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Abstract

Simulation is used to predict wildland fire spread in real-time. Nevertheless, the large uncer-

tainties in these simulations must be quantified in order to provide better information to fire

managers. Ensemble forecasts are usually applied for this purpose, with an input parameter

distribution that is defined based on expert knowledge.

We propose a novel approach to generate calibrated ensembles whose input distribution

is defined by a posterior PDF with a pseudo-likelihood function that involves the Wasserstein

distance between simulated and observed burned surfaces of several fire cases. Due to the

high dimension and the computational requirements of the pseudo-likelihood function, a

Gaussian process emulator is built to obtain a sample of the calibrated input distribution

with a MCMC algorithm in about one day of computation on 8 computing cores.

The calibrated ensembles lead to better overall accuracy than the uncalibrated ensem-

bles. The a posteriori probability distribution of the inputs favors lower values of rate of

spread and lower uncertainty on wind direction. This strongly limits overprediction, while

keeping the ability of the ensemble to cover the observed burned area.

∗Corresponding author
Email address: frederic.allaire@inria.fr (Frédéric Allaire)

Preprint submitted to Applied Mathematical Modelling



Keywords: uncertainty quantification, Metropolis Hastings, Wasserstein distance,

Gaussian process

1. Introduction

Modeling wildland fire spread is a challenging task due to the high nonlinearity of the

phenomenon and the significant uncertainties in the modeling process. Several models have

been developed to describe the dynamics of wildland fire spread [1] with varying degrees

of complexity leading to (semi-)physical and (semi-)empirical models. Physical models are

too complex and the associated simulations are too time-expensive for the computation of a

very large scale wildfire in real time. Meanwhile, 2D fire spread simulators [2] that describe

the dynamics of the shape of the fire are faster and more suited to make predictions in an

operational context. Such simulators typically make use of an empirical model where the rate

of spread (ROS), i.e., the speed at which the flames advance, is expressed as a function of local

environmental parameters (such as wind, slope, fuel moisture and vegetation properties).

Although the use of empirical models implies a drastic simplification of the physics of

wildland fire spread, they are usually non-linear. For instance, most ROS models imply a

power-type relation between ROS and wind speed [3].

High variability of the environmental conditions, difficulty of measurements, etc., lead to

considerable uncertainty. Instead of relying on a single deterministic prediction, an alterna-

tive consists in generating a probabilistic prediction of fire spread in order to quantify this un-

certainty. In wildland fire predictions, probabilistic methods mostly focus on the uncertainty

of the inputs, which is propagated through the fire spread simulators (e.g., [4, 5, 6, 7, 8]).

Other sources of uncertainty (notably, model errors) are usually unaccounted for.

Performance of fire spread simulators is typically assessed by comparing a simulated

burned surface with its observed counterpart by the means of deterministic methods, for

instance by computing indices that measure how much the two surfaces match (e.g. [9, 10])
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or by analyzing the distance between vertices of the fire perimeter (e.g. [11, 12]). In the

case of probabilistic predictions, several evaluation criteria we proposed in [13] to assess the

performance of the prediction system.

Input uncertainty is typically quantified a priori via a probability distribution that is

based on data measurements and expert knowledge. A way to improve the prior distribution

is to compare the corresponding distribution of the model outputs with observations. The

goal is to use the observational information to obtain a distribution a posteriori for both the

input and the output. This procedure can be seen as a calibration of the input distribution

and consists in solving a problem of inverse uncertainty quantification (e.g., [14]). This

approach is relatively new in wildland fire modeling, although the Generalized Likelihood

Uncertainty Estimation (GLUE) methodology was investigated in [15].

The goal of this study is to calibrate the probability distribution of the inputs of the

model based on observed fires. The probabilistic predictions generated with the calibrated

distributions should lead to better probabilistic scores than those generated with the prior

distribution on the input variables. Two major difficulties are encountered: first, the large

number of uncertain input variables; second, that the model is considered a “black box”

whose output is a surface, so that we cannot easily write a formula for the likelihood, which

is fundamental in a Bayesian approach. We propose a method inspired from the Bayesian

framework that can circumvent these two difficulties by making use of a novel score for the

comparison of surfaces relying on the Wasserstein distance for several observed fires. This

leads to the definition of a calibrated distribution that can be sampled from via traditional

Markov chain Monte Carlo (MCMC) algorithms. We use an emulator (also called surrogate

model or metamodel) of the score to drastically decrease computational time, at the cost of

relatively low approximation error, so that sufficient MCMC iterations can be performed in

a reasonable amount of time.

This methodology follows the setting presented in a previous study [13] where the un-
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certain inputs were identified. We try to obtain calibrated probabilistic predictions that are

as relevant as possible based on the observation of 7 relatively big Corsican fires.

The theory behind the strategy for calibration of input uncertainty is described in Sec-

tion 2 and the technical aspects of its application are presented in Section 3. In Section 4,

we present the results obtained regarding the emulation, the calibration of the distributions

and the evaluation of the resulting ensembles. The results are then discussed in Section 5.

2. A posteriori uncertainty quantification

In this section, we will first consider the observation of one burned surface. Application

to observations of several fires will be introduced in subsection 2.3. We denote the observed

burned surface as Sobs. We can model fire spread with a numerical modelM, whose inputs

may vary according to a vector u of d perturbations applied to reference inputs. The model

is dynamical and may return burned surfaces at different times but we only focus on a

surface that corresponds to the (estimated) observation time of Sobs. The simulated burned

surface being denoted as Su, we have Su = M(u). We can directly compare Su and Sobs,

but there is uncertainty on the input variables. This uncertainty is modeled by attributing a

probability distribution to the perturbation vector, that can be seen as a random vector U .

Consequently, the output is also stochastic: SU =M(U). Although SU is probabilistic and

Sobs is deterministic, they can be compared by the means of probabilistic evaluation tools

(see Appendix A for more details). We seek a distribution that is as suitable as possible for

the random vector U . We consider that the distribution of U is described by the probability

density function (PDF) g and that we already have access to a prior density function f for

U . In this section, we propose a method to obtain g by making the best possible use of f ,

Sobs andM.
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2.1. Distribution based on Wasserstein distance

A classical choice for g would be the posterior density function p(.|Sobs) that is obtained

according to Bayes’ rule:

p(u|Sobs) = L(Sobs|u)f(u)∫
L(Sobs|u)f(u)du

, (1)

where L(Sobs|u) would be the likelihood of the observation Sobs knowing the perturbation

vector u. However, defining the likelihood requires to make an appropriate probabilistic

hypothesis, where Sobs is a realization of a 2D stochastic process whose distribution depends

on u. Making such a hypothesis is not trivial, but a step in this direction would be to use Su

rather than simply u, and define a (conditional) probability distribution for Sobs based on Su.

