
HAL Id: hal-02956066
https://hal.inria.fr/hal-02956066

Submitted on 2 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Truly Scalable K-Truss and Max-Truss Algorithms for
Community Detection in Graphs

Alessio Conte, Daniele de Sensi, Roberto Grossi, Andrea Marino, Luca Versari

To cite this version:
Alessio Conte, Daniele de Sensi, Roberto Grossi, Andrea Marino, Luca Versari. Truly Scalable K-
Truss and Max-Truss Algorithms for Community Detection in Graphs. IEEE Access, IEEE, 2020, 8,
pp.139096-139109. �10.1109/ACCESS.2020.3011667�. �hal-02956066�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362230785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02956066
https://hal.archives-ouvertes.fr

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Truly Scalable K-Truss and Max-Truss
Algorithms for Community Detection in
Graphs
ALESSIO CONTE1,DANIELE DE SENSI1, ROBERTO GROSSI1, ANDREA MARINO2, AND
LUCA VERSARI3
1University of Pisa, Pisa, Italy (e-mail: {conte,desensi,grossi}@ di.unipi.it)
2University of Florence, Florence, Italy, (e-mail: andrea.marino@ unifi.it)
3University of Pisa, Pisa, Italy and Google Research, Zurich, Switzerland (email: veluca@ google.com)

Corresponding author: Alessio Conte (e-mail: conte@ di.unipi.it).

This work was supported in part by the Italian Ministry of University and Research (MIUR) under PRIN Project n. 20174LF3T8 AHeAD
(Efficient Algorithms for HArnessing Networked Data). A preliminary version of the algorithm presented here was a finalist in the MIT
Graph Challenge 2018 and part of the contents of this paper appeared in [11].

ABSTRACT The notion of k-truss has been introduced a decade ago in social network analysis and security
for community detection, as a form of cohesive subgraphs less stringent than a clique (set of pairwise
linked nodes), and more selective than a k-core (induced subgraph with minimum degree k). A k-truss is an
inclusion-maximal subgraph H in which each edge belongs to at least k − 2 triangles inside H . The truss
decomposition establishes, for each edge e, the maximum k for which e belongs to a k-truss. Analogously to
the largest clique and to the maximum k-core, the strongest community for k-truss is the max-truss, which
corresponds to the k-truss having the maximum k. Even though the computation of truss decomposition and
of the max-truss takes polynomial time, on a large scale, it suffers from handling a potentially cubic number
of wedges. In this paper, we provide a new algorithm FMT, which advances the state of the art on different
sides: lower execution time, lower memory usage, and no need for expensive hardware. We compare FMT
experimentally with the most recent state-of-the-art algorithms on a set of large real-world and synthetic
networks with over a billion edges. The massive improvement allows FMT to compute the max-truss of
networks of tens of billions of edges on a single standard server machine.

INDEX TERMS community detection, graph algorithms, in-memory computation, k-trusses, social
network analysis, truss decomposition

I. INTRODUCTION

One of the most fundamental tasks in the analysis of real-
world networks is that of community detection, which cor-
responds to identifying cohesive portions of a network ac-
cording to some metrics. On one side suitable metrics should
find communities that are meaningful and free from noise;
on the other side, algorithms should be as fast as possible,
since network sizes for many practically relevant problems
are growing over the years. These two objectives are of-
ten in contrast with each other: simple metrics tend to be
more efficient to compute but give lower quality results
(e.g. core decomposition [26]) while others (e.g. based on
cliques [12]) are rigorous but computationally heavy. Finding
a good trade-off between performance and quality is a crucial
problem, and great effort has been devoted to finding better

metrics and/or better algorithms for those metrics [4], [10],
[20], [33].

In this scenario a popular choice is the k-truss, a triangle-
based cohesive subgraph introduced by Cohen [10] as one of
the interesting patterns in social and communication graphs,
such as those generated by phone calls, emails, and so on. It
is defined as follows.

Consider an undirected graph G = (V (G), E(G)) with
n = |V (G)| nodes and m = |E(G)| edges, where NG(v)
represents the neighborhood of node v in G, and δ(v) =
|NG(v)| is v’s degree 1. We define a triangle in G as a set
of three nodes u, v, z that are pairwise connected (i.e. they
form a clique of size three). In that case, we say that edges

1We assume wlog that G does not contain isolated nodes, thus its size is
O(n+m) = O(m).

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

11

12

11

813

12

6
7

0

2

5

2

4

12

10

4

7

2

3

2

3

3

9

813

2 3

2

3
5

21

0
4

9 2

3

2

4

10

22

4

3

3

2

2

44

6

3

4

FIGURE 1.
Left: a 3-core (green), 3-truss (blue) and 4-clique (red), respectively, of the graph G with trussness tG = 4; note that the 4-clique is also a 4-truss
(i.e. the max-truss here). Right: truss decomposition of the graph, where each edge is annotated with its trussness value: a k-truss can be obtained
by singling out the edges with trustness value ≥ k.

{u, v}, {v, z}, {z, u} belong to the triangle. For each edge
e = {u, v} in G, its support supG(e) = |NG(u) ∩NG(v)| is
defined as the number of triangles to which e belongs.

Given an integer k ≥ 2, the k-truss of G is the inclusion-
maximal edge-induced subgraph H of G such that each edge
e of H belongs to at least k − 2 triangles of H . Specifically,
H = (V (H), E(H)) where E(H) ⊆ E(G), V (H) = {x ∈
V (G) | {x, y} ∈ E(H)}, and supH(e) ≥ k − 2 for every
e ∈ E(H).

Some examples of k-trusses are shown on the left of
Figure 1, comparing them with k-cores (all the nodes have
degree at least k in H) and k-cliques (all the nodes are
pairwise connected in H). As it can be observed, k-trusses
are more rigorous than k-cores but less stringent than cliques:
it can be proved that a k-truss is a subgraph of a (k − 1)-
core, and that a k-clique is also a k-truss 2. Furthermore, k-
trusses can be computed in polynomial time, and may also
be employed to quickly remove useless edges from a graph
when looking for k-cliques [10].

The truss decomposition of G corresponds to assigning
each edge its trussness value, i.e., the highest k for which
the edge belongs to a k-truss (see Figure 1 on the right,
where each edge is annotated with its trussness). Given the
truss decomposition, it becomes easy to extract the k-truss for
any k, and thus for the largest k, which is useful to identify
the most important cohesive subgraphs. Furthermore, the k-
truss of a graph is unique and can be obtained by performing
peeling, i.e. recursively deleting edges that participate in less
than k − 2 triangles [10].

The trussness tG of the graph G is the maximum k such
that there exists a k-truss in G, and the corresponding k-truss
is called max-truss. It can be clearly obtained from the truss
decomposition.

Over these years, the notion of k-trusses has spread in net-

2Indeed a k-clique induces a k-truss: any two adjacent nodes in a clique
of size k may form a triangle with any of the remaining k−2 nodes. Also, as
each edge of a k-truss forms at least k − 2 triangles, its extremes must have
degree at least k−1 in the k-truss, meaning that a k-truss is also a k−1-core.
The implications in the other direction, however, are not true [10]. Moreover,
for k = 2, the k-truss is trivially G as every edge participates in at least 0
triangles, while for k = 3 this is the set of edges that participates in at least
one triangle.

work analytics and is gaining momentum for other purposes
other than security. For instance, the MIT/Amazon/IEEE
GraphChallenge [23] organizes a benchmarking contest for
triangle counting and k-truss discovery, with the best al-
gorithms presented at the IEEE High Performance Extreme
Computing Conference.

Several different algorithms have been proposed to com-
pute k-trusses and truss decomposition [8], [10], [18], [19],
[28], [30], [31]. In order to achieve good performance, they
either rely on GPU computation or use significant amounts
of memory, which is not always feasible or dramatically
slow down their performance when dealing with large graphs.
They deal with the bottleneck of the peeling process, after
computing the triangles in G: when recursively deleting
edges, some triangles disappear and the support of the cor-
responding edges must be updated. In turn, this either takes
more time to recompute the supports from scratch or uses
more space to store indexing data structures to find which
edges have their support changed. We refer the reader to
Section II for a discussion of the state of the art.

