the computation of f be close to the probability that pi does not participate
by an eε factor, whatever the output of f. ε-differential privacy holds against
information-theoretic adversaries (unlimited computational power).

Definition 1 (ε-differential privacy [12]). The randomized function f satis-
fies ε-differential privacy, where ε > 0, if:

Pr[f(P1) = O] ≤ eε · Pr[f(P2) = O]

for any set O ∈ Range(f) and any set of worker profiles P1 and P2 that differ
in at most one profile.

The εκ-SIM-CDP differential privacy relaxation [31] requires that the function
actually computed be computationally indistinguishable from a pure (information
theoretic) ε-differentially private function to adversaries whose size is polynomial
in the security parameter κ ∈ N. The εκ-SIM-CDP model is especially relevant
in our context because we combine a differentially private perturbation scheme
(information theoretic guarantees) together with an additively-homomorphic en-
cryption scheme that provides computational security guarantees for performance
reasons.

Definition 2 (εκ-SIM-CDP privacy [31] (simplified)). The randomized
function fκ provides εκ-SIM-CDP if there exists a function Fκ that satisfies
ε-differential privacy and a negligible function negl(·), such that for every set
of worker profiles P, every probabilistic polynomial time adversary Aκ, every
auxiliary background knowledge ζκ ∈ {0, 1}∗, it holds that:

|Pr[Ak(fκ(P, ζκ)) = 1]− Pr[Ak(Fκ(P, ζκ)) = 1]| ≤ negl(κ)

Achieving Differential Privacy with the Geometric Mechanism. A common
mechanism for satisfying ε-differential privacy with functions that output floats
or integers consists in adding random noise to their outputs. In particular, the
Geometric Mechanism (Definition 3) allows functions that output integers to be
perturbed and to satisfy ε-differential privacy, while maximizing utility for count
queries as shown in [16].

Definition 3 (Geometric mechanism [16]). Let G denote a random variable
following a two-sided geometric distribution, meaning that its probability density
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function is g(z, α) = 1−α
1+αα

|z| for z ∈ Z. Given any function f : N|X | → Zk the
Geometric Mechanism is defined as MG(x, f(.), α) = f(x)+(Y1, . . . , Yk) where Yi
are independent identically distributed random variables drawn from G(e−ε/∆f),
and ∆f is its global sensivity ∆f = max

P1,P2

||f(P1)− f(P2)||1 for all (P1,P2) pairs

of sets of worker profiles s.t. P2 is P1 with one profile more.

Intuitively, a distribution is said to be infinitely divisible if it can be decom-
posed as a sum of an arbitrary number of independent identically distributed
random variables. This property allows to distribute the generation of the noise
over a set of participants. It is valuable in contexts such as ours where no single
trusted party, in charge of generating the noise, exists. Definition 4 below formal-
izes the infinite divisibility property, and Theorem 1 shows that the two-sided
geometric distribution is infinitely divisible.

Definition 4 (Infinite Divisibility [36]). A random variable Y is infinitely
divisible if for every n ∈ N there exist independent identically distributed random
variables X1,1, . . .X1,n such that

Y =

n∑
i=1

Xi,n

Theorem 1 (Two-sided Geometric Distribution is Infinitely Divisible).
Let Y follow two-sided geometric distribution of probability density function
d(z, ε) = 1−ε

1+ε ε
|z| for any integer z. Then the distribution of Y is infinitely

divisible. Furthermore, for every integer n ≥ 1, the representation of Definition 4
holds. Each Xi,n is distributed as X1

n −X2
n where X1

n and X2
n are independent

identically distributed random variable with negative binomial distribution, with
probability density function g(k, n, α) =

(
k−1+1/n

k

)
(1− α)kα1/n.

To prove this result, we will use a similar result for the geometric distribution.

Theorem 2 (Geometric Distribution is Infinitely Divisible [37]). Let Y
follow a geometric distribution of probability density function f(k, α) = (1−α)αk
for k ∈ N. Then the distribution of Y is infinitely divisible. Furthermore, for
every integer n ≥ 1, the representation of Definition 4 holds. Each Xi,n is
distributed as Xn where Xn are independent identically distributed random
variable with negative binomial distribution, with probability density function
g(k, n, α) =

(
k−1+1/n

k

)
(1− α)kα1/n.

Proof. Using this theorem, proving that a two-sided geometric distribution
with density function d(z, α) = 1−α

1+αα
|z|is equal to the difference between two

independent identically distributed geometric distributions with density function
f(k, α) = (1− α)αk is enough to deduce the result. Let X+ and X− be two such
random variables.

P (X+ −X− = z) =


if z ≥ 0∑∞
j=0((1− α)αz+j)((1− α)αj)

if z < 0∑∞
j=0((1− α)αj)((1− α)α−z+j)
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P (X+ −X− = z) =
∑∞
j=0(1− α)2α|z|+2j

= (1− α)2α|z|
∑∞
j=0(α

2)j

= (1− α)2α|z| 1
1−α2

= (1−α)2
(1−α)(1+α)α

|z|

= 1−α
1+αα

|z|

= P (Y = z)

for Y a random variable with a two-sided geometric distribution with parameter
α.

Finally, Theorem 3 states that differential privacy composes with itself grace-
fuly.

Theorem 3 (Sequential and Parallel Composability [13]). Let fi be a set
of functions such that each provides εi-differential privacy. First, the sequential
composability property of differential privacy states that computing all functions
on the same dataset results in satisfying (

∑
i εi)-differential privacy. Second, the

parallel composability property states that computing each function on disjoint
subsets provides max(εi)-differential privacy.

Additively-Homomorphic Encryption. Additively-homomorphic encryption schemes
essentially allow to perform addition operations over encrypted data. Any
additively-homomorphic encryption scheme fits our approach provided that
it satisfies the following properties. First, it must provide semantic security
guarantees. Stated informally, this property requires that given a ciphertext, the
public encryption key, and possible auxiliary information about the plaintext,
then no polynomial-time algorithm is able to gain non-negligible knowledge
on the plaintext [17]. Second, it must be additively-homomorphic. Informally,
given a and b two integers, E the encryption function, X the encryption key,
K the decryption key, D the decryption function, and +h the homomorphic
addition operator, then DK(EX(a) +h EX(b)) == a+ b. Third, the scheme must
support non-interactive threshold decryption. We additionally use this optional
property, available in some schemes (e.g.,[10,32]). It allows the decryption key
to be split in nK key-shares Ki such that a complete decryption requires to
perform independently T ≤ nK partial decryptions by distinct key-shares. Note
that in a typical key generation setting, pairs of keys are generated once and for
all by a non-colluding, independent entity. The Paillier cryptosystem [32] and
its Damgard-Jurik generalization [10] are instances of encryption schemes that
provide the desired properties and are widely available. We refer the interested
reader to the original papers for details.

Private Information Retrieval. In a nutshell, Private Information Retrieval (PIR)
techniques allow a client to download binary objects (e.g., a record, a movie)
stored on a server in a library of objects, without revealing to the server which
of the binary objects has been downloaded. We call this function the PIR-get
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function. Emerging PIR protocols are now affordable and able to cope with the
latency constraints of real-life scenarios (e.g., in media consumption scenarios
[2,7,18]). Our approach makes use of the security guarantees of PIR techniques.
In this paper, for concreteness, we consider a PIR protocol based on additively-
homomorphic encryption called XPIR [2]. It is part of the computational PIR
family of protocols, that provides computational security guarantees. However
our approach could use other protocols, that provide different efficiency/security
tradeoffs (e.g., an information-theoretic PIR protocol such as [7] that uses efficient
bitwise XOR operators provides information-theoretic security but assumes no
collusion between several supporting servers).

XPIR [2] considers a library L of n binary objects, called items in the following.
All items are assumed to share the same length in bits, denoted l. The library is
stored as a matrix of y-bit integers: L ∈ ({0, 1}y)n×(l/y). XPIR uses an additively-
homomorphic cryptosystem (see above) and implements the PIR-get function as
follows. XPIR assumes that each item has a unique id, and that clients know
the list of ids of the existing items in L. Now a client wants to retrieve the
item of id i and thus calls PIR-get(i). First, it instanciates a vector of n bits,
initializes all bits to 0s, sets to 1 the bit at id i, encrypts each bit separately,
and sends the resulting encrypted vector - denoted c - to the server. Second, for
all j in [1, l/y], the server computes rj =

∏n
i=1 c[i]

Li,j (recall that the product
between two encrypted integers is the way the additively-homomorphic addition
operator +h is performed by the underlying cryptosystem) and sends it back to
the client. Each rj is thus actually a sum of (1) encrypted 0s (corresponding to
the encrypted 0s in c) and (2) an encrypted bit-subsequence of the requested
binary object (corresponding to the encrypted 1 in c). Third and finally, the
client decrypts each rj received - obtaining hence the various bit-subsequences
of the item requested - and concatenates them to obtain the complete bitstring.

Three main parameters may affect the efficiency of PIR protocols: the size of
the library itself, that has to be read for each call to the PIR-get function, the
size of items, that impacts the size of downloads (multiplied by an expansion
factor, the ratio between the size of an encrypted value and the clear value), and
the number of items (again, multiplied by the expansion factor), for the size of
upload of the request.