A desirable property of such a probability distribution is that the most likely realizations of

Sobs are the ones that are most similar to Su. Also, similarity should take into account high

correlation between two points in a 2D domain when they are close. For instance, if a given

location has high probability of being burned, so should have its neighboring locations. Still,

while defining a likelihood for a vector is feasible, this might not be the case for a random

surface.

Therefore, we propose a calibrated distribution that is inspired from Bayes’ rule, where

the density function g can be written in the following form:

gE,β(u) = e−βE(u)f(u)∫
e−βE(u)f(u)du

, (2)

where β > 0 and E is a positive “energy” function that is equal to 0 when Su = Sobs and

increases with the dissimilarity between Su and Sobs. Here, we have a pseudo-likelihood

function that plays the role of L in equation (1). This calibrated family of functions is

inspired from Gibbs measures, but is different because the exponential is multiplied by f ,
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the prior PDF. The higher the parameter β, the more weight is given to the pseudo-likelihood

function. Also, when β = 0, the calibrated PDF is equal to the prior PDF.

Several scores to compare Sobs and Su exist and could be used directly or after minor

modifications to make suitable choices for E. We decided to introduce a novel score that

makes use of the Wasserstein distance, which is a metric between probability distributions.

The square of the Wasserstein distance between the uniform probability distributions cov-

ering respectively Sobs and Su is our choice for E(u) and can be roughly defined as follows:

E(u) = inf
ψ

{∫
Sobs×Su

||x− y||22 ψ(x, y)dxdy
∣∣∣ ∫
Sobs

ψ(x, y)dx = 1(x ∈ Su)
|Su|

,∫
Su

ψ(x, y)dy = 1(y ∈ Sobs)
|Sobs|

}
,

(3)

where 1 stands for the indicator function, ||.||2 is the Euclidean distance (here, in R2), and

|S| is the surface area of S. It can be thought of the minimum energy that is required to

move the points contained in Sobs so as to transform the surface into Su. Also, when both

surfaces are the same, we have E(u) = 0. More details regarding the definition and the

numerical approximation of the Wasserstein distance are given in appendix Appendix B.

The denominator of gE,β(u) is a high-dimensional integral that is intractable but that

does not depend on the perturbation vector u. Hence for a given β, the PDF is known

up to some constant factor. When a distribution is known up to a factor, the Metropolis-

Hastings (MH) algorithm allows to draw samples from that distribution. In this paper, we

will therefore employ the MH algorithm, and describe the a posteriori distribution U with a

very large sample. Computing Su and the Wasserstein distance to obtain E(u) can be done

in a reasonable amount of time. Nonetheless, MH algorithm may require a lot of iterations

(∼ 105) to obtain a sufficiently large sample, which would take too much time. To speed

up the MH algorithm, we propose to use an emulator Ẽ instead of computing E exactly.
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The emulator Ẽ(u) will be a good approximation of E(u) and will be considerably faster.

The general design of the emulator is explained in Section 2.2 and its application to an

energy function specific to several fire cases is given in Section 2.3. To determine whether an

appropriate sample is returned by the MH algorithm, we will use the multivariate diagnostic

metric proposed by [16]. The details on this procedure are given in Section 2.4.

2.2. Emulation

The focus of this section is the approximation of a function y : u ∈ D ⊂ Rd → R. This

function can be the previous Wasserstein distance E(u), or the extension to several fires

presented in Section 2.3. Note that the following emulation approach is fairly general and

can be applied to a wide range of functions.

2.2.1. Gaussian process modeling

The emulation method used in this study is Gaussian process (GP) modeling, also called

kriging. In this context, y(u) is seen as a realization of a Gaussian process Yu indexed

by u. Its means that any random vector [Yu1 , . . . , Yun ]T with n < ∞ components follows

a Gaussian multivariate distribution. We denote a the trend function of the process, i.e.,

E[Yu] = a(u). The centered process Zu = Yu − a(u) is also Gaussian, with a covariance

function of the form Cov(u,u′) = σ2ρ(u−u′), where σ2 > 0 and ρ is the correlation function

between two input points u and u′.

We have at our disposal a set of training data
(
ui, y(ui)

)
i=1,...,n. We denote Y n =

[Yu1 , ..., Yun ]T and yn = [y(u1), ..., y(un)]T . We define Rn as the correlation matrix on the

inputs of the training data:

Rn =
(
ρ(ui − uj)

)
1≥i,j≥n, (4)

and an = [a(u1), ..., a(un)]T as the vector of trends in the training data.
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For a new point u∗ (outside of the training sample or not), we define the correlation vector

r∗ = [r(u∗−u1), ..., r(u∗−un)]T . Under the assumptions made on Yu, the joint probability

distribution between Y n and Yu∗ is Gaussian and so is the conditional distribution of Yu∗

knowing Y n. We have

Yu∗ |Y n ∼ N
(
E[Yu∗ |Y n],Var[Yu∗ |Y n]

)
, (5)

where

E[Yu∗ |Y n] = a(u∗) + r∗TRn−1(yn − an) (6)

and

Var[Yu∗ |Y n] = σ2(1− r∗TRn−1r∗). (7)

For any u∗ ∈ D, we define an emulator ỹ of y as the mean of the conditional variable

given by equation (6):

ỹ(u∗) = a(u∗) + r∗TRn−1(yn − an). (8)

In the present case, we choose a linear trend for Yu, i.e., E[Yu] = a(u) = α0 + uTα

where α0 ∈ R and α ∈ Rd. We also choose the correlation function to be a product of

one-dimensional Matérn 5/2 correlation functions, i.e.,

∀u,u′ ∈ D, ρ(u− u′) =
d∏
l=1

(
1 +
√

5|ul − u′l|
θl

+ 5|ul − u′l|2

3θl2

)
exp

(
−
√

5|ul − u′l|
θl

)
, (9)

where θ1, ..., θd > 0.

For the sake of clarity, we previously presented simple kriging, where the coefficients

a and the covariance hyperparameters are known. In this study, we use universal kriging

where the trend is an unknown polynomial (for more information, see for instance [17]). In
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practice, the 2d+ 2 hyperparameters σ2, α0, α1, ..., αd, θ1, ..., θd used to define the Gaussian

process are unknown and can be estimated as the maximum likelihood estimators for the

training dataset [18].

2.2.2. Design of experiments and performance metrics

The inputs of the training sample are obtained via a Latin hypersquare sample (LHS)

with optimized discrepancy. As the GP emulator is interpolating from the points of the

training sample, we also generate a complementary test sample to evaluate the predictive

performance of the emulator far from the training points. The complementary sample is

obtained with the algorithm for an optimal validation design described in [19]. It relies on

a Halton sequence whose points are selected in order to keep a low discrepancy when both

training and test samples are taken together. This procedure aims at selecting points that

are located far from each other but also far from the points of the training sample, where

we expect the approximation error to be higher.