Our contribution.
We address the problem of finding the k-trusses in large
networks from a new angle by introducing algorithm
FMT (G,M, r), which takes in input a graph G, plus two
parameters that interplay with the performance of the algo-
rithm:
• M is the memory threshold for the computing platform
• r is an edge-pruning threshold to speed up the computa-

tion
IfM = ∞, FMT computes the truss decomposition of G in
guaranteed O(αGm) time using O(m) space - specifically,
approximately 32 bytes per edge (note that r is not employed
in this case). Here αG is the arboricity of G, which is
the minimum number of forests into which E(G) can be
partitioned. It is related to the trussness, as αG ≥ tG+1

2 , 3

and to m = |E(G)|, as αG = O(
√
m) (see [9]).

3Since the degree of each node u in a k-truss is δ(u) ≥ k + 1, we have
that a max-truss has at least n′(tG + 1)/2 edges, where n′ is the number
of its nodes and k = tG. As each forest covers at most n′ − 1 edges in the
max-truss, it yields αG ≥ tG+1

2
.

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

On top of these theoretical guarantees, we carefully study
the operations required by the algorithm: We engineer so-
lutions that simultaneously use very few bits per edge and
allow the usage of low-level instructions, while maintaining
a structure that allows the algorithm to be easily parallelized.
More details are given in Section IV (algorithm engineering).

As a result, our execution time on real-world net-
works compares favorably with the most recent state-of-the-
art approaches for truss decomposition, coming from the
GraphChallenge [23] and other papers on large real-world
and synthetic graphs, as detailed in Section VI, with only
one solution (KM17) having slightly less space requirement
per edge. We show that our algorithm outperforms all similar
algorithms on large networks (i.e., with millions of edges or
more) by up to orders of magnitude. Moreover, using the
USD cost per hour of equivalent infrastructure in Google
Compute Engine (https://cloud.google.com/compute/), our
algorithm results in significant financial savings, such as
processing the largest amount of edges per USD cent, except
for one dataset, relative to other algorithms.

If M 6= ∞, FMT finds the max-truss in G. We believe
that this is a further important contribution of this paper for
the following reasons.
• The problem of finding the max-truss in G or its truss-

ness tG is quite natural. It has a similar flavor to that
of finding the largest clique and the maximum k-core,
or just their size, when computing all cliques or the
k-core decomposition: these structures give important
information for network analysis and as such their ef-
ficient computation is widely studied [14], [15], [29],
[32] (in particular, the maximum k for a k-core exists is
also known as the degeneracy and is used as a sparsity
measure [15], [16]).

• We comment on real-world datasets in Section III,
where the max-truss provides often meaningful commu-
nities. This has a good foundation in Section IV, where
we link for the first time the trussness tG to the densest
subgraphs of G in terms of the number of triangles per
edge (see Theorem 1, which is an extension of the Nash-
Williams’s theorem [1] to the trussness).

It makes sense to investigate the problem of quickly find-
ing the max-truss and the trussness of G, since all existing
approaches require to find a whole truss decomposition to do
so.4 WhenM 6=∞ or in general the memory is limited with
respect to the size of the graph, such a truss decomposition
cannot be found. In this scenario, FMT (G,M, r) avoids a
whole truss decomposition and in particular, its novelty relies
on the following new ideas.
• We introduce the notion of approximated trussness, and

a suitable approximation algorithm (which depends on
M and r) as a core routine to focus on the most
promising parts of G.

4Finding the max-truss is not to be confused with the simpler problem of
finding “the k-truss” for a given k (see, e.g., [21]), as the trussness of the
graph is not known a priori and—as we will see—is hard to compute.

• We use the approximation algorithm to design an al-
gorithm to compute exactly the max-truss, using the
following two parts.

– The first part uses M and r to quickly compute
lower and upper bounds on the trussness tG while
shrinking G by removing low trussness edges,
which are likely not in the max-truss. A small
residual graph is obtained in this way.

– The second part decomposes the residual graph and
identifies its max-truss. Using a suitable mecha-
nism to check if the latter is not the max-truss of
G, the algorithm is restarted in that case using the
(possibly improved) lower bound found.

Interestingly, we also give a conditional lower bound that
the computing time for the approximated trussness cannot be
significantly smaller than that for the exact trussness tG in
the worst case.

The worst-case cost of FMT is still O(αGm) time using
O(m) space. However, space is reduced approximately from
32 bytes per edge to max(8m, 32 min(M,m)) bytes per
edge: settingM = m/4, it gives 8 bytes per edge and allows
us to analyze very large networks. Moreover, in Section IV
we show that improving over O(αGm) time is hard, as
we give some conditional lower bounds for computing truss
decomposition and max-truss that match our upper bounds.
In particular, a faster worst-case time would improve Boolean
matrix multiplication and other well-known problems.

Experiments in Section VI exhibit the benefits of our
new approach. FMT sensibly reduces the time and space
required with respect to the truss decomposition, still com-
puting exactly the max-truss. In this way, we hope to shed
further light on this popular community measure, both in
its complexity and its relation to triangle density. At the
same time, based on this knowledge, we provide scalable
and efficient tools for computing the truss decomposition and
the max-truss, which outperform known approaches and can
process graphs with billions of edges in reasonable time and
space. We also show in Section VI-B that, existing algorithms
become less cost-effective when executed on graphs with
larger k-trusses. Indeed, compared to our algorithm, existing
algorithms perform some additional re-computation, which
limits the achievable performance. Moreover, they rely on the
use of GPUs, which increase the hardware cost compared to
our CPU-based solution.

A preliminary version of the algorithm presented here
was a finalist in the MIT Graph Challenge (graphchallenge.
mit.edu/champions) and part of the contents of this paper
appeared in [11].

II. RELATED WORK
Several notions of communities have been introduced in
literature trying to find the right granularity and the trade-off
between a huge number of highly clustered communities and
a smaller number of poorly connected communities. The use-
fulness and the right trade-off depends on the context of ap-
plications. Trying to limit the number of communities found,

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

i.e. bounded by a polynomial, k-cores and k-truss are the
most used approaches, even though other approaches [20],
[33] for community discovery have been proposed.

In this paper, we focus on the well-known truss decom-
position. The seminal paper about truss decomposition is
that by Cohen [10], who introduced the concept of k-truss,
motivating it as an effective community indicator, with appli-
cations to networks where community structure is relevant,
such as social networks. The paper also presents a simple
algorithm for the truss decomposition, whose structure is
surprisingly effective: most known algorithms, that either use
matrix multiplication or combinatorial approaches, are still
essentially based on this structure. One of the first papers
addressing the truss decomposition in massive networks [31]
engineered Cohen’s algorithm to improve performance on
large graphs. Smith et al. proposed a parallel algorithm for
truss decomposition in a shared-memory setting [28] (SL+17
in Section VI). The sequential algorithm is based on the
algorithm by Wang et al. [31] (i.e., the structure of Cohen’s
algorithm), and keeps track of the support of edges using
buckets, which are used to parallelize the algorithm. The
parallel version scales up to 28 threads with a good speedup.
SL+17 was one of the finalists of the 2017 GraphChal-
lenge [23]. Another shared memory parallel algorithm which
also improves upon Wang et al. [31] has been proposed by
Kabir et al. [19] (KM17 in Section VI). However, since there
is no direct comparison between KM17 and SL+17, we have
considered both KM17 and SL+17 as our direct competitor.
Further algorithms have been recently proposed by Wu et
al. [36] and Davis et al. [13] (resp. WG+18 and D18 in
Section VI). The former is serial and it is designed to work in
Java with the WebGraph framework [7], the latter is parallel
and in C.

The distributed algorithm by Pearce [25] has been cham-
pion of the 2018 GraphChallenge for k-truss decomposition
(PS18 in Section VI). At the same GraphChallenge, the GPU
algorithm by Date et al. [22] (MD+18 in Section VI, has been
finalist. Further work has been done by Huang et al. [18]
to consider the dynamic version of the problem which is:
given a graph subject to edge deletion, efficiently answer the
query “find the k-truss involving a node v”. A distributed
algorithm for truss decomposition has been proposed by
Chen et al. [8]. Green et al. [17] consider finding max-
truss, using a dynamic graph formulation on GPU. The times
reported in the paper are much higher than the ones we have
presented in Section VI, for instance for as-Skitter, even
if our machine is sensibly slower.