2.3 Space Partitionning based on KD-Trees

A KD-Tree [4] is a well-known data structure designed for partitioning datasets
in k-dimensional balanced partitions. It is constructed by recursively dividing
the space in two around the median. It is widely used to index data. Moreover, it
contains valuable information about the data distribution (it is balanced) without
sizing individual data points.

2.4 Quality Measure

We evaluate the quality of the (perturbed) output of the PKD algorithm by
measuring the loss of accuracy resulting from its use rather than using non-
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protected raw profiles. As stated in Definition 5, given a set of tasks T , we
compute the average absolute error between (1) the approximate number of
workers matching with each task t ∈ T according to the (perturbed) partitions
and counts and (2) the exact non-protected number of matching workers. Note
that the error comes from the perturbation used for satisfying differential privacy
but also from the inherent approximation due to the use of a coarse grain data
structure (partitions and counts) synthesizing raw data.

Definition 5 (Quality). Given a set of worker profiles P, a set of tasks T ,
and, for each task t ∈ T , the real number of workers matching with it tmatch and
its approximated value t̃match according to the perturbed distribution we provide.
We compute the quality of the distribution as

Q =
1

|T |
∑
t∈T

|tmatch − t̃match|
tmatch

We also measure the quality of our assignment by using precision (Defini-
tion 6), to size the number of tasks that are uselessly downloaded by workers.
Note that in our context, all matching tasks will be downloaded, such that a
recall measure is not relevant as it will always be equal to 1.

Definition 6 (Precision). For a given assignment, we call precision the frac-
tion of downloaded tasks that match with the worker. This precision is computed
as:

precision =
1

|T |
∑
t∈T

(
|{w : match(w, t) ∧ download(w, t)}|

|{w : download(w, t)}|
)

where match(w, t) (resp. download(w, t)) is True if worker w matches with
(resp. dowloads) task t, and False otherwise.

3 The PKD Algorithm

Our proposal comes from a rethinking of the centralized version of the KD-
Tree construction algorithm [4], which is essentially a recursive computation of
medians. In our setting, each worker holds its own, possibly sensitive, profile
and no single centralized party is trusted. Centralizing the profiles of workers
in order to compute a KD-Tree over them is therefore not possible. A naive
approach could make use of an order-preserving encryption scheme [1] (OPE),
but these schemes are well-known for their low security level [6] and especially
their inherent weaknesses against frequency analysis attacks. We rather favor
sound privacy guarantees - without sacrificing efficiency - by approaching the
median through the computation of histograms, with a computation distributed
between workers and the platform. Similarly to its centralized counterpart, each
iteration of our recursive algorithm divides the space of skills in two around the
median (of one dimension at a time) given a perturbed histogram representing
the distribution of a single skill in the crowd. For simplicity, the current version
of the algorithm terminates after a fixed number of splits, but more elaborate
termination criteria can be defined.
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3.1 Computing Private Medians

From Private Sum to Private Histogram. We start by explaining how to perform
differentially private sums based on noise-shares and additively-homomorphic
additions. It allows the platform to get the result of the addition of a single bin
over n different workers while satisfying differential privacy. We then show that
this function is a sufficient building block for computing perturbed histograms.

Let us consider a fixed ε > 0, a maximum size of collusion τ ∈ N, τ > 0, a
set of workers P (of size |P|), and a single bin bi associated to a range φ. Each
worker pi holds a single private local value, i.e., her skill on the dimension that
is currently being split. Initially, the bin bi is set to 0 on all workers. Only the
workers whose local values fall within the range of the bin bi set bi to 1. Our
first goal is to compute the sum of the bins bi of all workers pi ∈ P such that no
set of participant smaller than τ can learn any information that has not been
perturbed to satisfy ε-differential privacy.

Workers Platform

1: encrypt
private values

and noise
bi = EX(bi + νi).

2: send
encrypted
values bi

3: computes
homomorphic
addition b∗4: sends

the sum5: partially
decrypt

the sum :
DKi(b∗)

6: send
decrypted result

7: combines
decryptions

and publishes
differentially

private results

Fig. 2. Computing a Private Sum

The privacy-preserving sum algorithm, depicted in Fig. 2, considers that keys
have been generated and distributed to workers, such that T > τ key-shares are
required for decryption (see Section 2.2). The algorithm consists in the following
steps:

Step 1 (each worker) - Perturbation and Encryption First, each worker
perturbs its value by adding a noise-share, denoted νi, to it. Noise-shares
are randomly generated locally such that the sum of |P| − τ shares satisfies
the two-sided geometric distribution (see Definition 3 for the geometric
distribution, and Theorem 1 for its infinite divisibility). Note that noise-
shares are overestimated15 to guarantee that the final result is differentially
private even for a group of up to τ workers sharing their partial knowledge

15 We require that the sum of |P| − τ noise-shares be enough to satisfy differential
privacy but we effectively sum |P| noise-shares. Note that summing more noise-shares
than necessary does not jeopardize privacy guarantees.
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of the total noise (their local noise-share). Each worker then encrypts bi + νi
by the additively-homomorphic encryption scheme in order to obtain bi :
bi = EX(bi + νi).

Step 2 (platform) - Encrypted Sum The platform sums up together the
encrypted values received : b∗ =

∑
∀i bi where the sum is based on the

additively-homomorphic addition +h.
Step 3 (subset of workers) - Decryption The platform finally sends the

encrypted sum b∗ to at least T distinct workers. Upon reception, each worker
partially decrypts it based on her own key-share - DKi(b∗) - and sends it back
to the platform. The platform combines the partial decryptions together and
obtains b̃∗, i.e., the differentially private sum of all private bins bi.

Algorithm 1: PrivMed : Privacy-Preserving Estimation of the Median
in the PKD algorithm

Data:
P: Set of workers
Dmin,Dmax: Definition domain of the private local value of workers
l: Number of bins
(φ0, . . . , φl−1) : the l ranges of the bins
X : public encryption key (same for all workers).
{Ki} : private decryption keys (one per worker).
εm: differential privacy budget for this iteration
τ : maximum size of a coalition (τ < |P|)
T : number of key-shares required for decryption (T > τ)
Result: m̃: estimate of the median of the workers’ local private values

1 for all workers pi ∈ P do
2 Compute l noise shares νi,j = R1 −R2, where 0 ≤ j < l and R1 and R2 are

independent identically distributed random variables with probability
density function g(k) =

(k−1+ 1
|P|−τ
k

)
(e−εm)k(1− e−εm)

1
|P|−τ

3 Set the value of the bin bi,k = EX(1 + νi,k), where φk is the histogram range
within which the local value of the worker falls.

4 Set the value of the other bins to: bi,j = EX(νi,j), j 6= k.

5 Platform : sum the encrypted bins at the same index received from different
workers in order to obtain the encrypted perturbed histogram :
(b∗,0 =

∑
∀i bi,0, . . . , b∗,l−1 =

∑
∀i bi,l−1).

6 Workers (T distinct workers) : Decrypt partially the encrypted perturbed
histogram bin per bin and send the resulting partially decrypted histogram to
the platform : (DKi(b∗,0), . . . , DKi(b∗,l−1)).

7 Platform : Combine the partial decryptions together to obtain the decryption
of the histogram and estimate the median m̃ according to Equation 1.

8 return m̃

Now, assuming that the histogram format is fixed beforehand - i.e., number l
of bins and ranges (φ0, . . . , φl−1) - it is straightforward to apply the private sum



14 Joris Duguépéroux, Tristan Allard

algorithm on each bin for obtaining the perturbed histogram based on which
the median can then be computed. For example, in order to get a histogram
representing the distribution of skill values for, e.g., Python programming, and
assuming a basic histogram format - e.g., skill values normalized in [0, 1], l = 10
bins, ranges (φ0 = [0, 0.1[, . . . , φ9 = [0.9, 1]) - it is sufficient to launch ten private
sums to obtain the resulting perturbed 10-bins histogram.

PrivMed: privacy-preserving median computation. The histogram computed
based on the privacy-preserving sum algorithm can be used by the platform to
estimate the value of the median around which the split will be performed. When
by chance the median falls precisely between two bins (i.e., the sum of the bins
on the left is exactly 50% of the total sum, same for the bins on the right) its
value is exact. But when the median falls within the range of one bin (i.e., in any
other case), an additional hypothesis on the underlying data distribution within
the bin must be done in order to be able to estimate the median. For simplicity,
we will assume below that the distribution inside each bin is uniform but a more
appropriate distribution can be used if known. The resulting PrivMed algorithm
is detailed in Algorithm 1.

Let’s consider the histogram obtained by the private sum algorithm. It is
made of l bins denoted (b̃∗,0, . . . , b̃∗,l−1), and each bin b̃∗,j is associated to a range
φj . The ranges partition a totally ordered domain ranging from Dmin to Dmax
(e.g., from Dmin = 0 to Dmax = 1 on a normalized dimension that has not been
split yet). Let φk denote the range containing the median, θ denote the sum of
all the bins - i.e., θ =

∑
i<l b̃∗,i - and θ< (resp. θ>) the sum of the bins that

are strictly before (resp. after) b̃∗,k - i.e., θ< =
∑
i<k b̃∗,i (resp. θ> =

∑
i>k b̃∗,i).