Based on the test sample
(
ui, y(ui)

)
i=1,...,ntest

several performance metrics can be used

to evaluate the emulator ỹ. In this study, we use the mean absolute error (MAE), defined

as

MAE = 1
ntest

ntest∑
i=1
|ỹ(ui)− y(ui)| (10)

and the standardized mean square error (SMSE [20]) defined as:

SMSE =
∑ntest

i=1
(
ỹ(ui)− y(ui)

)2∑ntest

i=1
(
y(ui)− ȳ

)2 , (11)

where ȳ = 1
ntest

∑ntest

i=1 y(ui) is the sample mean of the emulated function based on the test

sample. Both scores get closer to 0 as the error of the model gets lower. The SMSE can be

seen as a mean squared error normalized by the variance of the function on the test sample.

Note that a model that would always predict the mean of the training set would have an
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SMSE approximately equal to 1.

2.3. Extension to several fire cases

If we have K fire cases, we can compute the energy functions E1, ..., EK that correspond

to each fire. An intuitive choice for the combined energy function is E : u 7→
∑K
k=1 Ek(u).

However, a concerning issue is when the variations of E1(u) (for instance) are much higher

than for the other fires. In this case, the variations of the pseudo-likelihood will be mostly

determined by those of E1(u), and the calibrated distribution will be mostly representative

of the information from the first fire at the expense of the other observations.

To circumvent this issue, we propose to weigh each fire depending on the values taken by

Ek(u). We define the energy function as the weighted sum of squared Wasserstein distances:

E(u) =
K∑
k=1

wkEk(u), (12)

where the weights are defined using all points from the training dataset:

wk = 1∑n
i=1 Ek(ui)

. (13)

It is possible to emulate E(u) directly but while the function is positive, emulation by GP

does not guarantee positivity outside of the training sample. We choose instead to emulate

L(u) = logE(u) by the GP procedure described in Section 2.2, leading to the emulator

L̃(u). To emulate E(u), we take the exponential Ẽ(u) = exp L̃(u), which ensures positivity.

The GP emulation is implemented in the R-package DiceKriging [17].

2.4. Sampling from the calibrated distribution

In this section, we present the procedure that we used to obtain a sample following a PDF

of the form gẼ,β described in equation (2). To run the algorithm in reasonable computational
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time, we use the emulator Ẽ in place of the energy function E as explained in section 2.3,

assuming that the target distribution of MH is close enough to the desired distribution whose

PDF is gE,β .

Algorithm 1 Metropolis-Hastings algorithm applied to gẼ,β (several chains)

Define m, n, and an instrumental distribution of PDF q : u 7→ q(u|v)
for j = 1, ...,m do
Choose a starting point u1,j
for i = 2, ..., n do
Sample a candidate uc,j ∼ q(.|ui−1,j)
Compute the ratio

τ =
gẼ,β(uc,j) q(ui−1,j |uc,j)
gẼ,β(ui−1,j) q(uc,j |ui−1,j)

= e−βẼ(uc,j) f(uc,j) q(ui−1,j |uc,j)
e−βẼ(ui−1,j) f(ui−1,j) q(uc,j |ui−1,j)

(14)

if τ ≥ 1 then
[Accept the candidate]
ui,j ← uc,j

else
[Accept the candidate with probability τ ]
Sample p ∼ U(0, 1)
if p ≤ τ then
ui,j ← uc,j

else
ui,j ← ui−1,j

end if
end if

end for
end for
return (u1,j , ...,un,j)j=1,...,m

Since we use the convergence diagnosis for MCMC algorithms introduced by Brooks and

Gelman [16], Algorithm 1 presents a version of MH with several chains. It is recommended

to choose the starting points u1,1, ...,u1,m quite far from each other. The loop on the m

chains can be parallelized easily. Based on the chains returned by the MH algorithm, we

compute the between-sequence covariance matrix B/n (of size d) and the within sequence

11



covariance matrix W as follows:

B/n = 1
m− 1

m∑
j=1

(ūj − ū)(ūj − ū)T , (15)

W = 1
m(n− 1)

m∑
j=1

n∑
i=1

(ui,j − ūj)(ui,j − ūj)T , (16)

where ūj = 1
n

∑n
i=1 ui,j is the sample mean of the j-th chain, and ū = 1

m

∑
j=1 ūj is the

sample mean over all chains. The metric used for analyzing convergence is

R̂d = n− 1
n

+
(
m+ 1
m

)
λ1, (17)

where λ1 is the largest eigenvalue of the symmetric, positive definite matrix W−1B/n. At

convergence, R̂d tends to 1, and following the recommendations of Gelman and Brooks [16],

we consider that if R̂d < 1.1 when computed on the second half of the chains, a sufficient

number of MH iterations has been performed. Furthermore, we choose to consider that the

set comprising the second half of all m chains constitutes a representative sample of our

target distribution when R̂d < 1.1.

3. Application to wildland fire propagation

3.1. Fire spread simulation

In this study, we use the fire propagation solver ForeFire [21]. ForeFire uses a front-

tracking technique to model the propagation of the fire front, i.e., the interface between

the burned surface and the rest of the simulation domain (not burned). The fire front is

discretized by the means of Lagrangian markers linked by a dynamic mesh. Each marker

is advanced according to the surface geometry and the rate of spread (ROS). Contrary to

discrete time simulation methods, ForeFire relies on a discrete event specification. Each
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marker is therefore advanced according to a given spatial increment and the time at which

the marker will reach its next position is deduced from its propagation speed, making the

simulation method asynchronous. Advancing a marker in time is considered as an event.

Other events may lead to a new calculation of the future location and time advance of

a marker, such as topology checks that determine whether the markers describe a proper

burned surface and reshape the fire front when it is not the case.

In this study, the rate of spread is computed according to the empirical model of Rother-

mel [22], widely used in wildland fire simulation, and that contains numerous parameters

already fitted and fixed through an analysis of a large set of laboratory experiments. The

variables of this model are expressed in customary US units. The input variables are mc,

the fuel moisture content of dead fuel, Sv the surface-volume ratio, ∆H, the heat content,

σf , the fuel load, Mχ, the moisture of extinction, ρp, the particle density, h, the fuel bed

depth (denoted as fuel height in the following section), α, the slope, n the normal vector

oriented in the direction of fire spread, and W the wind speed vector (predicted by the

meteorological model). First of all, the ROS is given by equation (18)

ROS = Ir ξ (1 + φV + φP )
ρd ε Qig

. (18)

The equation for heat of preignition reads

Qig = 250 + 1116 mc, (19)

and that for the effective heating number reads

ε = exp(−138/Sv). (20)
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The reaction intensity is expressed as a product:

Ir = Γ′ Wn ∆H ηm ηs. (21)

We assume that ηs, the mineral damping coefficient, is equal to 1. We also assume that the

fuel mineral content is negligible, leading to Wn = σf . The moisture damping is expressed

as a polynomial:

ηm = 1− 2.59 mc

Mχ
+ 5.11

(
mc

Mχ

)2
− 3.52

(
mc

Mχ

)3
. (22)

The equation for potential reaction velocity reads

Γ′ = Sv
1.5

495 + 0.0594Sv1.5

(
β

βop

)A
exp

(
A
(

1− β

βop

))
, (23)

with

A = (4.774Sv0.1 − 7.27)−1, (24)

where the packing ratio is given by

β = ρb
ρp

= σf
hρp

(25)

(note that the bulk density is given by ρb = σf

h ), and the optimal packing ratio is expressed

as

βop = 3.348Sv−0.8189. (26)

Coming back to the numerator of equation (18), we have the following relationship for the
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ratio of the no-wind propagation flux by the reaction intensity:

ξ =
exp

(
(0.792 + 0.681Sv0.5)(β + 0.1)

)
192 + 0.259Sv

(27)

Finally, we have the slope factor

φP = 5.275β−0.3α2 (28)

and the wind speed factor

φV = 7.47 exp(−0.133Sv0.55)
(
β

βop

)−0.715 exp(−0.000359Sv)
WS

0.0256Sv
0.54

, (29)

where the “effective” wind speed, WS , is computed via W and n. To account for the fact

that the wind speed at mid-height of the flame is usually lower than that of the prediction,

we apply a 0.4 factor to wind speed. We also use the wind speed limit function proposed

in [23], which leads to:

WS = min(0.4W .n, 96.81Ir1/3) (30)

The scheme used to advance the markers of the fire front is based on a first-order ap-

proximation. Considering a marker that is located at xi at time ti, with its normal to the

front denoted as ni (oriented toward the unburned area), its next location is determined by

xi+1 = xi + δl ni, (31)

and the advance in time depends on ROSi, the rate of spread computed with the values of

the environmental inputs at location xi and time ti, as follows:

ti+1 = ti + δl

ROSi
. (32)
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3.2. Prior uncertainty on input data

Input Unit Perturbation Distribution Notes

Wind direction o Additive N (0, 602) Truncated to [−180, 180]

Wind speed norm m s−1 Multiplicative LN (0, (0.5 log 3)2) Truncated to [1/3, 3]

Dead fuel moisture Multiplicative U(0.4, 1.6)

Heat of combustion MJ kg−1 Additive U(−5, 5)

Particle density kg m−3 Additive U(−300, 300)

Fuel height m Multiplicative, individual U(0.4, 1.6)

Fuel load kg m−2 Multiplicative, individual U(0.4, 1.6)

Surface-volume ratio m−1 Multiplicative, individual U(0.4, 1.6)

Direction from ignition point o Additive U(−180, 180)

Distance to ignition point m Additive U(0, 1)×∆max ∆max ∈ {100, 500, 1000}

Time of fire start min Additive U(−1, 1)×∆max ∆max ∈ {10, 15, 30, 60}

Time of fire end min Additive U(−1, 1)×∆max ∆max ∈ {10, 60, 120, 180, 240}

Table 1: Prior probability distribution of the perturbations on the simulation inputs.

For the first two inputs, the distribution is a truncated (log-)normal. For each of the last three inputs, we use

a reduced variable in [0,1] or [-1, 1] in the calibration procedure, and multiply it by ∆max, which depends

on the fire case, when we run the simulations.

The description of the perturbation variables is presented in [13], where the distributions

are mostly truncated normal. In the present study, we choose a wider support for some

of the distributions and/or substitute them for uniform distributions. Another difference

compared to the previous study is that we do not take the fuel type transitions in the cali-

bration procedure, which means that no transition is applied when running the simulations

to compute the emulator, and that transitions are not part of the MH algorithm. We still

use them in the generation of the ensembles, by generating the transitions independently

from the scalar perturbations.

The marginals of the prior distribution are presented in Table 1. We assume the inputs are

independent. Note that in our simulations we consider up to 13 burnable fuel types that are

linked to the Corine Land Cover classification [24]. When we indicate that the perturbation
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is “individual”, it means that we sample one perturbation coefficient for each fuel type.

For one simulation, we generate d = 48 perturbation coefficients. For wind direction and

wind speed norm, the distributions are truncated. For these two variables, the distribution

specified in the “Distribution” column corresponds to the distribution before truncation is

applied. The main reason behind the choice of distributions with finite support is to avoid

sampling extreme values that may be unrealistic or that could lead to unphysical parameter

values (e.g., negative fuel load).

Uncertainty on the location of the ignition point is specified by the perturbation parame-

ters “direction from ignition point” and “distance to ignition point”. To sample a perturbed

ignition point, we first sample a direction and select the new ignition point at an indepen-

dently sampled distance from the reference ignition point in this direction. The maximum

distance ∆max depends on the fire case: the perturbed ignition point may therefore be

sampled within a radius ranging from 100 m to 1 km around the reference. Similarly, the

maximum perturbation ∆max for time of fire start and time of fire end depends on the fire

case. This varying uncertainty is due to the information available regarding each fire. For

the last three variables, ∆max is specific to each fire case. However, for the calibration, there

is only one “reduced” variable for each of these three inputs, whose support is either [0, 1]

or [−1, 1]. The actual perturbation used to run the fire spread simulations for a given fire

case is obtained from the reduced variable after multiplication by ∆max.

3.3. Application to seven Corsican wildland fires

The emulation and calibration procedure is applied to K = 7 fires that occurred in

Corsica in 2017-2018 and that are presented in [13]. We also use the ensembles obtained in

this previous study as reference for comparison and refer to them as “reference ensembles”

hereafter.

We choose to build an emulator with a training sample of size 4000, and evaluate its
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performance with a test sample of size 2000.

We then apply the MH algorithm to several distributions with different values of β

ranging in { 1
10 ,

1
7 ,

1
4 ,

1
2 , 1, 2}. We choose n = 150000 iterations and m = 8 chains. The

instrumental distribution described by q(u|v) is a product of independent univariate trun-

cated normal distributions. Before truncation, the k-th normal distribution is centered on

the k-th component of v and has a standard deviation equal to a twentieth of the width of

the perturbation range. The distribution is then truncated to the perturbation range. For

the perturbation of wind speed norm, it is the logarithm of the perturbation that follows a

truncated normal distribution.

By taking the latter half of the chains obtained with the MH algorithm, this leads to

samples of size m×n/2 = 600000 for each value of β. Based on these empirical distributions,

we generate ensembles of wildland fire simulations for the seven fire cases, that we refer to

as “calibrated ensembles” hereafter. The size of a calibrated ensemble ranges between 2000

and 10000. The evaluation domain is the same as for the reference ensembles, but contrary

to the previous study, we do not apply any computational time limit to the simulations. The

ensemble generation procedure is also carried out based on the prior distributions, which

leads to “prior ensembles”.