We remark that truss decomposition and k-truss compu-
tation often benefits of the advances coming from triangle
counting. To this aim, Wolf et al. [35] propose a high-
performance parallel algorithm that uses linear algebraic
matrix operations implemented with KokkosKernels, show-
ing both a CPU and GPU implementation. Parallelization is
achieved in another work by Pearce [24] through delegate
nodes, which are used to partition the input graph. Bridging
triangle counting and k-trusses, Bisson et al. [5] use parallel

matrix multiplication, implemented on GPU, for counting
triangles and computing the k-truss for a given k. Eventually,
Voegele et al. [30] also consider computing the k-truss for
a given k, using edge list intersection rather than matrix
multiplication. The algorithm is based on the Cohen [10]
algorithm, and gains efficiency by focusing first on edges
incident to lower degree nodes and truncating list intersection
whenever enough elements are in the intersection. It also uses
the property that a k-truss is necessarily a k − 1-core.

III. DATA ANALYSIS
In the literature k-trusses are considered one of the powerful
tools for community analysis in networks, because they per-
mit to focus on interesting portions of the graph at hand. For
instance, the truss decomposition of a network G has been
employed in [18] to query the communities for any given
node vq of G and a positive integer k. It consists in finding
the largest connected subgraph of G having trussness k and
containing vq: the idea is to suitably modify a graph traversal
beginning from vq , and using a queue to store and explore
the edges that have trussness ≥ k. In the truss decomposition
shown on the right in Figure 1, if vq = 5 and k = 3, the
corresponding community is the subgraph induced by nodes
1, 2, 3, 4, 5, 6, 7. We refer the reader to Algorithm 2 in [18]
for further details. In this scenario, considering the max-
trusses specializes the query for the more cohesive subgraphs
(i.e. for the largest feasible k), when memory is limited.

Depending on the network’s topology, the communities
found, as mentioned above, can be further analyzed and
refined by inspection. In order to illustrate this task, we con-
sider four datasets taken from LAW (http://law.di.unimi.it/).
Their size and statistics are shown in Table 1 (we refer
the reader to Section VI for performance analysis of our
approach).

Web snapshot: gsh-2015-host
This is the host graph of the graph gsh-2015, which
is a large snapshot of the web (988M nodes and 33G
edges) taken in 2015 by BUbiNG [6] starting from the site
http://europa.eu/ without any domain restriction. In
the host graph, pages with the same domain name (host) are
collapsed; the maximum number of pages per host was set to
100, to find a large number of hosts, and the resulting host
graph is composed of 68M nodes and 1.5G edges.

In this graph, the max-truss is composed of a unique con-
nected component of 9960 nodes. Interestingly, the great ma-
jority of the nodes are of the form www.XYZ.de, for some
word XYZ of 4 letters, like for example www.aafd.de or
www.sfnc.de. The content of the pages inside the compo-
nent is almost duplicate, in the sense that they differ just by
replacing XYZ in the text. The links to other domains of the
group are hidden in the pages’ source. All these domains are
related to the website www.verleihcenter.eu and we
have found, by private communication, that they have been
registered on purpose by the owner, who seems to be a do-
main collector. We observe that this k-truss helped to identify

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

a large set of near-duplicates, which is a desideratum when
crawling the web. Interestingly, all these domains do not clus-
ter into just one maximal clique, but rather in many maximal
cliques (more than 350000 cliques with 100 nodes or more),
meaning that the strict notion of clique may not always allow
easy identification of densely interconnected substructures,
while the looser notion of k-truss may in some cases be
more meaningful despite being faster to compute. Decreasing
k, for instance setting k = 4000, we find a component
whose nodes are subdomains of the website iloan24.com,
having as URLs paydayloansXYZ.iloan24.com for
some string XYZ. We conjecture these have been created to
increase the visibility of iloan24.com.

Movie actors: hollywood-2011

In this graph extracted from the Internet Movie Database
(IMDb) vertices are actors, and two actors are joined by an
edge whenever they appeared in a movie together. The max-
truss corresponds to a community of 1298 nodes, which is a
clique of the actors starring in the movie “Around the World
in Eighty Days (1956)”. The movie, based on the homonym
novel by Jules Verne, follows Victorian Englishman Phileas
Fogg (David Niven) in several locations around the globe,
and thus stars a significant amount of background actors.
Notably, it seems that many of these were registered in the
IMDb database, resulting in this large clique. Decreasing k
to k = 1000 we obtain a connected k-truss of size 3529,
composed by 3 cliques of similar size: the above clique, one
clique of actors active in the 80s (mostly Spanish), and one
containing Hollywood superstars (e.g. Quentin Tarantino,
Uma Thurman, and Jessica Alba). Frank Sinatra, Shirley
MacLaine connect the first two cliques, while Martin Scors-
ese is in the second and the third one.

Wikipedia snapshot: enwiki-2013

This graph represents a snapshot of the English-language
Wikipedia as of February 2013. The max-truss corresponds
to a unique connected component with 335 nodes. This is
mostly composed of pages referring to years and dates, which
occur often in common pages. By decreasing k, setting for
instance k = 40, we obtain four connected components of
size respectively 226, 308, 267, and 570. The last component
is still related to dates and years frequently co-occurring, but,
notably, the other components contain Wikipedia pages about
different sports: the first is about NHL (National Hockey
League), the second relates to tennis (Serena Williams,
Rafael Nadal, and Roger Federer are nodes of this commu-
nity), the third relates to English football (teams, coaches,
stadiums, history of English football). Once again, it is
worth observing the presence, in each component, of many
maximal cliques which are difficult to aggregate into a single
community, while connected k-trusses seems to isolate and
aggregate the data quite accurately.

Algorithm 1: Our algorithm FMT
Input : graph G = (V (G), E(G)), memory threshold

M > 0, approximation factor r ≥ 1
Output: trussness tG and max-truss in G.

1 u← 0, `← 0
2 while |E(G)| >M do // Part I
3 TG ← 1

3

∑
e∈E(G) supG[e]

4 `← max(`,minsup(G), TG
|E(G)|)

5 u← max(u,minsup(G), r TG
|E(G)|)

6 Q← {e ∈ E(G) : supG[e] ≤ u} // edges to
delete

7 G← G \Q // remove Q’s edges from E(G)

8 t← u
9 while E(G) 6= ∅ do // Part II

10 Q← {e ∈ E(G) : supG[e] ≤ t} // edges to
delete

11 G← G \Q // remove Q’s edges from E(G),
update TG

12 if t > u then foreach e ∈ Q do truss[e]← t+ 2
13 t← max(t,minsup(G))

14 if t > u then // values > u+ 2 in truss[] are exact
15 return truss[], tG = t+ 2

16 else // `+ 2 ≤ tG ≤ r(`+ 2)
17 r ← 1, u← `, G← input graph // reset

parameters
18 goto step 2

Bibliographic database: dblp-2011

The graph is a 2011 snapshot of the scientific bibliography
service DBLP, from which an undirected collaboration net-
work can be extracted: each vertex represents a scientist and
two vertices are connected if they co-authored an article.
The max-truss is composed of the 119 authors of the paper
Length Sensing and Control in the Virgo Gravitational Wave
Interferometer. IEEE Trans. Instrumentation and Measure-
ment 55(6): 1985-1995 (2006). As this is a clique and it is
the max-truss, it means that this is the maximum clique in
the graph, otherwise, a larger clique would have implied the
presence of a larger k-truss. This suggests that k-trusses can
be an effective way to spot large (and sometimes maximum)
cliques.

IV. OUR ALGORITHM

As described in Section I, FMT (G,M, r) consists of two
parts, and its pseudocode is shown in Algorithm 1.

Part I: approximation

The goal of this part is to prune G as quickly as possible
to less than M edges so that it fits in main memory, trying
to only remove edges with low trussness, and in particular

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

without removing any from the max-truss 5.
A usual peeling algorithm requires random access to the

graph and supporting data structures for quick updates. What
we do instead is computing all supports at once by listing
the triangles of G, an operation which is heavy but can be
done efficiently with a much more compact representation of
the graph (around 8 bytes per edge, as detailed later). Then,
we remove edges with “low support” and repeat. To achieve
a performance benefit, we want to perform this step as few
times as possible, and so remove each time a large number of
edges.