Then, an estimation m̃ of the median can be computed as follows16:

m̃ = Dmin +
Dmax −Dmin

l
· (k + 1

2
+
θ> − θ<
2 · b̃∗,k

) (1)

3.2 Global Execution Sequence

Finally, the Privacy-preserving KD-Tree algorithm, PKD for short, performs
the median estimation described above iteratively until it stops and outputs (1)
a partitioning of the space of skills together with (2) the perturbed number of
workers within each partition. The perturbed number of workers is computed by
using an additional instantiation of the private sum algorithm when computing
the private medians17. We focus below on the setting up of the parameters of the
various iterations, and on the possible use of the resulting partitions and counts
by the requesters. An overview is given in Algorithm 2.

16 Note that in the specific case where the median falls within a bin equal to 0 (i.e.,
b̃∗,k = 0), then any value within φk is equivalent.

17 Note that the perturbed histograms could have been used for computing these counts
but using a dedicated count has been shown to result in an increased precision.
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Main Input Parameters. Intuitively, the privacy budget ε input of the PKD
algorithm sets an upper bound on the information disclosed along the complete
execution of the algorithm - it must be shared among the various data structures
disclosed. Thus, each iteration inputs a portion of the initial privacy budget
such that the sum of all portions remains lower than or equal to ε - see the
composability property in Theorem 3. Computing a good budget allocation in a
tree of histograms is a well-known problem tackled by several related works [9,33].
In this work, we simply rely on existing privacy budget distribution methods. For
example, based on [9], ε is divided as follows. First, ε is divided in two parts: one
part, denoted εm, is dedicated to the perturbations of the medians computations
(i.e., the bins of the histograms), and the other part, denoted εc, is dedicated
to the perturbation of the number of workers inside each partition. Second, a
portion of each of these parts is allocated to each iteration i as follows. For each
iteration i such that 0 ≤ i ≤ h, where h is the total number of iterations (i.e.,
the height of the tree in the KD-Tree analogy), the first iteration is h (i.e., the
root of the tree) and the last one is 0 (i.e., the leaves of the tree) :

εci = 2(h−i)/3εc
3
√
2− 1

2(h+1)/3 − 1
(2)

εmi =
εm

h
(3)

Note that similarly to [9], we set the distribution of ε between εc and εm as
follows: εc = 0.7 · ε and εm = 0.3 · ε. Other distributions could be used.

The PKD algorithm stops after a fixed number of iterations known beforehand.
Note that more elaborate termination criteria can be defined (e.g., a threshold
on the volume of the subspace or on the count of worker profiles contained). The
termination criteria must be chosen carefully because they limit the number of
splits of the space of skills and consequently the number of dimensions of worker
profiles that appear in the final subspaces. Ideally, the termination criteria should
allow at least one split of all dimensions. However, this may not be possible or
suitable in practice because of the limited privacy budget. In this case, similarly
to a composite index, a sequence of priority dimensions must be chosen so that
the algorithm splits them following the order of the sequence. The dimensions
that are not part of the sequence will simply be ignored. Note that the number
of dimensions in worker profiles, and their respective priorities, is closely related
to the application domain (e.g., How specific does the crowdsourcing process
need to be ?). In this paper, we make no assumption on the relative importance
of dimensions.

Post-Processing the Output. Considering the successive splits of partitions, we
can enhance the quality of the counts of workers by exploiting the natural
constraints among the resulting tree of partitions : we know that the number
of workers in a parent partition must be equal to the number of workers in the
union of its children. Constrained inference techniques have already been studied
as a post-processing step to improve the quality of trees of perturbed histograms,
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Algorithm 2: The PKD Algorithm
Data:
P: Set of workers
E the current space of skills of d dimensions
h: height of the KD-Tree
Result: T : A Privacy-preserving KD-tree with approximate counts of workers

for each leaf
1 We create T as a single leaf, containing the whole space E and a count of all

workers.
2 while current height is smaller than final height do
3 Choose a dimension d (for exemple, next dimension).
4 for all leaves of the current tree T do
5 Compute m the private median of the space of the leaf, as explained in

Section 3.1.
6 For both subspaces separated by the median, compute a private count

as explained in Section 3.1.
7 Create two leaves, containing the two subspaces and associated counts.
8 Replace the current leaf by a node, containing the current space and

count, and linking to the two newly created leaves.
9 Increment the current height.

10 Apply post-processing techniques explained in Section 3.2.
11 return Tree T

first in [20] and then improved in [9] which adapts the method to non-uniform
distribution of budget. These constrained inference techniques can be used in
our context in a straightforward manner in order to improve on the quality of
the resulting partitioning. We refer the interested reader to [9,20] for details.

3.3 Complexity Analysis

We evaluate here the complexity of the PKD algorithm with respect to the
number of encrypted messages computed and sent both to and by the platform.
The results are summed up in Table 1.

The first step to consider is the number of partitions created in the KD-tree.
Seen as an index (with one leaf for each point), the construction of a KD-tree
requires 2h+1−1 nodes, including 2h−1 internal nodes, where h is the maximum
height of the KD-Tree. For each node, an encrypted sum is performed, and
for each internal node, a histogram is additionally computed, which require l
sums, for a total of (2h+1 − 1) + (l · (2h − 1)) sums. These counts all require
the participation of every worker: for each count, |P| encrypted messages are
computed and sent.

The platform also sends back encrypted messages for each sum, for decryptions
to be performed. For each sum, it sends at least T times the homomorphically
computed sum, where T is the threshold number of key-shares required for
decryption. For simplicity, we assume that the platform sends the cyphertexts to
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T workers (these are the only encrypted messages that have to be sent to workers
during this protocol). Each contacted worker then answers by an encrypted value
(the partial decryption). As a conclusion, the total number of encrypted values
sent by the workers to the platformMΣw is:

MΣw = (|P|+ T ) · (l · (2h − 1) + (2h+1 − 1)) (4)

However, as our computation is distributed among all workers, each worker
only sends fewer encrypted messages on averageMw.

Mw = (1 +
T

|P|
) · (l · (2h − 1) + (2h+1 − 1)) (5)

Finally, the platform sendsMpf encrypted messages.

Mpf = T · (l · (2h − 1) + (2h+1 − 1)) (6)

To the platform (|P|+ T ) · (l · (2h − 1) + (2h+1 − 1))

By worker (avg) (1 + T
|P| ) · (l · (2

h − 1) + (2h+1 − 1))

By the platform T · (l · (2h − 1) + (2h+1 − 1))

Table 1. Number of encrypted messages sent. P is the set of workers, T the number
of partial keys required for decryption, h the depth of the KD-tree, and l the number
of bins per median

3.4 Security Analysis

The only part of the PKD algorithm that depends on raw data is the private sum.
The security analysis thus focuses on proving that a single private sum is secure,
and then uses the composability properties (see Theorem 3). Theorem 4 proves
that the privacy-preserving sum algorithm is secure. We use this intermediate
result in Theorem 5 to prove the security of the complete PKD algorithm.

Theorem 4 (Security of the privacy-preserving sum algorithm). The
privacy-preserving sum algorithm satisfies εκ-SIM-CDP privacy against coali-
tions of up to τ participants.

Proof. (sketch) First, any skill in a profile of a participating worker is first
summed up locally with a noise-share, and then encrypted before being sent to
the platform. We require the encryption scheme to satisfy semantic security, which
means that no computationally-bounded adversary can gain significant knowledge
about the data that is encrypted. In other words, the leak due to communicating
an encrypted data is negligible. Second, the homomorphically-encrypted additions
performed by the platform do not disclose any additional information. Third,
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the result of the encrypted addition is decrypted by combining T > τ partial
decryptions, where each partial decryption is performed by a distinct worker.
The threshold decryption property of the encryption scheme guarantees that no
coalition of participants smaller than τ can decrypt an encrypted value, and the
honest-but-curious behaviour of participants guarantees that no other result but
the final one will be decrypted (e.g., the platform does not ask for a decryption of
a value that would not have been sufficiently perturbed). The final sum consists in
the sum of all private values, to which are added |P| noise-shares. These shares are
computed such that the addition of |P|−τ shares is enough to satisfy ε-differential
privacy. Thanks to the post-processing property of differential privacy, adding
noise to a value generated by a differentially-private function does not impact
the privacy level. The addition of τ additional noise-shares consequently allows
to resist against coalitions of at most τ participants without thwarting privacy.
As a result, since the privacy-preserving sum algorithm is the composition of a
semantically secure encryption scheme with an ε-differentially private function,
it is computationally indistinguishable from a pure differentially private function,
and consequently satisfies εκ-SIM-CDP privacy against coalitions of up to τ
participants.

Theorem 5 (Security of the PKD algorithm). The PKD algorithm satisfies
εκ-SIM-CDP privacy against coalitions of up to τ participants.