We evaluate the ensembles by following the methodology presented in [13]. We mainly

focus on the accuracy of the ensembles by the means of the Brier skill score and a global

version to summarize the performance of the ensembles on the seven fires. Bootstrap re-

sampling is carried out to obtain 95% confidence intervals. More details can be found in

appendix Appendix A. To summarize the information given by the other evaluation tools on

several fires (rank histogram, reliability and sharpness diagrams), the contribution of each

fire case is weighted by the size of the evaluation domain before summing the contributions

of the seven fires (otherwise, fires with the largest simulation domains would have the most

influence). For the rank histogram, we normalize the values of the rank because of the
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varying ensemble size.

4. Results

4.1. Emulation

The emulator shows good predictive performance withMAE = 0.73 and SMSE = 4.7%.

The use of the logarithm allowed slightly better performance than with direct emulation of

the energy function (MAE = 0.97 and SMSE = 6.2% without using the logarithm). In

the latter case, negative values were obtained at 4 points of the test sample, while the use

of the logarithm ensured the prediction of positive values. The emulated energy function is

computed in approximately 0.6 s, therefore the 150000 iterations of the MH algorithm can

be performed in a bit more than a day.

4.2. Calibrated distribution

For all values of β, our convergence diagnosis is positive with R̂p ranging between 1.035

and 1.045 based on the last 75000 values of the chains. The proportion of accepted values

ranges between 65% and 71% and decreases with β.

The correlation between different input variables of the calibrated distributions is low,

with a maximum absolute value of 0.1046 (for β = 2). Also, most marginals show very little

difference between the prior and the calibrated distribution. Although increasing β leads to

more significant difference from the prior distribution, some variables seem to be unaffected

by the calibration, namely most individual perturbations on fuel parameters (height, load

and surface-volume ratio) and perturbation on the ignition point and the time of fire start.

Histograms of some marginals of the calibrated distribution are represented for β = 1/2

in Figure 1. Only the distributions that lead to the most significant change compared to the

prior distribution are represented, namely perturbations of ∆H, ρp, the three individual fuel

parameters (σf , Sv, h) specific to fuel type 311 (Broad-leaved forest), wind speed norm and
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(a) ∆H (b) σf of fuel type 311 (c) Sv of fuel type 311

(d) h of fuel type 311 (e) ρp (f) Wind speed norm

(g) mc (h) Wind direction (i) Time of fire end

Figure 1: Histograms of some marginals of the calibrated distribution obtained with β = 1/2. The histograms

are normalized to allow comparison with the PDFs of the prior distribution (bold black line). Only the

perturbations whose distributions are most different from that of the priors are represented.

direction, mc, and time of fire end. Similar results are obtained for other values of β, with an

increasing deviation from the prior when β increases. The variables with the most deviation

are the same, except for the perturbations on the fuel load σf of fuel type 311, which does

not differ much with higher β. On the other hand, for β = 1 and β = 2, the marginals of

the other individual fuel parameters Sv and h of fuel types 321 (Natural grassland) and 323
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(Sclerophyllous vegetation) also show a larger deviation from those of the prior distribution,

but not as much as for fuel type 311.

The variables whose marginals change the most after calibration are presumably those

that have the most influence on the (emulated) energy function and therefore on the simu-

lations. The ROS is proportional to ∆H and is highly sensitive to wind speed, and the new

distributions for these inputs favor a reduced ROS, which gives more probability to smaller

simulated burned areas. This tendency to favor a reduced ROS increases with β as can be

seen in Figures 2 and 3. The calibrated distribution of the perturbation on the time of fire

end has the same effect as it favors shorter fire durations. The maximum perturbations of

the time of fire start are lower than for the time of fire end for all fire cases. This difference in

uncertainty is probably the reason why the distribution on time of fire end is more affected

by the calibration than is that of time of fire start, although they both have an influence

on the duration of the simulated fire. Similarly, we can assume that the simulated burned

surface is less sensitive to the location of the ignition point compared to the other sources

of uncertainty. Individual fuel parameters influence the ROS but only in some regions of

the simulation domain, which comprises two to six major fuel types depending on the fire

case. For instance, fuel type 311 is involved in four of the seven fires (Chiatra, Sant’Andrea

di Cotone, Nonza and Ghisoni) so its fuel parameters are more likely to be influential than

these of fuel type 322 (Moors and heathland), which is almost only involved in Ghisoni fire

case. For all values of β, the calibrated distribution of the perturbation of ρp, the particle

density, favors high values. The mean of the perturbation of wind direction remains close to

0 regardless of the value of β, which is an indication of unbiased meteorological data, and

its standard deviation decreases with β (see Figure 4). Interestingly, the distribution of the

perturbation of the fuel moisture mc at high values of β is dome-shaped, with a mean close

to that of the prior (see Figure 5).
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(a) β = 1/10 (b) β = 1/7 (c) β = 1/4

(d) β = 1/2 (e) β = 1 (f) β = 2

Figure 2: Marginal calibrated distribution of ∆H for different values of β. The bold black line indicates the

PDF of the prior distribution.
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(a) β = 1/10 (b) β = 1/7 (c) β = 1/4

(d) β = 1/2 (e) β = 1 (f) β = 2

Figure 3: Marginal calibrated distribution of wind speed norm for different values of β. The bold black line

indicates the PDF of the prior distribution.
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(a) β = 1/10 (b) β = 1/7 (c) β = 1/4

(d) β = 1/2 (e) β = 1 (f) β = 2

Figure 4: Marginal calibrated distribution of wind direction for different values of β. The bold black line

indicates the PDF of the prior distribution.
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(a) β = 1/10 (b) β = 1/7 (c) β = 1/4

(d) β = 1/2 (e) β = 1 (f) β = 2

Figure 5: Marginal calibrated distribution of the fuel moisture content mc for different values of β. The bold

black line indicates the PDF of the prior distribution.
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4.3. Ensemble evaluation

The Brier skill scores of the calibrated, prior and reference ensembles for all seven fire

cases are presented in Table 2. The size of the reference ensembles is 500 members for all

fires other than Ghisoni (324 members) which is smaller than that of the prior and calibrated

ensembles. With 10000 bootstrap samples for each ensemble, we deduced approximate 95%

confidence intervals that are reported in Table 3.

Fire name (ensemble size) Reference Prior β = 1/10 β = 1/7 β = 1/4 β = 1/2 β = 1 β = 2

Calenzana (10000) 0.269 0.291 0.304 0.308 0.309 0.314 0.308 0.284

Chiatra (10000) 0.324 0.386 0.385 0.379 0.371 0.358 0.342 0.325

Ville di Paraso (2000) 0.021 0.168 0.179 0.182 0.189 0.188 0.176 0.168

Sant’Andrea di Cotone (5000) 0.190 0.408 0.429 0.442 0.454 0.468 0.485 0.494

Olmeta di Tuda (2000) 0.063 0.187 0.230 0.219 0.278 0.322 0.378 0.451

Nonza (4000) -5.323 -3.089 -3.124 -3.133 -3.124 -3.044 -3.057 -3.053

Ghisoni (2000) -9.986 -10.273 -9.831 -9.851 -9.333 -9.018 -8.638 -8.332

Global -1.609 -1.332 -1.266 -1.269 -1.191 -1.135 -1.080 -1.033

Table 2: Brier skill score of the reference, prior and calibrated ensembles for the seven fire cases individually

and globally (last line). For a given fire case, the best value of the BSS is represented in bold. The ensemble

size applies to all ensembles except the reference ensembles that are of size 500 for all fires other than Ghisoni

(324).