Let TG be the number of triangles in G. From Section V,
we exploit the inequality that tG ≥ TG/|E(G)|+ 2 (implied
by Theorem 1 there): we can remove all edges with support
lower than TG/|E(G)| without impacting the max-truss. At
the same time, ` ← TG/|E(G)| gives us a lower bound
on the trussness tG (as well as the minimum support in
the current graph). As soon as we remove enough edges
(|E(G)| ≤ M), we start Part II on the residual graph. To
obtain a greater speedup, we further increase the support
threshold to u ← r TG/|E(G)|; the larger r is, the more
edges we remove at each step. The drawback is that u might
exceed tG − 2 before the end of the part, and cause the
removal of edges in the max-truss: if so, this will cause more
operations in Part II. In practice, suitable choices ofM and r
(see discussion in Section VI-C) can avoid this, and prevent
these additional operations.

Part II: max-truss refinement

For the sake of discussion, let G′ denote the residual graph
G obtained from Part I (so as to distinguish it from the input
graph G). We perform an optimized peeling (using around
32 bytes per edge) to compute the truss decomposition of
G′, albeit ignoring the supports ≤ u + 2 (if in Line 12).
This further optimizes the algorithm as we can immediately
peel off all edges with support u or lower. Since all edges
in a (u + 3)-truss have support at least u + 1, edges with
trussness u + 3 or higher in G are still in G′ and have the
same trussness, thus the decomposition will be correct for
all values of trussness larger than u + 2, which gives us
a partial truss decomposition and the max-truss. If no such
value is found, it means Part I deleted edges from the max-
truss. We thus restart the algorithm, but we can ignore all
supports smaller than `, which is a lower bound and a r-
approximation of the trussness, meaning that the procedure
will still be faster than a full decomposition. In this case, we
also set r to 1, which makes sure no edge of the max-truss
will be accidentally removed (by Theorem 1).

As a special case, settingM = ∞ (and any value of r), it
gives an algorithm for computing the truss decomposition, as,
it essentially skips Part I and starts Part II with G′ = G and
u = 0. We denote this as FMT − dec = FMT (∞, ·). As
we show in Section VI, it compares favorably with existing

5We reasonably assume thatM is large enough to include the max-truss.

algorithms for truss decomposition, thanks to the optimized
and parallel friendly structure of Part II.

Algorithm engineering
We briefly detail the key operations of FMT that contribute
to its performance.

In both Part I and Part II, we employ a careful implemen-
tation of list intersection, that makes use of SIMD instruc-
tions (specifically, SSE4.1 instructions) when the two lists
to intersect have similar length. When one list is significantly
longer (we set this to be by a factor 2 or more, which gave the
most consistent benefits), we employ a binary-search based
approach where the next common element between the lists
is found by at most 2 binary searches.

In Part I, the algorithm writes a first file containing for each
node, its degree followed by the list of its neighbors with
larger id (assume the nodes labeled as integers 1, . . . , n), a
second file containing pointers to the start of each adjacency
list in the previous file, and a third one containing the support
computed for each edge, associated with said edge at no extra
cost by storing them in the same order as in the first file. This
compact representation takes roughly 8 bytes per edge 6, but
is enough for listing G’s triangles 7.

The files are dynamically mapped to memory using the
mmap() function so that paging is left to the OS low-level
routines. After a set Q of edges is removed, the files are
suitably updated before the next step of support computation.
Note that the files are fully loaded in memory whenever few
enough edges are left, however, this does not immediately
trigger the next part, as Part II involves a larger number of
bytes per edge.

Once Part II starts, the residual graph is loaded in memory
as follows. We store the concatenated adjacency lists as
above, including all neighbors (not just the ones with larger
id). We store a pointer to the start of each node’s adjacency
list, and for each edge, a pointer to the lists of its endpoints.
We sort the edges e ∈ E(G) in increasing order of supG(e),
storing the edges in buckets corresponding to their support.
These structures can be built in O(m) time, and take around
32 bytes per edge, but allow identifying an edge of minimum
support, its endpoints, and changing the bucket of an edge
(when its support is updated), in O(1) time.

As long as the buckets are nonempty, we remove an edge
e = {u, v} of minimum support from its bucket, and decrease
by 1 the support of the edges forming a triangle with e, i.e.,
those in {{u, z}, {v, z} | z ∈ NG(u) ∩ NG(v)}. As previ-
ously observed, this can be done by looking at the endpoint
of e with the smallest degree, in O(min{δ(u), δ(v)}) time.
This structure allows easy and scalable parallelization, as we
can remove multiple edges from the lowest support bucket at

6Assuming we can represent nodes with unsigned 4-bytes integers, which
is the case for graphs with up to 4 billion nodes; otherwise, memory is
doubled. 12 bytes per node are also used, however, this is usually not
significant as n is smaller than m by at least a factor 10.

7Indeed, any triangle i, j, k (with i < j < k) is found by intersecting the
larger neighbors of i with those of j, as both contain k.

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

once (as they all need to be removed by the algorithm) and
intersect the neighborhoods of their endpoints, the heaviest
task, in parallel.

Analysis.
Since each edge is removed once, the total cost of Part II
is O(m+

∑
{u,v}∈E(G) min{δ(u), δ(v)}) = O(mαG) time

and O(m) space, since
∑
{u,v}∈E(G) min{δ(u), δ(v)} ≤

2mαG, see [9]. By the same logic, the cost of Part I is also
O(mαG) times the number of support computation steps.

As previously noted, we may set M = ∞ and obtain
an algorithm for complete truss decomposition by executing
only Part II (called FMT −dec), we get the following result.

Lemma 1. Given a graph G with m edges and arboricity
αG, FMT-dec computes its trussness in O(mαG) time and
O(m) space.

We remark that FMT-dec can count and list all the triangles
within the same complexity as above.

As for the total memory usage, we can bound it to approx-
imately max(8m, 32 min(M,m)) bytes (triggering external
memory usage if 8m exceeds available RAM), and simply
32m bytes for FMT-dec. This is confirmed in practice by
our experiments, where this bound is never exceeded by more
than 10%.

V. THEORETICAL BASIS
If TG is the number of triangles in G, we can see that tG ≥
TG/m+ 2 as an instance of the following extension of Nash-
Williams’ result [1] to trussness.

Theorem 1. Given an undirected graphG with trussness tG,
let TS be the number of triangles and mS be the number of
edges in any subgraph S ofG. Then maxS⊆G

TS
mS
≤ tG−2 ≤

3 maxS⊆G
TS
mS

Proof. We first prove that there exists a subgraph S of G
such that 3 TSmS

≥ tG − 2, thus proving the upper bound
on the trussness. Indeed, let S be a tG-truss of G. Since
3TS =

∑
e∈E(S) supS(e), and since each edge has a support

in S of at least tG−2, it follows that 3TS ≥ mS(tG−2), i.e.
3 TSmS

≥ tG − 2.
For the lower bound, we observe that tS ≤ tG for any

subgraph S of G. It follows that it suffices to prove the
inequality for S = G, namely, TG ≤ m (tG − 2), as it also
implies TS ≤ mS (tS − 2) ≤ mS (tG − 2) when applied to
S.

We will prove this by induction on the number of edges
m. The base case is trivial, as a graph with no edges has no
triangles. For the inductive step, notice that the graph must
have an edge e with support at most tG − 2, as otherwise
G would have a (tG + 1)-truss, contradicting the definition
of trussness. Thus, if we consider the graph G′ obtained by
removing e fromG, we have TG ≤ TG′+tG−2 ≤ mG′(tG′−
2) + tG − 2 ≤ (m − 1)(tG − 2) + tG − 2 = m (tG − 2),
concluding our proof.

We provide computational lower bounds for computing
the trussness of a graph. As the trussness can be obtained
by computing the truss decomposition, these bounds hold
also for the computation of the truss decomposition, as stated
next.

Theorem 2. Given any undirected graph G with m edges,
arboricity αG and trussness tG, triangle counting/listing
and graph trussness cannot be computed by combinatorial
algorithms in either o(mαG logO(1)m) time or O(mtG)
time in the worst case, unless Boolean matrix multiplication
is truly subcubic [34].