Proof. (sketch) In the PKD algorithm, any collected information is collected
through the PrivMed algorithm based on the privacy-preserving sum algorithm.
Since (1) the privacy-preserving sum algorithm satisfies εκ-SIM-CDP (see Theo-
rem 4) against coalitions of up to τ participants, (2) εκ-SIM-CDP is composable
(see Theorem 3), and (3) the privacy budget distribution is such that the total
consumption does not exceed ε (see Section 3.2), it follows directly that the PKD
algorithm satisfies εκ-SIM-CDP against coalitions of up to τ participants.

4 Privacy-Preserving Task Assignement

Once the design of a task is over, it must be assigned to relevant workers and
delivered. Performing that while satisfying differential privacy and at the same
time minimizing the number of downloads of the task’s content is surprisingly
challenging. We already discarded in Section 1, for efficiency reasons, the spam-
ming approach in which each task is delivered to all workers. More elaborate
approaches could try to let the platform filter out irrelevant workers based on
the partitioned space output by the PKD algorithm (see the Section 3). The
partitioned space would be used as an index over workers in addition to its
primary task design usage. For example, workers could subscribe to their areas of
interest (e.g., by sending an email address to the platform together with the area
of interest) and each task would be delivered to a small subset of workers only ac-
cording to its metadata and to the workers’ subscriptions. However, despite their
appealing simplicity, these platform-filtering approaches disclose unperturbed
information about the number of workers per area, which breaks differential
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privacy, and fixing the leak seems hard (e.g., random additions/deletions of
subscriptions, by distributed workers, such that differential privacy is satisfied
and the overhead remains low).

We propose an alternative approach, based on Private Information Retrieval
(PIR) techniques, to reduce the cost of download on the workers side, while
preserving our privacy guarantees.

4.1 PIR for Crowdsourcing: challenges and naive approaches

The main challenge in applying PIR in our context consists in designing a PIR-
library such that no information is disclosed during the retrieval of information,
and performance is affordable in real-life scenarios. To help apprehending these
two issues, we present two naive methods that break these conditions and show
two extreme uses of PIR: the first one is efficient but unsecure, the second one is
secure but unefficient.

A first PIR-based approach could consist in performing straightforwardly
a PIR protocol between the workers and the platform, while considering the
PIR-library as the set of tasks itself. The platform maintains a key-value map
that stores the complete set of tasks (the values, bitstrings required to perform
the tasks) together with a unique identifier per task (the keys). The workers
download the complete list of tasks identifiers and metadata, select locally the
identifiers associated to the metadata that match with their profiles, and launch
one PIR-get function on each of the selected identifiers. However, this naive
approach leads to blatant security issues through the number of calls to the PIR-
get function. Indeed, the platform could deduce the precise number of workers
within a specific subspace of the space of skills: with the number of downloads per
worker18, it is possible to deduce, for each k, the number of workers downloading
k tasks, which is the number of workers located in subspaces where k tasks
intersect. This information, protected by the PKD algorithm, breaks differential
privacy guarantees.

A secure but still naive approach could be to consider the power set of the
set of tasks as the PIR-library, with padding to all tasks such that they are all
the same size (in bits). A worker would choose the PIR-object corresponding to
the set of tasks she intersects with, and would call PIR-get on it. Although this
method prevents the previously observed breach (all behaviours are identical
to the platform since each worker downloads exactly one PIR-object, and all
PIR-objects are of the same size), this method would lead to extremely poor
results: as every object of the library is padded to the biggest one, and the biggest
set of the super set of tasks is the set of tasks itself, this algorithm is even worse
than the spamming approach (everyone downloads at least as much as the sum
of all tasks, with computation overheads).

18 Even if the identity of workers is not directly revealed, it is possible to match
downloads together to break unlinkability and deduce that these downloads come
from the same individual, for example by using the time of downloads, cookies or
other identification techniques.
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These two naive uses of PIR illustrate two extreme cases: the first one shows
that using PIR is not sufficient to ensure privacy, and the second one illustrates
that a naive secure use can lead to higher computation costs than the spamming
approach. In the following, we introduce a method to regroup tasks together,
such that each worker downloads the same number of PIR items (to achieve
security), while mitigating performance issues by making these groups of tasks
as small as possible.

4.2 PIR partitioned packing

The security issue highlighted above comes from the fact that the number of
downloads directly depends on the profiles of workers. In order to break this link,
we propose to ensure that each worker downloads the same number of items,
whatever their profile. For simplicity, we fix this number to 119, and call packing
a PIR library that allows each worker to retrieve all their tasks with only one
item, and bucket an item of such a library, as seen in Definition 7. We prove in
Theorem 6 that any packing fulfills our security model.

We can now formalize the conditions that a PIR library must fulfill in order to
both satisfy privacy and allow any worker to download all the tasks she matches
with.

Definition 7 (Packing, Bucket).
A packing L is a PIR library which fulfills the following conditions:

1. Security condition Each worker downloads the same number of buckets.
This number is set to 1.

2. PIR requirement Each PIR item has the same size in bits (padding is
allowed):

∀b1, b2 ∈ L, ||b1|| = ||b2||

This condition comes from the use of PIR.
3. Availability condition For all points in the space of skills, there has to

be at least one item containing all tasks matching with this point. In other
words, no matter their skills (position in the space), each worker can find a
bucket that provides every task they match with.

A bucket b ∈ L is an item of a packing. We note |b| for the number of tasks
contained in the bucket b, and t ∈ b the fact that a task t is included in bucket b.
The size in bits of a bucket b is denoted as ||b||.

Theorem 6. The use of PIR with libraries which fulfill the packing conditions
satisfy εκ-SIM-CDP privacy against coalitions of up to τ participants.

Proof. (sketch) In order to prove the security of packing, we observe that (1) the
XPIR protocol has been proven computationally secure in [2], such that it satisfies

19 In general, more files can be downloaded at each worker session, but this does not
impact significantly the overall amount of computation and does not impact at all
the minimum download size for workers.
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εκ-SIM-CDP, and (2) the use of packing prevents any sensitive information on
workers to leak through the number of downloads. Indeed, Condition 7.1 (security)
makes each worker call the PIR-get function only once, such that the behaviours
of any two workers are indistinguishable. Therefore, the number of PIR-get calls
does not depend on profiles. More precisely, the number of PIR-get calls can
only leak information on the number of workers (which is bigger than or equal
to the number of PIR-get calls), which does not depend on their profiles, and is
already known by the platform.

Before considering how to design an efficient packing scheme, we highlight
a few noticeable implications of these conditions. First, due to Condition 7.3
(availability), any worker is matched with at least one bucket. To simplify this
model, we propose to focus on a specific kind of packing, that can be seen as a
partitioning of the space, where each bucket can be linked to a specific subspace,
and where all points are included in at least one subspace. We call partitioned
packing such a packing (Definition 8).

Definition 8 (Partitioned Packing). A partitioned packing is a packing that
fulfills the following conditions:
1. Each bucket is associated with a subspace of the space of skills.
2. A bucket contains exactly the tasks that intersect with the subspace it is

associated with (this means that all workers in this subspace will find at least
the task they match with in the bucket)

3. Subspaces associated with the buckets cover the whole space (from Condi-
tion 7.3 (availability)).

4. Subspaces associated with the buckets do not intersect each other

In the following, we will focus on partitioned packing. However, in order not
to lose generality, we first prove that these packings do not impact efficiency.
Indeed, efficiency can be affected by two main issues: the number of items and
the size of the largest item (in our case, bucket) impact the communication costs,
while the size of the overall library impacts the computation time on the platform.
Note that the size of the overall library is equal to the product of the size of
items by their number. We show in Theorem 7 that with any packing, we can
build a partitioned packing that is equivalent or better.

To prove this theorem, we introduce a specific kind of packing that we call
consistent packing, defined in Definition 9. Essentially, a consistent packing is a
packing where no useless task is added to any bucket: in all buckets b, all tasks
match with at least one point (a possible worker profile) which has all her tasks
in the bucket b. As a result, a consistent packing avoids cases where tasks are in
a bucket, but no worker would download it as the bucket does not match with
all their needs.

Definition 9 (Consistent packing). A packing P is called consistent if and
only if, for all buckets b ∈ P , for all tasks t ∈ b, there exists at least one point
w in the subspace of t such that all tasks matching with w are in b. We also
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define match such that match(w, t) is True if the point w is in the subspace t
and False otherwise.

∀b ∈ P,∀t ∈ b,∃w, (match(w, t) ∧ ∀t′ ∈ T,match(w, t′)⇒ t′ ∈ b)

Theorem 7. For any packing P of tasks, there exists a partitioned packing that
either has the same size of buckets, number of buckets, or smaller ones.

Proof. (sketch) Let P be a packing of tasks that is not partitioned. To prove
that a partitioned packing can be created that is more efficient than P , we
distinguish two cases. First, we consider that each bucket of P can cover a
subspace, containing exactly the tasks that intersect with that subspace (thus
fulfilling Conditions 8.1 and 8.2). Then, we prove that any consistent packing
(as in Definition 9) fulfills Condition 8.2. After that, we consider the case where
P does not fulfill this condition, and create a new, smaller packing Pf from P
that is consistent, and therefore fulfills Condition 8.2, and use previous results.