Fire name (ensemble size) Reference Prior β = 1/10 β = 1/7 β = 1/4 β = 1/2 β = 1 β = 2

Calenzana (10000) [0.238, 0.300] [0.284, 0.297] [0.298, 0.310] [0.301, 0.314] [0.303, 0.315] [0.308, 0.320] [0.303, 0.314] [0.278, 0.290]

Chiatra (10000) [0.316, 0.332] [0.383, 0.389] [0.382, 0.389] [0.376, 0.383] [0.367, 0.375] [0.354, 0.362] [0.338, 0.346] [0.322, 0.329]

Ville di Paraso (2000) [-0.001, 0.042] [0.156, 0.179] [0.170, 0.188] [0.173, 0.192] [0.181, 0.197] [0.181, 0.194] [0.170, 0.182] [0.162, 0.174]

Sant’Andrea di Cotone (5000) [0.159, 0.306] [0.398, 0.419] [0.419, 0.438] [0.433, 0.451] [0.446, 0.462] [0.461, 0.475] [0.480, 0.491] [0.489, 0.499]

Olmeta di Tuda (2000) [0.011, 0.115] [0.161, 0.214] [0.204, 0.256] [0.193, 0.245] [0.254, 0.303] [0.299, 0.346] [0.356, 0.400] [0.433, 0.470]

Nonza (4000) [-5.458, -5.187] [-3.166, -3.011] [-10.017, -9.645] [-3.213, -3.053] [-3.203, -3.045] [-3.125, -2.963] [-3.136, -2.978] [-8.472, -8.192]

Ghisoni (2000) [-10.118, -9.854] [-10.477, -10.069] [-10.017, -9.645] [-10.036, -9.665] [-9.510, -9.156] [-9.187, -8.850] [-8.784, -8.492] [-8.472, -8.192]

Global [-1.635, -1.586] [-1.359, -1.305] [-1.291, -1.241] [-1.294, -1.245] [-1.215, -1.168] [-1.158, -1.113] [-1.100, -1.060] [-1.053, -1.014]

Table 3: Bootstrap 95% confidence intervals of the BSS values from Table 2. The ensemble size applies to

all ensembles except for the reference ensemble whose size is 500 for all fires other than Ghisoni (324)

There is considerable improvement of the BSS for almost all fire cases with the prior
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ensembles compared to the reference ensembles. It is also the case with the calibrated

ensembles. However, although most calibrated ensembles have better BSS than the reference

ensembles, there is not always an improvement compared to the prior ensembles. For the

fires of Sant’Andrea di Cotone, Olmeta di Tuda and Ghisoni, there is an overall increase of

BSS with β. For the fire of Chiatra, it is the opposite: the Brier skill score decreases with

β. For the fires of Calenzana and Ville di Paraso, the variation of BSS with β is relatively

low, and there is probably an optimum for intermediate values of β. There might also be an

optimum at intermediate β for the fire of Nonza, but the confidence intervals are too large

to support this assumption.

There is not an indisputable best value β for which the accuracy is optimal for all fire

cases. For β = 2, we have the best BSS for three fire cases, but for three of the remaining

four cases, the BSS is in the lowest among the calibrated ensembles. Still, the global BSS is

the best for β = 2, because the increase in accuracy for some fires is more significant than

that of the other calibrated ensembles, while the decrease of accuracy for the other fire cases

is relatively low.

In order to determine which value of β might be the most appropriate, we can instead

compare the overall ranking of the Brier skill scores. These rankings are reported in Table 4.

According to this method, it results that the best distribution is the one corresponding to

β = 1/2.

In Figure 6 the global (i.e., “average” of the seven fires) rank histogram is represented for

four distributions: reference, prior and two calibrated (β = 1/4 and β = 2). All distributions

lead to higher bars on the left of the rank histogram, which is characteristic of a tendency to

overpredict the burn probabilities. Calibration limits overprediction and leads to a histogram

that is closer to the ideal uniform histogram.

The reliability and sharpness diagrams of these distributions are represented in Figure 7.

Although the calibrated distribution lead to overall slightly more reliable ensembles, there

27



0.0 0.2 0.4 0.6 0.8 1.0

Normalized rank

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 w

e
ig

h
t

Reference
Prior
β = 1/4

β = 2

Figure 6: Global rank histogram for several ensembles. The dotted line indicates the ideal histogram of a

consistent ensemble
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Fire name (ensemble size) Reference Prior β = 1/10 β = 1/7 β = 1/4 β = 1/2 β = 1 β = 2

Calenzana (10000) 8 6 5 3 2 1 3 7

Chiatra (10000) 8 1 2 3 4 5 6 7

Ville di Paraso (2000) 8 6 4 3 1 2 5 6

Sant’Andrea di Cotone (5000) 8 7 6 5 4 3 2 1

Olmeta di Tuda (2000) 8 7 5 6 4 3 2 1

Nonza (4000) 8 4 5 7 5 1 3 2

Ghisoni (2000) 7 8 5 6 4 3 2 1

Sum 55 39 32 33 24 18 23 25

Overall ranking 8 7 5 6 3 1 2 4

Table 4: Ranking of the Brier skill scores in Table 2. The ensemble size applies to all ensembles except the

reference ensembles that are of size 500 for all fires other than Ghisoni (324)

is not an improvement for all predicted probabilities p.

The effect of calibration can also be investigated on individual fires. The maps of burn

probability of the fires of Calenzana and Olmeta di Tuda are represented in Figures 8 and 9,

respectively. We focus on the reference and prior ensembles as well as the calibrated ensemble

corresponding β = 2. The probabilities “spread” further for the prior ensembles compared

to the reference, which is due to the larger uncertainty on the input parameters. Calibration

limits the spread because the calibrated probability distributions mostly favors lower rate of

spread and because the uncertainty on wind direction is much lower.

5. Discussion and conclusions

The proposed approach led to the generation of calibrated ensembles whose input distri-

butions are defined by a posterior PDFs with a pseudo-likelihood function that involves the

Wasserstein distance between simulated and observed burned surfaces of several fire cases.

Due to the high dimension and the computational requirements of the pseudo-likelihood

function, a Gaussian process emulator was built to obtain a sample of the calibrated input
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Figure 7: Reliability and sharpness diagrams for several ensembles. (a) The dotted black line indicates a

reliable prediction system and the solid gray line the optimal probability pc of an ensemble with constant

predicted probability.