The proof of Theorem 2 follows from the fact that truss-
ness (and computing the max-truss and the truss decomposi-
tion) is intimately related to triangle-free graphs.

Fact 1. G is triangle-free if and only if its trussness tG is 2.

Note that triangle counting has better time complexity than
triangle listing when matrix multiplication is employed [3].
When we refer to a “combinatorial” approach, we mean that
it does not use matrix multiplication. We can use in this way
a well known conditional hardness result.

Theorem 3. (Theorem 1.3 from [34]) The following all have
truly subcubic “combinatorial” algorithms, or none of them
do:
• Boolean matrix multiplication (BMM).
• Detecting if a graph has a triangle.
• Listing up to n3−δ triangles in a graph for constant δ >

0.
• Verifying the correctness of a matrix product over the

Boolean semiring.

Improving the worst-case cost of computing the trussness
to significantly less than O(mαG) time using combinato-
rial algorithms is quite hard because of Theorem 3 and
mαG = Θ(n3) in the worst case. Since trussness tG is
also a parameter for complexity analysis, one could hope to
get O(m(tG + 1)) time instead of O(mαG) time. Not even
this is possible because of Fact 1, since triangle free graphs
have tG = 2 = O(1), meaning we could recognize if G is
triangle-free in linear time. In summary, we obtain the result
in Theorem 2.

VI. EXPERIMENTS
This section is devoted to showing the performance of FMT,
compared to the fastest known algorithms.

State-of-the-art algorithms
We will compare our algorithm FMT-dec for finding the truss
decomposition with the following ones, which are the most
recent state of the art algorithms for k-truss computation.

1) SL+17: a parallel shared-memory algorithm proposed
in [28], finalist in the 2017 GraphChallenge [23]. The
code has been downloaded from https://github.com/
KarypisLab/K-Truss.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

NETWORK TYPE NODES EDGES tG
flickrEdges img 105 938 2 316 948 574
Amazon0505 prod 410 236 2 439 436 11
dblp-2011 coll 986 324 3 353 618 119
as-Skitter as 1 696 415 11 095 298 68
cit-Patents cit 6 009 555 16 518 947 36
enwiki-2013 soc 4 206 785 91 939 728 53
hollywood-2009 coll 1 139 905 56 375 711 2 209
hollywood-2011 coll 2 180 759 114 492 816 1 298
g500-sc23-ef16 rand 6 323 640 129 250 705 625
g500-sc25-ef16 rand 17 043 781 523 467 448 996
arabic-2005 web 22 744 080 553 903 073 3 248
it-2004 web 41 291 594 1 027 474 947 3 222
twitter-2010 soc 41 652 230 1 202 513 046 1 998
gsh-2015-host web 68 660 142 1 502 666 069 9 923
com-Friendster soc 65 608 366 1 806 067 135 129
gsh-2015 web 988·106 25.7·109 5 204
eu-2015 web 1.1·109 80.5·109 13 049

TABLE 1. Graphs considered in our experiments.

2) KM17: proposed in [19] and won a student innovation
award in the same challenge. The code has been down-
loaded from https://github.com/humayunk1/PKT.

3) WG+18: serial algorithm in [36], designed to process
large graphs on consumer-grade hardware using the
WebGraph framework [7]. Code kindly provided by the
authors 8.

4) D18: the best performing algorithm proposed in [13],
that is the “highly optimized”, parallel implementation
in C of the all k-truss algorithm. Code kindly provided
by the author.

5) PS18 is the champion of the 2018 GraphChallenge
for k-truss decomposition, running on distributed set-
tings [25].

6) MD+18 is a finalist of the 2018 GraphChallenge for
k-truss decomposition, specifically designed for GPU
platforms [22].

7) AA+19 is a winner of the Student Innovation Awards
in the 2019 GraphChallenge [2]

To the best of our knowledge, all other known methods
for k-truss decomposition in literature are directly improved
or outperformed by at least one of these (see Section II for
discussion).

Moreover, we will consider our algorithms for finding the
max-truss. In particular, we will use FMT setting r = 4 and
M = m/10, where m is the number of edges in the input
graph G. In the following, we will refer to this method as
FMT-max. We compare these with AA+19 [2], which also
proposes an algorithm for max-truss computation.

For more details about the reason behind this choice, we
refer to Section VI-C, where we have shown the behaviour of
FMT when varying its input parameters.

Direct Comparison.
As other algorithms, namely SL+17, KM17, WG+18, and
D18, are designed for platforms similar to ours, we will
compare the memory usage and the execution time of our

8The paper proposes a parallel algorithm too, but (as confirmed by the
authors) the serial one is consistently faster even in parallel environments.

algorithms with respect to them, running all these algorithms
on our platform. The performance measures we considered
are the ones used also in the GraphChallenge 2017 and 2018.

Indirect Comparison.
The latter algorithms are either GPU-based (MD+18 and
AA+19), or designed for a cluster of multicores (PS18).
This makes a direct comparison challenging (furthermore,
the software is not available). To obtain a meaningful com-
parison, we devised a cost-based approach that is detailed in
Section VI-B, which takes into account the cost of the ma-
chines used and the time needed by that machines to conclude
an experiment, using the results and dataset reported in the
corresponding papers [2], [22], [25].

Replicability: Source Code and Computing Platform.
The computing platform is a machine provided by the Uni-
versity of Pisa with Intel(R) Xeon(R) CPU E5-2620 v3 at
2.40GHz, 24 virtual cores, 128 Gb RAM, running Ubuntu
Linux version 4.4.0-22-generic. The program is written in
C++11, compiled with gcc-8.1.0, using the -O3 opti-
mization flag. 9 OpenMP has been used to implement the par-
allel version of our code, and we used AVX2 for instruction-
level data parallelism.

Dataset
Our dataset, shown in Table 1, includes networks for
which community detection is relevant, including collabora-
tion, autonomous systems, social, and web networks, taken
from LAW (law.di.unimi.it/), Graph500 (graph500.org), and
SNAP (snap.stanford.edu/). We report in the table, for each
network, its abbreviation, type, number of nodes and edges,
and the trussness.

Structure of the Experiments.
The experiments are organized as follows. In Section VI-A,
we firstly compare FMT with its direct competitors using
single cores and small networks. We then compare these
methods in a parallel setting when dealing with large net-
works and we analyze their scalability when varying the
number of cores. In Section VI-B, we perform our indirect
comparison.

A. DIRECT COMPARISON
In this section, we analyze the performance of our algorithms
with respect to SL+17, KM17, WG+18, and D18. For a fair
comparison, as all the competitors are designed to perform
truss decomposition, we will compare them with our FMT-
dec, which also returns the truss decomposition. Moreover,
we will show the performance of FMT-max in order to find
just the max-truss. We first evaluate their performance using
a single core and then exploiting their parallelism.

9The source code of our algorithm can be found at github.com/
google-research/google-research/tree/master/truss_decomposition

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

NET
MAX-TRUSS DECOMPOSITION
FMT-max FMT-dec SL+17 KM17 D18 WG+18

flickrEdges 0.60 0.61 12.79 11.6 6 325.43 76.47
Amazon0505 0.96 2.24 2.84 1.94 16.99 9.43
dblp-2011 1.08 2.67 3.28 1.77 38.8 11.86
as-Skitter 3.43 12.34 16.35 50.96 3 146.23 99.19
cit-Patents 6.37 16.7 13.42 13.12 46.02 41.59
enwiki-2013 58.60 250.98 596.62 1 742.7 oot 2 199
hollywood-2009 158.09 313.07 768.13 612.5 oot 4 815
hollywood-2011 303.78 765.18 1 764.34 1 359 oot 12 576
arabic-2005 837.67 1 284.40 oom 14 426.15 oot oot

TABLE 2. Execution time comparison (sec.) in the sequential setting for smaller graphs. oot: required more than 30 000 seconds.