We first consider the case where all buckets of P can cover a subspace while
fulfilling Condition 8.2, meaning that each bucket contains exactly the tasks
that intersect with the subspace it covers. In that case, Condition 8.1 is trivially
fulfilled. If Condition 8.3 is not fulfilled, this means that there is at least a
subspace that is not covered by the packing P . Let w be a point in such a
subspace. Since P is a packing, the Condition 7.3 (availability) makes it possible
to match with any point of the space with at least one bucket. In particular, w can
be matched with a bucket b. It is enough to extend the subspace associated with
b such that it includes w (note that this extension does not break Condition 8.2.
We can proceed that way for any point (or more likely any subspace) that is not
covered by a subspace, to associate subspaces to a bucket of P , such that this
matching fulfills Conditions 8.1, 8.2 and 8.3. If, in this matching, two subspaces
associated with buckets of P intersect, it is trivial to reduce one of them to
fulfill Condition 8.4 too. Therefore, if all buckets of P can be matched with a
subspace while fulfilling Condition 8.2, the theorem holds, since P is equivalent
to a partitioned packing.

It can be noticed that if a packing is consistent (Definition 9), Condition 8.2 is
fulfilled. Indeed, if ∀b ∈ P,∀t ∈ b,∃w, (match(w, t)∧∀t′ ∈ T,match(w, t′)⇒ t′ ∈
b) (Definition 9), then, for all b in P , we can take V as the union of the |b| points
w described in the equation, one for each task t in b. In that case, Condition 8.2
is fulfilled: for each bucket b and its associated subspace V , all tasks in b intersect
with V (by definition, as we took V as the union of one point in each task in b),
and b contains all tasks that intersect with V (again, by definition, as each task
t′ that match with a point of V are in b).

In other words, and using the above case, making a packing consistent is
sufficient to create a partitioned packing.

We now consider the case where at least one bucket b of P does not cover a
subspace such that Condition 8.2 does not stand. In particular, P is not consistent.
This means that there is at least one task t ∈ b such that for all points w in the
subspace of t, there is at least one task t′ with which w matches and that is not
contained by the bucket b. In other words, no points in t can be matched with
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the bucket b, as b lacks at least one task for each point of t. As a consequence of
the Condition 7.3 (availability), this means that all points in t are matched with
another bucket. Therefore, the task t can be removed from bucket b, without
breaking the properties of a packing, and without increasing the number of
buckets, the minimal size of buckets. We proceed so, by removing all such tasks
in all buckets recursively: this trivially ends thanks to the finite number of tasks
and buckets. By construction, the final packing Pf is consistent.

Therefore, packing Pf is smaller than P , and fulfills Condition 8.2, and we
proved in the first case that a packing that fulfills this condition is equivalent to
a partitioned packing, so Pf is equivalent to a partitioned packing.

4.3 Optimizing the packing

With this secure partitioned packing approach, we can discuss how to optimize
the overall complexity. First, it can be noticed that Conditions 7.2 and 7.3
(PIR requirement and availability) set a minimal size of bucket: according to
Condition 7.3 (availability), there has to be a bucket containing the largest
(in bits) intersection of tasks, and Condition 7.2 (PIR requirement) prevents
any bucket from being smaller. Furthermore, this minimum is reachable if we
consider a packing that creates a partition for each different intersection of
tasks and pad to the largest one. However, by building a different bucket for
all the possible intersections of tasks, this packing strategy is likely to lead to a
very large number of buckets (e.g., if a task’s subspace is included in another,
this packing leads to two buckets instead of one: one containing both tasks,
and the other containing only the largest one as it is a different intersection),
while we would like to minimize it (and not only the size of buckets). Therefore,
although this packing scheme reaches the minimal size of buckets, we cannot
consider it as optimal. However, it illustrates what we call an acceptable packing
(Definition 10), which will be used to define optimality: a packing in which the
size of buckets is minimal.

Definition 10 (Acceptable partitioned packing).
Let E be a multi-dimensional space, T a set of tasks, i.e. a set of positively

weighted volume (the volume is the one of the task, and the weight is the size in
bits, denoted wt for t ∈ T ) in the space E and P a packing of these tasks. We
call weight of a packing wP the size in bits of a bucket in P (due to Condition 7.2
(PIR requirement), this size is unique). We call weight of a point wp in E the
sum of the weights of all tasks in T which match with p.

We call minimal weight mT of the set of tasks T the maximum weight of
a point in E: it is the maximum size a worker could require to download. A
partitioning P is called acceptable for T if the size of P is equal to mT : mT = wP .

NP-hardness of optimal packing To define optimality, we take this minimum
size of buckets, but also try to minimize the number of buckets (or in an equivalent
way, the size of the PIR library), as expressed in Definition 11.
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Definition 11 (Optimal partitioned packing). For a set of tasks T , we call
optimal packing an acceptable packing that minimizes the number of buckets.

However, we prove in Theorem 8 that determining whether there exists
an acceptable packing of size n is NP-hard, and therefore, finding the optimal
partitioned packing is also NP-hard.

Theorem 8. Given a set of tasks T , it is NP-hard in |T | to determine whether
there exists an acceptable partitioning of n buckets. We call P(T, n) this problem.

Proof. (sketch) To prove that this problem is NP-hard, it is enough to demon-
strate that a certain problem P+ known to be NP-complete can be polynomially
reduced to P.

We recall that the Partition Problem is NP-complete (see [22]): P+(S): given
a multiset S of N positive integers ni, i ∈ [0, N − 1], decide whether this multiset
can be divided into two submultisets S1 and S2 such that the sum of the numbers
in S1 equals the sum of the numbers in S2, and the union of S1 and S2 is included
in S.

Let us consider a multiset S and the problem P+(S). We assume the existence
of a deterministic algorithm A that solves P(T, n) in a polynomial time in |T |.
We first distinguish a trivial case where the problem P+(S) can be solved in
polynomial time. Then, we build an algorithm that uses P(T, 3) to solve P+(S) in
polynomial time similarly to the remaining cases, which leads to a contradiction.

We first consider a trivial case: if there exists nk in S such that nk >∑
i∈[0,N−1],i6=k ni, then we return False. Deciding whether S falls in that specific

case is linear in |S|, and so is the computation of the answer. If not, let E be a one
dimensional space, with bounds [0, |S|+ 1[. We build T as a set of |S|+ 1 tasks
(T = {ti, i ∈ [0, N ]}), such that no task intersects with each other: therefore, the
minimum size mT of T (from Definition 10) will be the same as the size of the
biggest task t in T . The |S| first tasks are all associated with an element of S,
while the last one will be used to fix mT . More precisely, we build T as follows:

-- the range of ti is [i, i+ 1[

-- for i 6= N , the weight of ti is equal to the value of ni ; wtN =
∑
i∈[0,N−1] ni

2 .

Building T and tmax is subpolynomial.
By hypothesis, ∀k, nk ≤

∑
i∈[0,N−1],i6=k ni (as we dealt with this case previ-

ously), and by construction, no volume intersects any other, so the minimal weight
is the size of the biggest task, which is the last one: mT = maxti(wti) = wtmax .
Therefore, if S can be divided into two submultisets S1 and S2 of the same size,
this size is

∑
i∈[0,N−1] ni

2 , and P(T, 3) answers True.
Reciprocally, if P(T, 3) answers True, this means that there exists a packing

of size 3 such that no packing is bigger than mT =
∑
i∈[0,N−1] ni

2 . In particular, as
wtN = mT , this means that no task is added to the bucket containing it, and that
the two remaining buckets contain all tasks ti, i 6= N . If one of these buckets where
smaller than mT , the other would be bigger than mT (as mT =

∑
i∈[0,N−1] ni

2 ), and
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therefore, both buckets weight exactly mT . Therefore, it is possible to separate
S in S1 and S2 such that the sum of the numbers in S1 equals the sum of the S2

by taking all the elements corresponding to the tasks in the first bucket for S1,
and the elements corresponding to the second bucket for S2.

Therefore, if we are not in the trivial case treated above, P(T, 3) answers
True if and only if P+(S) is true in polynomial time. As both deciding whether
we are in that trivial case and computing the answer in that trivial case can be
computed in polynomial time, an algorithm deciding P+(S) in polynomial time
can be built. The assumption of P(T, n) not being NP-hard leads to a polynomial
algorithm solving P+, which is absurd, so P(T, n) is NP-hard.

Static packings Another point can be highlighted: the difference between what
we call static packing and dynamic partitioning. Indeed, when trying to optimize
the use of partitioned buckets, two main approaches can be used: adapt buckets
to tasks, or adapt tasks to buckets. In the first case, we consider a fixed set of
tasks, and try to build partitions in order to minimize the cost of PIR. On the
one hand, this optimization makes it possible to perform the best with any set
of tasks. On the other hand, as we consider a fixed set of tasks, we may have
to compute a new partitioning when this set evolves (when a task is added or
removed, at least when it affects the largest bucket). In the second case however,
we consider a fixed partitioning, that is independent from the set of tasks. This
method is more likely to be suboptimal, but it avoids heavy computation of
optimal packing and allows a greater flexibility in the context of crowdsourcing,
by allowing a large variety of choices and policies from the platform, which can
even lead to other kinds of optimization. For instance, it allows the platform to
manage prices policies (e.g. making tasks pay for each targeted subspace, higher
prices for tasks willing to target highly demanded subspaces, etc.), in order to
even the load within the whole space, and to reduce the redundancy of tasks
within the PIR library (tasks that target more than one partition).