(a) Reference (b) Prior (c) Calibrated, β = 2

Figure 8: Burn probability maps of Calenzana fire for several ensembles.

The colorbar indicates the predicted burn probability ; the black and white line is the contour of the observed

burned surface ; background colors represent the Corine Land Cover data [24]
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(a) Reference (b) Prior (c) Calibrated, β = 2

Figure 9: Same legend as Figure 8 but for the fire of Olmeta di Tuda

distribution with a MCMC algorithm in about one day of computation on 8 CPU cores.

The emulation with Gaussian process of the pseudo-likelihood of the posterior distri-

bution shows a good accuracy (SMSE < 5%), and mostly led to calibrated distributions

that favored lower rate of spread and lower uncertainty on wind direction. It resulted in

fire spread ensembles with overall lower fire spread and the resulting burn probabilities were

less dispersed. Globally on the seven studied fires, the prior ensemble had a tendency to

overpredict burn probability. This issue was less and less significant in the calibrated en-

sembles with increasing β, the “weight” of the pseudo-likelihood function against the prior

distribution. The calibration was successful in modifying the probability distribution of the

input so that the fire spread predictions have better overall accuracy.

We did not try to obtain calibrated distributions with higher values of β, but we can

reasonably assume that increasing β will lead to distributions that favor even lower rate of

spread. Although reducing overprediction is a desirable consequence, an adverse effect is

that underprediction will become more significant for fires where the prior ensemble already

underpredicts burn probability, which was the case for the fire of Chiatra where calibra-

tion led to lower accuracy. In our simulations, we did not model the firefighting actions, so

overpredicting of the burn probabilities is preferable to underpredicting. Moreover, under-

prediction might result in an operationally non acceptable result with areas that might be
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burned but not simulated by any ensemble member.

This raises the question of the choice of the pseudo-likelihood function. First, we used

the parameter β to adjust its weight, and the chosen values were rather arbitrary. Clearly,

low values of β will lead to a distribution that is very close to the prior. The rankings of

the BSS for each values of β show a best overall for β = 1/2 that does not result in the best

global BSS, but instead a very good one for most fires.

Ideally, β should be representative of the error between simulation and observation:

higher error should imply lower β. Yet, our energy function for the comparison between

observation and simulation relies on a weighted sum of (squared) Wasserstein distances,

whose values are difficult to interpret. The Wasserstein distance remains a suitable metric

for surface comparison that allowed us to increase the overall accuracy of our ensemble

predictions. Hopefully, given appropriate probabilistic assumptions on the error between

observation and simulation, we could derive a likelihood function that makes use of the

Wasserstein distance, but modeling this error is not trivial since the model output is a

burned surface. Similarly, a perspective is to take into account other sources of uncertainty

in the calibration procedure, notably model error, but it is not straightforward due to the

nature of model output.

Another open question is the choice of the fire cases used for calibration. Here, we selected

all large fires for one season and one region, which is still a low number of fires. Even so, we

used all of them for calibration and obtained an overall increase in accuracy. However, there

is no guarantee that there will still be an overall improvement if we consider other fires and

we might consider this calibration valid only for this season and this region. Ideally, there

should be a sufficient number of fires that constitute the training basis of the calibration to

ensure its application in a wide range of conditions. The evaluation of the ensembles could

be carried out not only on the fires used for training but also on other fires that play the

role of test sample. More fires in the training sample would provide more information, which
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should limit over-fitting and potentially lead to calibrated input distributions that are more

different from the prior.

Overall, we proposed a promising mathematical method to calibrate the probabilistic

predictions of wildland fire spread. Improving prediction accuracy is crucial especially in

the field of wildland fires where human lives, infrastructures and ecosystems are endangered.

We underlined several points in the method that could be the subject of further work.

Main research perspective is now to combine these calibrated ensembles with models for

probability of ignition and values at stake to assess next day wildfire risk, which is relevant

to fire managers, and help in the decision of firefighting actions and fire prevention planning.
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Appendix

Appendix A. Probabilistic evaluation

We consider an evaluation domain X that encompasses Sobs, the observed burned surface,

and consider a regular grid on X that comprises N points x1, ..., xN . Now defining pi =

P[xi ∈ Su] and oi = 1 if xi ∈ Sobs, 0 otherwise, we define the Brier score (BS) as follows:

BS =
N∑
i=1

(oi − pi)2. (A.1)
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This score ranges between 0 and 1 and is negatively oriented. Among the ensembles that

forecast a constant probability, the one with the lowest Brier score is obtained with the

probability pc = 1
N

∑N
i=1 oi, and the Brier score of this ensemble is BSc = pc(1 − pc). We

define the Brier skill score (BSS) as follows:

BSS = 1− BS

BSc
. (A.2)

When there are several fires, we propose to summarize the Brier scores by their mean. The

corresponding value of BSc is obtained with the mean of the pc. With these two global Brier

scores, we define the global Brier skill score as in equation (A.2).

In practice, the probabilities pi are estimated with a Monte Carlo method. We have an

ensemble of n independently sampled input vectors u1, ...,un and their corresponding burned

surfaces Su1 , ...,Sun . For all i, the estimate of the burn probability pi with our finite ensemble

is p̂i = 1
n

∑n
j=1 1(xi ∈ Suj

), where 1 stands for the indicator function. The value of BS is

unknown, so in practice, we estimate it with B̂S which is computed following equation (A.1)

by using p̂i instead of pi. We are interested in knowing how accurate the estimation B̂S of

BS is. We propose to estimate the standard deviation of the estimator with bootstrap [25].

For a bootstrap sample, we re-estimate the probabilities pi by sampling with replacement

among the simulated burned surfaces Su1 , ...,Sun . With a large enough set of bootstrap

samples, we obtain σbBS , an estimator of the standard deviation of B̂S. Provided that the

estimator of the Brier score is asymptotically normal and that the bootstrap estimation is

consistent, we can approximate a confidence interval at level 1− α for B̂S by:

B̂S ± z1−α/2 σ
b
BS , (A.3)

where zq is the quantile of the standard normal distribution for probability q. The Brier skill
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score being a function of BS, bootstrap can also be carried out to obtain an approximate

confidence interval.

Now, we follow some aspects of bootstrap theory highlighted by Shao [26] to prove the

required properties for the confidence interval. We denote by F the probability measure of

the random vector U . We have the following expression for the simulated burn probabilities:

pi =
∫
Rd 1(xi ∈ Su)dF (u). We denote the Brier score corresponding to the probability

distribution F as BS(F ). First, we compute the influence function LF for distribution F .