1) Performance Evaluation on a Single Core

In this section, we compare the time needed by FMT-dec with
respect to the one used by SL+17, KM17, WG+18, and D18,
using just one core in order to test the effectiveness of the
underlying algorithms independently from their parallel as-
pects. For this reason, we ran the competitors on a restricted
number of networks, which are the smaller networks in our
dataset. We report in the right part of Table 2 (decomposition)
our results. This table shows that KM17 is faster in 3 small
graphs, all of them having less than 17 millions of edges.
On the other hand, SL+17, D18 and WG+18 are never
faster than the others. SL+17 clearly outperforms KM17 on
enwiki-2013, but it runs out of memory when dealing
with bigger ones, like arabic-2005. In this scenario,
FMT-dec outperforms the competitors on the four biggest
graphs, being the fastest for all the graphs having more
than 20 million edges. For these graphs, the time saved by
FMT-dec goes from the order of minutes to the order of
hours (when the competitors can end their experiments). The
improvement is more visible on the largest graph in the table,
arabic-2005: FMT-dec spent less than 22 minutes to
process it, while the only competitor able to conclude the
experiment was KM17, which used more than 4 hours.

In the left part of Table 2 (max-truss), we report the
time needed by FMT-max to compute the max-truss. It
is worth observing that on the smaller graphs, such as
flickrEdges, the difference between FMT-dec and FMT-
max is negligible as the time is not dominated by the al-
gorithm but its side aspects, e.g. input and output. On the
other hand, the effectiveness of FMT-max is more evident on
bigger graphs, as it allows us to save a conspicuous amount
of time, namely half of the total time, without requiring to
compute the whole truss decomposition. Its effectiveness will
be even more evident on the bigger graphs we will consider
in the remaining part of this section.

2) Dealing with Large Scale Networks using Multiple Cores

In the right part of Table 3 (having headline decomposition),
we report the experimental results to compute the truss de-
composition for all the networks in our dataset using 24 par-
allel threads. Looking at the results, we can see that FMT-dec
is always faster than the competitors on bigger graphs. In the

case of gsh-2015-host for instance, FMT is more than
eight times faster than KM17, which was the only competitor
able to conclude the computation on this graph. Concerning
the other methods, it is worth mentioning that WG+18 is not
parallel and, hence, it uses just one core. Nonetheless, we also
tried to run WG+18 on bigger graphs, but, due to the lack of
parallelism, it ran out of the allotted 30 000 seconds. Also,
D18 ran out of time for bigger graphs. On the other hand,
SL+17 appears to be fast on some medium-sized graphs, like
on g500-sc23-ef16 and g500-sc25-ef16, but its
higher memory usage prohibits its application on larger net-
works on our workstation. Indeed, it should be noted that the
original paper [28] was able to run SL+17 on large networks
due to the larger main memory available (384GB against the
128GB of our machine). Among the competitors of FMT-
dec, KM17 seems to be faster than the others on the majority
of the graphs, even though there seems to be variability in
the results, as for some graphs it is heavily outperformed by
SL+17. Indeed, KM17 is the only competitor of FMT-dec
able to process some of the largest graphs in our dataset. This
is due to its optimized usage of the main memory, which is
shown for the sake of completeness in Table 4 for the biggest
graphs. Note that in this table, WG+18 and D18 do not appear
as they ran out of time (see Table 3). Looking at the table, we
note that KM17 is indeed the one using less memory, namely
much less than SL+17, and slightly less than our approach.

Finally, we discuss the execution time of FMT-max to
compute just the max-truss instead of the whole truss decom-
position. The second column of Table 3 shows that FMT-
max allows us to further reduce the time usage with respect
to the competitors which have to perform the whole truss
decomposition to discover the max-truss. In particular, FMT-
max is at least one order of magnitude faster than KM17,
as also of the other methods. The reason for this success
is partly due to one of its main features, which is its small
memory usage as shown in Table 4. As shown in this table,
the memory usage of FMT-max is very often less than a
quarter of the one required by KM17. This allows to FMT to
compute the max-truss of much bigger graphs as discussed
next.

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

NET
MAX-TRUSS DECOMPOSITION
FMT-max FMT-dec SL+17 KM17 D18 WG+18

flickrEdges 0.55 0.55 6.25 2.35 1021.64 76.47
Amazon0505 1.27 1.27 1.21 0.35 2.45 9.43
dblp-2011 1.7 1.7 1.65 0.5 4.99 11.86
as-Skitter 6.66 6.66 5.93 6.52 320.36 99.19
cit-Patents 7.61 7.61 6.75 3.79 7.05 41.59
hollywood-2009 27.71 58.85 168.27 90.54 oot 4 815
enwiki-2013 50.30 50.36 102.36 152.61 oot 2 199
hollywood-2011 105.71 135.61 357.15 170.29 oot 12 576
g500-sc23-ef16 47.13 154.42 298.07 690.44 oot oot
g500-sc25-ef16 292.6 775.76 1 558.06 4 501.8 oot oot
arabic-2005 140.69 349.43 oom 1 445.39 oot oot
it-2004 208.34 607.57 oom 5 784.62 oot oot
twitter-2010 505.44 1 587.33 oom 57 990.07 oot oot
gsh-2015-host 1 483.12 1 957.21 oom 16 978.97 oot oot
com-Friendster 402.55 1 406.47 oom 2 006.91 oot oot
gsh-2015 45 449.0† oom oom oom oom oom
wdc2012 545 587.6† oom oom oom oom oom

TABLE 3. Execution time comparison (sec.) using 24 cores. oot: required more than 30 000 seconds. †: obtained settingM = 3 · 109 and r = 3.

 1

 10

 100

 1000

 10000

1 3 6 12 24

T
im

e

Cores

FMT-MAX

FMT-DEC

KM17

SL+17

D18

(a) as-skitter

 10

 100

 1000

 10000

1 3 6 12 24

T
im

e

Cores

FMT-MAX

FMT-DEC

KM17

SL+17

(b) enwiki-2013

 100

 1000

 10000

 100000

1 3 6 12 24

T
im

e

Cores

FMT-MAX

FMT-DEC

KM17

(c) arabic-2005

FIGURE 2. Execution time (sec.) when increasing the numbers of cores.

NET
MAX-TRUSS DECOMPOSITION
FMT-max FMT-dec SL+17 KM17

g500-sc23-ef16 1.02 5.95 22.42 4.59
g500-sc25-ef16 4.1 24.01 74.72 18.39
arabic-2005 4.39 25.56 oom 19.71
it-2004 8.13 47.37 oom 36.41
twitter-2010 9.43 55.22 oom 43.09
gsh 11.97 69.55 oom 55.52
com-Friendster 14.86 85.02 oom 74.66
gsh-2015 121.8† oom oom oom
wdc2012 121.7† oom oom oom

TABLE 4. Memory usage (GiB) comparison using 24 cores. oom: out of
memory. oot: required more than 30 000 seconds. †: obtained setting
M = 3 · 109 and r = 3.

Massive graph experiments

Using FMT, we have computed the max-truss of gsh-2015
and eu-2015, setting M = 3 · 109 and r = 3. Since
the memory available on our computing platform, namely
128G, is not sufficient for all the methods based on truss
decomposition, they run oom. In the last rows of Table 3 and
of Table 4 we report respectively the time and space required
by FMT to conclude the experiment.

Scalability

In the following, we discuss the execution time of all the
algorithms varying the number of cores. We set the number of
cores as 1, 3, 6, 12, and 24. We report the results in Figure 2
for as-skitter, enwiki-2003, and arabic-2005
(both axis are in log scale). Not all the methods are appearing
in all the plots since some of them ran oot or oom.

In the case of Figure 2(a), due to the size of the graph,
the differences between the methods are smaller, as also
their scaling factors. When increasing the size of the graph,
as in the case of (b), the differences become more visi-
ble: FMT-dec always outperforms the competitors, namely
SL+17 and KM17, which are the only ones able to deal with
enwiki-2013. The improvement of FMT-max to compute
the max-truss is more than one order of magnitude with
respect to computing the truss decomposition using SL+17
and KM17, and it is consistently increasing with the number
of cores. This trend is replicated at a higher scale in (c), where
SL+17 is not present as it goes oom and KM17 spends more
than ten times the time required by FMT-dec and FMT-max,
confirming the results of Table 3.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

T
im

e

r

h=5

h=10

h=50

h=100

(a) dblp-2011

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8

T
im

e

r

h=5

h=10

h=50

h=100

(b) enwiki-2013

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8

T
im

e

r

h=5

h=10

h=50

h=100

(c) hollywood-2009

FIGURE 3. Execution time (sec.) of FMT as a function of r, settingM = m/h for different values of h.