As finding the optimal is NP-hard, we prefer to set aside dynamic packings,
as its main asset is the theoretical possibility to reach optimality while remaining
unrealistic in a real-life scenario, and focus instead on static packings.

Static packing means that the design of partitions is independent of tasks: the
tasks contained within the bucket may change, but not the subspace delimited
by the partition. These heuristic packing schemes are not optimal in general but
may be affordable in real-life scenarios. We propose to use a simple heuristic
static packing scheme, the PKD PIR Packing, consisting in using the partitioned
space of workers profiles computed primarily for task design purposes: to each
leaf partition corresponds a bucket containing all the tasks that have metadata
intersecting with it (possibly with padding). The resulting algorithm is presented
in Algorithm 3. The accordance of this scheme with the distribution of workers
can lead to both useful and efficient buckets (as assessed experimentally, see
Section 5), and the stability over time of the space partitioning (static approach)
makes it easier to design policies to approach optimality through incentives on
the task design (rather than through the bucket design).
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Algorithm 3: PKD PIR Packing
Data:
T a Tree computed with the PKD algorithm
T a list of tasks
Result: P : A static partitioned packing depending on workers distribution

1 Create an empty packing P
2 for all leaves l of the tree T do
3 Create a new empty bucket b, assigned to the subvolume of l
4 for all tasks t in T do
5 if t and l intersect then
6 Add t to the bucket b

7 Add b to P

8 return Packing P

5 Experimental Validation

We performed a thorough experimental evaluation of the quality and performances
of both the PKD algorithm and our PKD PIR Packing heuristic (that we
abbreviate as PIR in the experiments).

5.1 Datasets

In this section, we introduce the datasets and data generators that are used in
our experiments.

Realistic Dataset. To the best of our knowledge there does not exist any reference
dataset of worker profiles that we could use for our experiments. This led us
to building our own dataset from public open data. The StackExchange20 data
dumps are well-known in works related to experts finding. We decided to use
them as well in order to perform experiments on realistic skills profiles. We
computed profiles by extracting skills from users’ posts and votes. In StackEx-
change, users submit posts (questions or answers) that are tagged with descriptive
keywords (e.g., ‘‘python programming’’) and vote positively (resp. negatively)
for the good (resp. bad) answers. We consider then that each user is a worker,
that each tag is a skill, and that the level of expertise of a given user on a
given skill is reflected on the votes. We favored a simple approach for computing
the expertise of users. First, for each post, we compute a popularity ratio as
follows: r = upvotes/(upvotes+ downvotes), where upvotes is the number
of positive votes of the post and downvotes is the number of negative votes.
Second, for each user pi, for each tag j, the aggregate level of expertise pi[j]
is simply the average popularity ratio of the posts from p tagged by j. Note
20 StackExchange is a set of online forums where users post questions and answers, and

vote for good answers https://archive.org/download/stackexchange.

https://archive.org/download/stackexchange
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that more elaborate approaches can be used (see the survey [35]). Finally, we
removed the workers that do not have any skill level higher than 0. We ap-
plied this method on three StackExchange datasets: stackoverflow.com-Posts.7z,
stackoverflow.com-Tags.7z, and stackoverflow.com-Votes.7z which resulted in
1.3M worker profiles21. Figure 3 (a) shows for ten common skills22 and for the
possible levels divided in ten ranges (i.e., [0.0, 0.1[, [0.1, 0.2[, . . . , [0.9, 1]) their
corresponding frequencies. It shows essentially that whatever the skill considered,
most workers have a skill level at 0. The rest of the distribution is not visible on
this graph so we show in Figure 3 (b) the same graph but excluding, for each
tag, the workers having a skill level at 0.

a) On the x-axis: Skill level. On the
y-axis: Skill. On the heatmap: frequency
of the given skill-level on the given skill
within workers - including the workers

having a skill level at 0.

b) On the x-axis: Skill level. On the
y-axis: Skill. On the heatmap: frequency
of the given skill-level on the given skill
within workers - excluding the workers

having a skill level at 0.

Fig. 3. Frequencies of ten common skills within the STACK dataset.

Data Generators. We performed our experiments over both synthetic and realistic
data. Our two synthetic generators are specifically dedicated to evaluating the
PKD algorithm with two different kinds of assumptions. First, our UNIF synthetic
data generator draws skills uniformly at random between 0 and 1 (included) (1)
for each dimension of a worker’s profile and (2) for each dimension of a task (more
precisely, a min value and a max value per dimension). Second, our ONESPE
generator considers that workers are skilled over a single dimension and that
tasks look for workers over a single dimension. The specialty of each worker is
chosen uniformly at random, and its value is drawn uniformly at random between
0.5 and 1. The other skills are drawn uniformly at random between 0 and 0.5.
Similarly to workers, the specialty looked for by a task is chosen uniformly at
21 The scripts for generating our dataset are available online: https://gitlab.inria.fr/

crowdguard-public/data/workers-stackoverflow
22 The ten common skills considered are the following: .net, html, javascript, css, php,

c, c#, c++, ruby, lisp.

https://gitlab.inria.fr/crowdguard-public/data/workers-stackoverflow
https://gitlab.inria.fr/crowdguard-public/data/workers-stackoverflow
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random as well, its min value is chosen uniformly at random between 0.5 and 1
and its max value is set to 1. The min values of the other dimensions of a task
are 0, and their max values are chosen uniformly at random between 0 and 0.5.
Although this second heuristic is obviously not perfect, it seems far more realistic
than the previous one. For the two task generation heuristics, we require that all
tasks must contain at least one worker so that the mean error can be correctly
computed.

Finally, our realistic data generator, called STACK, consists in sampling
randomly workers (by default with a uniform probability) from the STACK
dataset. For our experiments, we generated through STACK workers uniformly
at random and performed the ONESPE task generation strategy described above.

5.2 PKD algorithm

Quality of the PKD algorithm. For our experiments, we implemented the PKD
algorithm in Python 3 and run our experimental evaluation on commodity
hardware (Linux OS, 8GB RAM, dual core 2.4GHz). In our experiments, each
measure is performed 5 times (the bars in our graphs stand for confidence
interval), 1k tasks, 10 dimensions, and τ = 1.

In Fig. 4 (a), we fix the privacy budget to ε = 0.1, the number of bins to
10, and the number of workers to 10k, and we study the impact of the depth
of the tree on the quality. UNIF achieves the lowest error, as long as the tree
is not too deep. This can be explained by the uniform distribution used in the
generation method, which matches the uniform assumption within leaves in the
tree. When the depth (and the number of leaves) grows, this assumption matters
less and less. ONESPE is more challenging for the PKD algorithm because it
is biased towards a single skill. It achieves a higher error but seems to benefit
from deeper trees. Indeed, deep trees may be helpful in spotting more accurately
the specialized worker targeted. The results for STACK are very similar. For all
of these distributions, we can see that having a tree deeper than the number of
dimensions leads to a significant loss in quality.

In Fig. 4 (b), we analyze the variations of quality according to the value of ε,
with 10 bins, a depth of 10, and 10k workers. In this case, the relative error seems
to converge to a non-zero minimum when ε grows, probably due to inherent
limits of KD-Tree’s precision for tasks.

In Fig. 4 (c), we fix the privacy budget to ε = 0.1, the depth of the tree
to 10 and 10k workers. We can see the impact of the number of bins for each
histogram used to compute a secure median. This value does not greatly impact
the relative error for the UNIF and STACK models, although we can see that
performing with 1 bin seems to give slightly less interesting results, as it looses
its adaptability toward distributions. For the ONESPE model, having only 1 bin
gives better results: indeed, the uniformity assumption within the bin implies that
all dimensions are cut at 0.5, which is also by construction the most important
value to classify workers generated with this procedure.

In Fig. 4 (d), we compare the quality according to the number of workers
with ε = 0.1, 10 bins and a depths of 10. As the ε budget is the same, the noise is
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independent from this number, and thus, the quality increases with the number
of workers.

We can notice that our results for the relative error are quite close to the
state of the art results, such as the experiments from [9], which are performed
on 2-dimensional spaces only, with strong restrictions on the shapes of queries
(tasks in our context) and in a centralized context.

a) Variations according to the depth of
the tree.

10 dimensions, 10k workers, 1k tasks,
τ = 1, ε = 0.1, 10 bins

c) Variations according to the number of
bins.

10 dimensions, 10k workers, 1k tasks,
τ = 1, ε = 0.1, depth = 10

b) Variations according to ε privacy
budget.

10 dimensions, 10k workers, 1k tasks,
τ = 1, 10 bins, depth = 10

d) Variations according to the number of
workers.