ALGORITHM HARDWARE COST/HOUR
FMT n1-custom-24-131072, SSD 3x375 GB 1.49 USD
PS18 n1-custom-24-131072, SSD 2x375 GB† 1.45 USD

MD+18 M. (1) n1-custom-20-524288-extended, SSD 4x375 GB 6.51 USD1 x NVIDIA TESLA P100

MD+18 N. (1) n1-custom-20-524288-extended, SSD 4x375 GB 7.53 USD1 x NVIDIA TESLA V100

MD+18 N. (4) n1-custom-20-524288-extended, SSD 4x375 GB 14.97 USD4 x NVIDIA TESLA V100

AA+19 (1) n1-custom-20-524288-extended, SSD 4x375 GB 7.53 USD1 x NVIDIA TESLA V100

AA+19 (4) n1-custom-20-524288-extended, SSD 4x375 GB 14.97 USD4 x NVIDIA TESLA V100

TABLE 5. Parameters for the GCE pricing calculator, single instance with "regular VM class, custom machine type" (updated: Feb 02, 2020). The cost is the hourly
rate in US dollars for a single instance of the virtual machine. The numbers (1) and (4) in brackets refer to the number of GPUs used on the instance. Letters M. and
N. for MD+18 refer to the architecture used in the experiments (M.: Minksky, N.: Newell). †: PS18 uses either 128 or 256 instances simultaneously in [25].

NETWORK
MAX-TRUSS DECOMPOSITION

FMT-max AA+19
(1) FMT-dec PS18 MD+18

M. (1)
MD+18
N. (1)

MD+18
N. (4)

AA+19
(1)

AA+19
(4)

flickrEdges 101.78 85.20 101.78 - 0.38 1.53 0.07 4.44 5.59
Amazon0505 61.39 430.35 26.31 - 7.88 64.79 - 299.04 -
cit-Patents 52.44 448.72 52.44 - 10.26 99.96 8.07 394.87 1986.24
g500-sc23-ef16 132.52 17.45 40.44 - - 0.89 - 2.80 2.35
g500-sc25-ef16 43.22 2.15 16.30 - - - - 0.58 0.65
twitter-2010 57.48 5.98 18.30 0.03† - - - < 0.8 -

TABLE 6. Performance (millions of edges processed per USD cent, higher is better) of FMT-max and AA+19 (for max-truss computation) and FMT-dec, PS18,
MD+18, AA+19 (for truss decomposition). The numbers (1) (4) refer to the number of GPUs used on the instance. †: 128 machines employed. To compute this cost
we relied on the running times specified in the corresponding papers, and on the cost reported in Table 5.

 0.1

 1

 10

 100

 1000

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

E
d

g
e

s
 (

1
0

6
)

p
e

r
U

S
D

 c
e

n
t

tG

FMT-DEC
AA19+ (1)

(a) Truss Decomposition

 1

 10

 100

 1000

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

E
d

g
e

s
 (

1
0

6
)

p
e

r
U

S
D

 c
e

n
t

tG

FMT-MAX
AA19+ (1)

(b) Max Truss

FIGURE 4. Millions of edges processed per USD cent by FMT and AA+19
(1), as a function of tG on the graphs considered in Table 5.

B. INDIRECT COMPARISON
Two relevant results on truss decomposition are from the
IEEE MIT HPEC GraphChallenge 2018 [27]: the cham-

pion [25] is based on a high-performance distributed algo-
rithm (hereafter called PS18) and one of the finalists [22] is
based on a high-performance collaborative (GPU+CPU) al-
gorithm (hereafter called MD+18). Another relevant result is
a winner of the Student Innovation Awards in the GraphChal-
lenge of the following year [2], which also presents a GPU-
based approach for truss decomposition and computing the
max truss (hereafter called AA+19).

The comparison of PS18, MD+18 and AA+19 with our
FMT cannot be directly performed as the computing plat-
forms are pairwise different (furthermore, the software is not
available). Indeed, PS18 runs on a cluster of 256 machines,
and MD+18 and AA+19 use one or four Nvidia GPUs.

To overcome these differences and to make a uniform

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

comparison, we simulated the economical cost of running all
the algorithms on the Google Compute Engine (GCE), by
analyzing the number of processed edges (in millions) that
a US dollar cent can buy, using the platforms in GCE. To
compute this cost we relied on the running times specified
in the corresponding papers [2], [22], [25], and on the cost
reported by the GCE pricing calculator10 for each computing
platform. We considered the cost of the closest more powerful
infrastructure for our results, and that of the closest less
powerful infrastructures for PS18, MD+18 and AA+19, to
do not give an advantage to our algorithm. Regarding the
datasets, we selected the graphs which were used by at
least two algorithms among PS18, MD+18 and AA+19. We
illustrate the hourly costs in Table 5, and the millions of edges
processed per USD cent in Table 6.

As it can be observed, the performance of FMT is orders
of magnitude higher than the other considered algorithms, ex-
cept for Amazon0505 and cit-Patents, where AA+19
excels. We observe that the latter cases correspond to graphs
with the lowest trussness values: Amazon0505 has truss-
ness 11 and cit-Patents 36, while all the other networks
have trussness values over 500. For the sake of completeness,
we plotted in Figure 4 the performance per USD against the
value of tG in the considered datasets: we can see that the per-
formance per cost of FMT-dec and FMT-max remains con-
sistent on all considered datasets, while the performance per
cost of AA+19 gets significantly worse as tG increases. The
rationale behind this behaviour is that approaches based on
matrix multiplication (such a GPU-based ones) re-compute
the support of all edges in the graph simultaneously, ex-
ploiting the mass-parallelism given by the GPUs, while our
combinatorial approach only processes information relative
to the edges that are iteratively removed. Moreover, our CPU-
based algorithm relies on hardware that is up to one order
of magnitude cheaper than the hardware required by other
existing algorithms (Table 5), leading to a more cost-effective
computation. It follows that approaches such as AA+19
obtain good performance per cost on graphs with only small
k-trusses (as fewer multiplications are performed), their per-
formance degrades when denser k-trusses start to appear; on
the other hand, the performance of FMT-dec and FMT-max
remains consistent on all considered datasets, outperforming
all the other considered algorithms by orders of magnitude as
tG increases.

It is worth remarking that PS18 notably concluded an
experiment for a further graph called wdc2012, having
3.5 × 109 nodes and 128 × 109 edges. The performance
of PS18 on this graph is 0.09 million edges per USD cent
using 256 machines like the ones described in Table 5
(row PS18). Unfortunately, we were not able to conclude
an experiment on this graph on our single machine, as it
would require 8x375 GB SSD (instead of our 3x375 GB).
However, estimating our performance for wdc2012, FMT
processes several orders of magnitude more edges per USD

10https://cloud.google.com/compute/docs/cpu-platforms

cent. This estimation is obtained using the results shown
in Table 3, as we concluded an experiment on a slightly
smaller graph (smaller enough to use our resources), which
is eu-2015, using FMT-max. In this case, the performance
was 3.57 million edges per USD cent. Scaling the running
time (in Table 3) for the size of wdc2012 and considering
the cost of a suitable machine above (1.69 USD/h instead of
1.49 USD/h for bringing disk space from 3x375 GB SSD to
8x375 GB SSD), we can roughly estimate our performance
for wdc2012 as 3.13 million edges per USD cent.

C. CHOOSING THE PARAMETERS
In the main part of the paper, we have defined FMT-max
as FMT setting M = m/10 and r = 4. In this section,
we show the execution time of FMT varying M and r. In
particular, we set M = m/h varying h ∈ {5, 10, 50, 100}
and r in {1, 2, 3, 4, 5, 6, 7, 8}. We show the results in Fig-
ure 3, where for each h we report the time of FMT as a
function of r for the graphs dblp-2011, eniwiki-2013,
hollywood-2009. It is worth observing that the time
series is quite stable for 2 ≤ r ≤ 5 for all the values of
h. For r ≥ 5, the time can increase as shown in (c), as
the first phase of pruning, whose aim is to select the most
promising part of the network to find the max-truss, tends
to prune too much and induces the algorithm in performing
more iterations, i.e. restarts. Among all the possible choices,
we have chosen M = m/10 and r = 4, but we note that
also many other combinations can get very similar results,
meaning that FMT is also quite robust.