10 dimensions, 1k tasks, τ = 1, ε = 0.1, 10
bins, depth = 10

Fig. 4. Mean relative error (see Definition 5, the lower the better)

Computation time of the PKD algorithm. Our performance experiments were
performed on a laptop running Linux OS, equipped with 16GB of RAM and
an Intel Core i7 − 7600U processor. We measured the average computation
time across 100 experiments of each of the atomic operations used in the PKD
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algorithm: encryption, partial decryption, and encrypted addition. The results
are summed up in Fig. 5, with keys of size 2048 bits, using the University of
Texas at Dallas implementation for its accessibility23. We use our cost analysis
together with these atomic measures for estimating the global cost of the PKD
algorithm over large populations of workers (see Equation 4, Equation 5, and
Equation 6 in Section 3.3).

Fig. 5. Computation time of homomorphically encrypted operations

We can observe that the slowest operation is by far the generation of the keys.
However, since this operation is performed only once, the cost of less than 1000
seconds (about 17 minutes) for 10k workers is very reasonable: this operation
can be performed as soon as there are enough subscriptions, and the keys may
be distributed whenever the workers connect. The other operations are faster
individually, but they are also performed more often. For 10k workers, 10 workers
required for decryption, a depth of the KD-Tree of 10 and 10 bins, we can observe
that: each worker will spend less than 10 seconds performing encryptions, the
platform will spend less than 1000 seconds performing encrypted additions, the
average worker will spend less than 1 second performing decryptions, and the
platform will spend less than 3000 seconds performing decryptions.

Overall, these costs are quite light on the worker side: less than 20 seconds
with commodity hardware. On the server side, the computation is more expensive
(about one hour), but we could expect a server to run on a machine more
powerful than the one we used in our experiments. Additionally, it is worth to
note that: (1) the perturbed skills distribution is computed only once for a given
a population of workers and then used repeatedly, and (2) we do not have any

23 http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/index.php?go=download

http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/index.php?go=download


Title Suppressed Due to Excessive Length 31

real time constraints so that the PKD algorithm can run in background in an
opportunistic manner.

5.3 Assignment using packing

Quality of our packing. We here propose to evaluate the quality of our partitioned
packing approach. Our experiments are performed with the same settings as
those used to measure the quality of the PKD algorithm (see Section 5.2). To do
so, we propose two main metrics. First, me measure the mean precision for tasks,
as defined in Definition 6. Although this measure is useful to understand the
overall improvement of our approach, it does not take into account the fact that
downloads caused by PIR scale with the largest item. Therefore, we introduce
a second measure, the mean number of tasks that a worker would download.
This value, that we call maximum tasks, is computed as the maximum number
of tasks that a leaf of the KD-tree intersects with: indeed, due to Condition 7.2
(PIR requirement), all workers will download as many data as contained in the
biggest bucket.

a) Precision in log scale, according to the
task ratio for the UNIF model.

10 dimensions, 10k workers, 1k tasks,
τ = 1, ε = 0.1, 10 bins, depth = 10

b) Precision in log scale, according to the
task ratio for the ONESPE model.

10 dimensions, 10k workers, 1k tasks,
τ = 1, ε = 0.1, 10 bins, depth = 10

Fig. 6. Precision (the higher the better)

In the task generation methods introduced previously, tasks are built inde-
pendently from the KD-tree itself. This independence was logical to measure the
quality of the PKD algorithm. However, this leads to poor results when it comes
to building efficient packing on top of a KD-tree: as tasks are independent from
the KD-tree, they have little restriction on how small they are (meaning that
few workers will match, although all workers in leaf that intersect with it will
download it), or on how many leaves they intersect with, leading to low precision,
and high size of buckets.

Therefore, we introduce a new method to build tasks: SUBVOLUME. With
this method, we build tasks as subleaves, meaning that all tasks are strictly
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included within one leaf of the KD-tree. Furthermore, we also enforce the size of
the task as a parameter, such that the volume of the task is equal to a given ratio
of the task. More precisely, for a ratio r ∈ [0, 1], a space E of d dimensions and a
picked leaf l, the interval of a task in a given dimension di is ldi × r1/d, where ldi
is the interval of the leaf in dimension di. The SUBVOLUME model of tasks can
easily be introduced by economic incentives from the platform, such as having
requesters pay for each targeted leaf, which is likely to induce a maximization of
the volume taken, and a reduction of the tasks that intersect with more than one
leaf. Note that we do not perform experiments with this generation of tasks on
the Stack dataset, as most workers have their skills set to either 0 or 1, which
leads to very unreliable results as tasks almost never encompass either of these
values.

The comparison between the PKD PIR Packing heuristic and the spamming
approach using this new method to generate tasks, presented in Figure 6, shows
that our approach improves precision by at least two orders of magnitude. Also,
note that for r = 1, the precision is equal to 1 in the PIR approach. This result
comes from the fact that, with r = 1, all workers within a leaf are targeted by all
tasks that intersect with that leaf, meaning that they do not download irrelevant
tasks.

Fig. 7. Number of tasks downloaded according to the task ratio for the packing approach.
10 dimensions, 10k workers, 1k tasks, τ = 1, ε = 0.1, 10 bins, depth = 10

The maximum number of tasks connected to a leaf, showed in Figure 7,
show that the cost of download is also significantly improved (these values are
to be compared to 1000, the total number of tasks that are downloaded with
the spamming approach). It also shows great improvement (around 2 orders of
magnitude) as tasks are more evenly spread within the leaves (there are 210 = 1024
leaves for a depth 10 of the tree, which can explain this improvement).

Cost of the PIR protocol. We here study the impact of the number of files and of
the size of files on the computation time. In the experiments, we used a computer
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with 8GB of RAM, and a Ryzen 5 1700 processor, using the implementation
of [2]24.

As we can see in Figure 8 with keys of size 1024 bits, computation time is
proportional to the overall size of the PIR library (the coefficient of determination
gives r2 = 0.9963), and that it grows at 0.14s/MB for a given request, as long
as the library can be stored in RAM25.

Fig. 8. Computation time of the retrieval of a file according to the PIR library’s size

We now evaluate the maximum number of tasks nmax that our system can
take into account, according to two parameters: first, the time t that workers
accept to wait before the download begins, and second, the size s that workers
accept to download. As nmax does not solely depend on t and s, we introduce a
few other notations:

-- f is the expansion factor of the encryption scheme.
-- |task| the mean size of a task.
-- k the proportion of tasks that are in the biggest leaf of the KD-tree (for

instance, k = 0.1 means that the biggest leaf contains one tenth of all tasks)
-- depth, the depth of the KD-tree (that is linked with the number of buckets)

In the spamming approach, the maximum number of tasks that can be
managed by our system is independent from t and can be simply computed as:

nmax,SPAM =
s

|task|

For the PKD PIR Packing heuristic, both s and t lead to a limitation on
nmax,PIR. We first consider the limit on the computation time t: according
to our results in Figure 8, the PIR library cannot be bigger than t

0.14 , and
the size of a bucket, can be computed as k × |task| × nmax,PIR (by definition
24 https://github.com/XPIR-team/XPIR
25 If it cannot, accesses to the secondary storage device are necessary. This would

increase the runtime accordingly. However, since the library is scanned once per
query, sequentially, the cost would remain linear in the size of the library.

https://github.com/XPIR-team/XPIR
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of k, as all buckets weight as much as the biggest one). As the library can
be computed as the product of the number of buckets and their size, this
leads us to 2depth × k × |task| × nmax,PIR ≤ t

0.14 , or equivalently nmax,PIR ≤
t

0.14×2depth×k×|task| . We now consider the limit s on the size of download. For
each worker, the size of a download will be the same, computed as the product of
the expansion factor and the size of a bucket: f ×k×nmax,PIR×|task| ≤ s. This
inequality leads to nmax,PIR ≤ s

f×|task|×k . By combining these two inequalities,
nmax,PIR takes its maximum value when

nmax,PIR = min(
s

f × |task| × k
,

t

2depth × 0.14× |task| × k
)

In Figure 9, we compare the number of tasks that a crowdsourcing platform
can manage with different values of t and s, using either the spamming approach
or our PKD PIR Packing heuristic. For the sake of simplicity, we consider that
the expansion factor f is 10, although smaller values are reachable with XPIR
protocol [2]. This factor will impact the amount of tasks that a worker can
download. We take d = 10 similarly to our previous experiments. We consider
a mean size of task |task| = 1MB. It can be noticed that |task| has no impact
on the comparison ( maxn,PIR

maxn,SPAM
does not depend on |task|). For k, we consider

two possible values: k = 0.01, as suggested by the experiments in Figure 7, and
k = 1

210 , which represents the optimal case, where tasks are perfectly spread
among buckets (for instance, due to strong incentives from the platform).

a) Number of tasks n manageable by our
system according to the size s a worker

accepts to download.
k = 0.01, |task| = 1MB, f = 10,

depth = 10

b) Number of tasks n manageable by our
system according to the size s a worker

accepts to download.
k = 0.001, |task| = 1MB, f = 10,

depth = 10

Fig. 9. Precision (the higher the better) ; curves are in the same order as the captions

In these experiments, we can notice that our approach depends on both the
computation time allowed and the size of the number of task in the largest
bucket. In a real-life scenario, platforms would benefit from enforcing incentives
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to even the load between buckets. However, if workers are willing to limit their
download to less than 100MB, the PKD PIR Packing heuristic outperforms
the spamming approach as long as users are willing to limit their download
even with relatively short computation times (less than 10 minutes) by up to
several orders of magnitude. Our method is especially interesting in settings
where the bandwidth is low (e.g., with mobile devices), with low values of s.
On the opposite, it is interesting to highlight that high computation times are
not necessarily prohibitive: as the computation is performed by the platform, a
worker could very well ask for a bucket of tasks and download it later on when
it is ready.

6 Discussion

In this section, we propose a discussion on questions raised by our work that are
not our primary focus. More precisely, we elaborate our views on updates that
our system may or may not allow (both for the PKD algorithm and the PKD
PIR Packing heuristic), with some advantages and drawbacks.

6.1 Updating tasks and PIR libraries

In this work, we dealt with the download of tasks as a one-shot download,
meaning that a worker will download tasks once and for all. However, in a
real-life scenario tasks are likely to evolve (e.g., new tasks will be added and
old tasks will be outdated), and workers are equally likely to update their tasks.
Without further improvement, our design would require each worker to download
a whole packing for each update of the available tasks. However, more elaborate
approaches are possible. Although it is not our focus to develop them exhaustively,
we propose a few tracks that are likely to diminish the costs greatly.

For that purpose, we propose to divide time into fixed duration periods (e.g.,
a day, a week, etc.) and to additionally take into account the period at which
a task is issued in order to pack it. We give below two options for allowing
updates. Although their improvement have not been quantified nor validated
experimentally, These schemes aim at increasing the memory cost on the server
in order to alleviate the overall computation required.

Packing by Period A simple scheme that allows easier updates while reducing
the size of single PIR request consists in designing packing not only according to
a specific partitioning but also according to time periods. The platform builds
one PIR library per period, i.e., considering only the tasks received during that
period.26. Workers simply need to perform PIR requests over the missing period(s)

26 In this kind of methods, a task can be either maintained into its starting period up
till it’s lifespan, or one can consider keeping up a limited number of periods (e.g. all
daily periods for the current month) and re-adding tasks on new periods packing
each time they are deleted (e.g. for tasks that are meant to be longer than a month).
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(one request per missing period). As a result, the PIR-get function is executed on
the library of the requested period, which is smaller than or equal to the initial
library.

However, this scheme may result in high costs if the distribution of tasks is
skewed. For instance, let’s consider two time periods p1 and p2, two subspaces
of the space of skills s1 and s2, and three tasks t1, t2 and t3 such that t1 and t2
appear only in p1 and s1, while t3 appears only in p2 and s2. In that case, all
workers will download first the PIR item for period p1, which is the same size as
wt1 + wt2 (due to padding for workers not in p1) and then a second PIR item
for p2, of size wt3 . Without that period strategy, a worker who performs regular
updates would have downloaded tasks t1 and t2 (or equivalent size) twice due
to the update, and t3 once, but a worker who would not have performed the
intermediary download would have downloaded max(wt3 , wt1 + wt2). Therefore
workers who update frequently would benefit from this strategy, while workers
who do not would have worse results.

Personalized Packing by Period In order to tackle the previously mentioned
issue caused by skewed distribution of tasks, and to optimize the size of the
downloaded bucket for any frequency of downloads, we propose to adapt the
packing to the workers frequency of downloads.

Indeed, we observe that it is enough to perform as many packings as there
are possible time-lapses for workers, e.g., one packing for the last period, one
packing for the last two periods, one packing for the last three periods, etc.. As
a result, each PIR-get request is associated with a time-lapse in order to let the
PIR server compute the buckets to be downloaded (or use pre-computed buckets).
With this method, we can get the best of both worlds with the previous example:
someone who downloads frequently will only have small updates, while someone
who does not will not suffer from overcosts.

The main (and limited) drawback of this method is that the platform will
have to store multiple PIR-libraries, which increases the storage required.

Security of Packing by Period In both of the above schemes, we consider
multiple downloads from workers. Even worse, in the second case the number of
downloads may vary depending on workers habits. If the above proposition were
to be used, more accurate proofs of security would have to be done. Although it
is not our focus to propose them in this article, we provide here some intuitions
on their requirements. In the first case, the number of downloads is the same for
all workers, and would therefore not lead to great modifications of our proof. In
the second case however, the number of downloads depends on the frequency of
downloads of workers. In order not to reveal information about worker’s profiles,
a new hypothesis is likely to be required, that states or implies that the frequency
of downloads of workers is independent from their profiles.

More elaborate or intermediate methods are also possible, but we will not explore
this compromise in this paper.
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6.2 Updating PKD

The PKD algorithm is not meant to allow users to update their profiles, as
they would have to communicate information to do it, and this would either
break our security policy, or exceed the ε privacy budget. However, departures
or arrivals are not inherently forbidden by our security policy. A simple and
naive way to upgrade the PKD algorithm to take new arrivals into account
is to create multiple KD-trees, and to combine them. For instance, one could
imagine using the PKD algorithm on every new k arrivals (e.g. k = 1000 or
k = 10000). The estimation of workers within a subspace would be the sum of
the estimations for each KD-tree, and a new PIR library could be built for each
of these KD-trees. For retrieval of workers, as it is impossible to know where the
worker was, the most naive way to proceed is to retrieve a given value to each leaf
of the approximated KD-tree, for instance nleaf

ntree
, where nleaf is the approximated

number of workers in the leaf, and ntree the total number of workers. Once again,
more elaborate methods are possible, but stand out of the focus of this paper.

7 Related Work

Privacy-Preserving Task Assignment. Recent works have focused on the privacy-
preserving task assignment problem in general crowdsourcing. In [5], each worker
profile - a vector of bits - is perturbed locally by the corresponding worker, based
on a local differentially private bit flipping scheme. A classical task-assignment
algorithm can then be launched on the perturbed profiles and the tasks. An
alternative approach to privacy-preserving task-assignment has been proposed
in [21]. It is based on the extensive use of additively-homomorphic encryption,
so it does not suffer from any information loss, but this has a prohibitive cost
in terms of performance. Other works have focused on the specific context of
spatial crowdsourcing [38,39,41]. They essentially differ from the former in that
spatial crowdsourcing focuses on a small number of dimensions (typically, the
two dimensions of a geolocation) and is often incompatible with static worker
profiles. All these works explore solutions to ensure an assignment between tasks
and workers in a private way, and are complementary to our approach.

Decentralized Privacy-Preserving Crowdsourcing Platform. ZebraLancer [29] is
a decentralized crowdsourcing platform based on blockchains, zero-knowledge
proofs, and smart contracts and focuses on the integrity of the reward policies and
the privacy of the submissions of workers against malicious workers or requesters
(e.g., spammers, free-riders). Zebralancer does not consider using worker profiles
(neither primary nor secondary usages).

Privacy-Preserving KD-Trees. The creation and the publication of private KD-
Trees has been studied in depth in [9], but in our context, this work suffers
from two main defficiencies. First, it considers a trusted third party in charge
of performing all the computations while in our work we do not assume any
trusted third party. Second, it restricts the number of dimensions to two, which
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is unrealistic in our high-skills crowdsourcing context. Enhancements to the
technique have been proposed, for example [33], but without tackling the trusted
third party assumption.

Privacy-Preserving COUNTs. Other differentially private count algorithms
exist and use histograms. With the use of constrained inference, the approaches
proposed e.g., in [20,34] outperform standard methods. But they are limited to
centralized contexts with a trusted third party, and only consider datasets with at
most three dimensions. The PrivTree approach [42] eliminates the need of fixing
the height of trees beforehand, but their security model also considers a trusted
third party, and their expriments are limited to four dimensions, which is lower
than the number of skills that we consider. DPBench [19] benchmarks these
methods in a centralized context and considers one or two dimensions. Finally,
the authors of [23] tackle the efficiency issues of privacy-preserving hierarchies of
histograms. It suffers from the same dimension and privacy limitations as the
above works.

Task Design. To the best of our knowledge, the problem of designing a task
according to the actual crowd while providing sound privacy guarantees has not
been studied by related works. Most works focus on the complexity of the task [14],
on the interface with the worker [14,24,28], on the design of workflows [25,26], or
on the filters that may be embedded within tasks and based on which relevant
workers should be selected [3]. However, these approaches ignore the relevance
of tasks with respect to the actual crowd, and thus ignore the related privacy
issues.

8 Conclusion

We have presented a privacy-preserving approach dedicated to enabling var-
ious usages of worker profiles by the platform or by requesters, including in
particular the design of tasks according to the actual distribution of skills of
a population of workers. We have proposed the PKD algorithm, an algorithm
resulting from rethinking the KD-tree construction algorithm and combining
additively-homomorphic encryption with differentially-private perturbation. No
trusted centralized platform is needed: the PKD algorithm is distributed between
workers and the platform. We have provided formal security proofs and com-
plexity analysis, and an extensive experimental evaluation over synthetic and
realistic data that shows that the PKD algorithm can be used even with a low
privacy budget and with a reasonable number of skills. Exciting future works
especially include considering stronger attack models (e.g., covert or malicious
adversaries), evaluating more precisely our propositions for updates, protecting
the tasks in addition to worker profiles, and guaranteeing the integrity of worker
profiles.
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