VII. CONCLUSIONS AND FUTURE WORKS
In this paper, we have presented a new algorithm for com-
puting k-trusses. We have verified that k-trusses are a useful
tool for community detection purposes depending on the
application: they can give useful insights about communities
when combined with tools of clique detection (like in the
case of collaboration networks as hollywood-2011 and
dblp-2011), as for instance, it allows to quickly compute
maximum cliques, and sometimes yields useful informa-
tion even when used alone (like for gsh-2015-host and
enwiki-2013). We experimentally showed that our algo-
rithm outperforms the most recent state of the art algorithms
on different large networks by up to order of magnitudes. For
future work, we plan on further exploring the well-known
link between the presence of (quasi)cliques and k-trusses,
in order to speed up computationally hard problems such as
clique and quasi clique detection.

REFERENCES
[1] N.-W. C. S. A. Edge-disjoint spanning trees of finite graphs. Journal of

the London Mathematical Society, s1-36(1):445–450, 1961.
[2] M. Almasri, O. Anjum, C. Pearson, Z. Qureshi, V. S. Mailthody, R. Nagi,

J. Xiong, and W.-m. Hwu. Update on k-truss decomposition on gpu. In
2019 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–7. IEEE, 2019.

[3] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length
cycles. Algorithmica, 17(3):209–223, 1997.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3011667, IEEE Access

Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

[4] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. Large
scale networks fingerprinting and visualization using the k-core decom-
position. In Advances in neural information processing systems, pages
41–50, 2006.

[5] M. Bisson and M. Fatica. Static graph challenge on GPU. In 2017 IEEE
High Performance Extreme Computing Conference (HPEC), pages 1–8,
Sept 2017.

[6] P. Boldi, A. Marino, M. Santini, and S. Vigna. Bubing: Massive crawling
for the masses. TWEB, 12(2):12:1–12:26, 2018.

[7] P. Boldi and S. Vigna. The webgraph framework i: Compression tech-
niques. In 13th International Conference on World Wide Web, WWW ’04,
pages 595–602, 2004.

[8] P.-L. Chen, C.-K. Chou, and M.-S. Chen. Distributed algorithms for k-
truss decomposition. In Big Data (Big Data), 2014 IEEE International
Conference on, pages 471–480. IEEE, 2014.

[9] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.
SIAM Journal on Computing, 14(1):210–223, 1985.

[10] J. Cohen. Trusses: Cohesive subgraphs for social network analysis.
National Security Agency Technical Report, 16, 2008.

[11] A. Conte, D. De Sensi, R. Grossi, A. Marino, and L. Versari. Discovering
k-trusses in large-scale networks. In 2018 IEEE High Performance Ex-
treme Computing Conference, HPEC 2018, Waltham, MA, USA, Septem-
ber 25-27, 2018, pages 1–6, 2018.

[12] A. Conte, R. D. Virgilio, A. Maccioni, M. Patrignani, and R. Torlone. Find-
ing all maximal cliques in very large social networks. In 9th International
Conference on Extending Database Technology, EDBT 2016., pages 173–
184, 2016.

[13] T. A. Davis. Graph algorithms via suitesparse: Graphblas: triangle count-
ing and k-truss. In 2018 IEEE High Performance extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2018.

[14] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community search for large
attributed graphs. Proc. VLDB Endow., 9(12):1233–1244, Aug. 2016.

[15] M. Farach-Colton and M. Tsai. Computing the degeneracy of large
graphs. In LATIN 2014: Theoretical Informatics - 11th Latin American
Symposium, Montevideo, Uruguay, March 31 - April 4, 2014., pages 250–
260, 2014.

[16] C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis.
Corecluster: A degeneracy based graph clustering framework. In AAAI,
volume 14, pages 44–50, 2014.

[17] O. Green, J. Fox, E. Kim, F. Busato, N. Bombieri, K. Lakhotia, S. Zhou,
S. Singapura, H. Zeng, R. Kannan, et al. Quickly finding a truss in a
haystack. In High Performance Extreme Computing Conference (HPEC),
2017 IEEE, pages 1–7. IEEE, 2017.

[18] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-
truss community in large and dynamic graphs. In 2014 ACM SIGMOD
international conference on Management of data, pages 1311–1322. ACM,
2014.

[19] H. Kabir and K. Madduri. Parallel k-truss decomposition on multicore
systems. In High Performance Extreme Computing Conference (HPEC),
2017 IEEE, pages 1–7. IEEE, 2017.

[20] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Influential community search in
large networks. Proc. VLDB Endow., 8(5):509–520, Jan. 2015.

[21] T. M. Low, D. G. Spampinato, A. Kutuluru, U. Sridhar, D. T. Popovici,
F. Franchetti, and S. McMillan. Linear algebraic formulation of edge-
centric k-truss algorithms with adjacency matrices. In 2018 IEEE High
Performance extreme Computing Conference (HPEC), pages 1–7. IEEE,
2018.

[22] V. S. Mailthody, K. Date, Z. Qureshi, C. Pearson, R. Nagi, J. Xiong, and
W. Hwu. Collaborative (CPU + GPU) algorithms for triangle counting
and truss decomposition. In 2018 IEEE High Performance Extreme
Computing Conference, HPEC, pages 1–7, 2018.

[23] MIT/Amazon/IEEE. GraphChallenge.org: Raising the bar on graph
analytic performance. https://graphchallenge.mit.edu/, 2017. [Online;
accessed 22/05/2018].

[24] R. Pearce. Triangle counting for scale-free graphs at scale in distributed
memory. In 2017 IEEE High Performance Extreme Computing Confer-
ence (HPEC), pages 1–4, Sept 2017.

[25] R. Pearce and G. Sanders. K-truss decomposition for scale-free graphs
at scale in distributed memory. In 2018 IEEE High Performance extreme
Computing Conference (HPEC), pages 1–6. IEEE, 2018.

[26] M.-E. G. Rossi, F. D. Malliaros, and M. Vazirgiannis. Spread it good,
spread it fast: Identification of influential nodes in social networks. In
24th International Conference on World Wide Web, pages 101–102. ACM,
2015.

[27] S. Samsi, V. Gadepally, M. B. Hurley, M. Jones, E. K. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner.
Graphchallenge.org: Raising the bar on graph analytic performance. In
2018 IEEE High Performance Extreme Computing Conference, HPEC,
pages 1–7, 2018.

[28] S. Smith, X. Liu, N. K. Ahmed, A. S. Tom, F. Petrini, and G. Karypis.
Truss decomposition on shared-memory parallel systems. In 2017 IEEE
High Performance Extreme Computing Conference (HPEC), pages 1–6,
Sept 2017.

[29] E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for
finding a maximum clique with computational experiments. Journal of
Global Optimization, 37(1):95–111, Jan 2007.

[30] C. Voegele, Y. S. Lu, S. Pai, and K. Pingali. Parallel triangle counting and
k-truss identification using graph-centric methods. In 2017 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–7, Sept
2017.

[31] J. Wang and J. Cheng. Truss decomposition in massive networks. VLDB
Endowment, 5(9):812–823, 2012.

[32] Y. Wang, S. Cai, and M. Yin. Two efficient local search algorithms for
maximum weight clique problem. In AAAI, pages 805–811, 2016.

[33] D. Wen, L. Qin, X. Lin, Y. Zhang, and L. Chang. Enumerating k-vertex
connected components in large graphs. arXiv preprint arXiv:1703.08668,
2017.

[34] V. V. Williams and R. Williams. Subcubic equivalences between path,
matrix and triangle problems. In Foundations of Computer Science
(FOCS), 2010 51st Annual IEEE Symposium on, pages 645–654. IEEE,
2010.

[35] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Rajaman-
ickam. Fast linear algebra-based triangle counting with KokkosKernels. In
2017 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–7, Sept 2017.

[36] J. Wu, A. Goshulak, V. Srinivasan, and A. Thomo. K-truss decompo-
sition of large networks on a single consumer-grade machine. In 2018
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), volume 00, pages 873–880, August
2018.

VOLUME 4, 2016 13