Denoting δu as the Dirac delta distribution at point u and setting ε > 0, we have

BS((1− ε)F + εδu) = 1
N

N∑
i=1

(oi − (1− ε)pi − ε1(xi ∈ Su))2, (A.4)

which yields

BS((1− ε)F + εδu)−BS(F )
ε

= 1
N

N∑
i=1

(2oi − (2− ε)pi + ε1(xi ∈ Su)))(pi − 1(xi ∈ Su))

→
ε→0

1
N

N∑
i=1

(2oi − 2pi)(pi − 1(xi ∈ Su))) = LF (u).

LF (u) is the influence function of the Brier score at point u. As expected, we notice

that
∫
LF (u)dF (u) = 1

N

∑N
i=1(2oi − 2pi)(pi − pi) = 0. Now, let us prove the Fréchet

differentiability of the Brier score. We use the influence function of the Brier score and we

define another probability measure G for which qi =
∫
1(xi ∈ Su)dG(u). We have
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∣∣∣∣BS(G)−BS(F )−
∫
LF (u)d[G− F ](u)

∣∣∣∣ =
∣∣∣∣ 1
N

N∑
i=1

(oi − qi)2 − (oi − pi)2 − (2oi − 2pi)(pi − qi)
∣∣∣∣

=
∣∣∣∣ 1
N

N∑
i=1

(2oi − qi − pi)(pi − qi)− (2oi − 2pi)(pi − qi)
∣∣∣∣

= 1
N

N∑
i=1

(qi − pi)2

For two probability measures P and Q defined on the same measurable space (Ω,F), we

define the total variation distance ||P − Q|| = sup
A∈F
|P (A) − Q(A)|. Since pi and qi are

probabilities of the same event but according to the distributions F and G respectively, we

have |qi − pi| ≤ ||G− F ||. It follows that

∣∣BS(G)−BS(F )−
∫
LF (u)d[G− F ](u)

∣∣
||G− F ||

≤ 1
N

N∑
i=1

||G− F ||2

||G− F ||

= ||G− F ||

−→
||G−F ||→0

0,

and since
∫
LF (u)dF (u) = 0, we conclude that the Brier score is Fréchet differentiable.

From [26], our estimator of the Brier score is asymptotically normal with the following

distribution:
√
n(B̂S −BS) −→

n→∞
N
(

0,
∫
LF (u)2dF (u)

)
, (A.5)

(provided that the variance in equation (A.5) is finite) and the bootstrap estimator is con-

sistent. All that is left is to calculate
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∫
Rd

LF (u)2
dF (u) = 1

N2

∫
Rd

N∑
i,j=1

(2oi − 2pi)(pi − 1(xi ∈ Su))(2oj − 2pj)(pj − 1(xj ∈ Su))

= 4
N2

N∑
i,j=1

(oi − pi)(oj − pj)(pipj − pipj − pjpi +
∫
Rd

1(xi ∈ Su ∩ xj ∈ Su)dF (u)

= 4
N2

N∑
i,j=1

(oi − pi)(oj − pj)(pij − pipj),

which is finite and where pij is the probability of having both locations xi and xj burned

according to distribution F . The asymptotic normality of B̂S is more explicitly given by

√
n(B̂S −BS) −→

n→∞
N
(

0, 4
N2

N∑
i,j=1

(oi − pi)(oj − pj)(pij − pipj)
)
. (A.6)

Appendix B. Wasserstein distance for measuring dissimilarity between two sur-

faces

The Wasserstein distance is a metric that compares two measures so it is suited to the

comparison of probability distributions. It can be defined in several ways and appears in

the more general field of optimal transport. We refer the reader to the book [27] for a more

extensive review.

Given two separable metric spaces X and Y on which are defined the measures µ and

ν respectively, the optimal transport problem as formulated by Kantorovitch consists in

finding the infimum

inf
{∫
X×Y

c(x, y) dγ(x, y)
∣∣∣ γ ∈ Γ(µ, ν)

}
, (B.1)

where c : X × Y → R+ ∪ {∞} is a measurable function and Γ(µ, ν) is the ensemble of

the measures defined on X × Y such that their conditional measure on X is µ and their
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conditional measure on Y is ν. The optimal transport problem can be defined in different

equivalent ways such as the dual formulation and the Benamou-Brenier formulation, possibly

up to some factor. The original formulation by Monge, on the other hand, is a bit different

and not always equivalent to (B.1). The function c can be interpreted as a cost and γ as a

mapping, so that c(x, y) quantifies what is required to move x to y and γ(x, y) is the amount

of mass that is moved.

The Wasserstein distance, that we denote asW2(µ, ν), is obtained in a specific case where

X = Y ⊂ Rq and c is the squared Euclidean distance on Rq. It is defined as the square root

of the infimum of the optimal transport problem. In other words, we have

W2
2 (µ, ν) = inf

{∫
Rq×Rq

||x− y||22 dγ(x, y)
∣∣∣ γ ∈ Γ(µ, ν)

}
. (B.2)

Typically, q ≤ 3, and W2
2 (µ, ν) can be interpreted as the minimum amount of energy that is

required to move the mass that is distributed according to µ so that, after transport, it is

distributed according to ν. In the following, when we mention the Wasserstein distance, we

will be referring to its square W2
2 (µ, ν).

The Wasserstein distance can be used to compare two burned surfaces. In this case, we

have q = 2 and, as introduced in section 2, we denote Sobs as the observed burned surface and

Su as the simulated burned surface obtained with the perturbation vector u. We consider

uniform probability distributions over each surface. The PDF associated to µ is defined as

follows: ∀x ∈ R2, µ(x) = 1
|Sobs|1(x ∈ Sobs), where |S| is the area of the burned surface S.

Similarly for ν, we have ∀y ∈ R2, ν(y) = 1
|Su|1(y ∈ Su). The Wasserstein distance between

these two probability distributions is the metric that we propose to use in order to compare

these two surfaces.

Except in some cases, there is no simple analytic formula for the Wasserstein distance.

An approximation can be obtained numerically via a discretization of the probability distri-
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butions. Based on an orthogonal uniform grid that covers the burned surface, we identify

the points x1, ..., xJ that belong to the burned surface and the PDF can be approximated by
1
J

∑J
j=1 δxj

, where δxj
is the Dirac delta distribution at point xj . The Wasserstein distance

is then computed between two discrete probability distributions: µ̂(x) = 1
J

∑J
j=1 δxj (x) and

ν̂(y) = 1
K

∑K
k=1 δyk

(y) where the xj belong to Sobs and the yk belong to Su. In this discrete

setting, the admissible distributions γ can be represented by a matrix of size J ×K where

each cell γjk is positive and indicates the “probability mass” that is transferred from xj to

yk. In this case, the infimum of (B.2) is reached and is the solution of the following linear

programming problem:

W2
2 (µ̂, ν̂) =

J∑
j=1

K∑
k=1

γjk||xj − yk||22 (B.3)

subject to γjk ≥ 0,
∑
j

γjk = 1
K
, and

∑
k

γjk = 1
J
. (B.4)

which is also referred to as the Earth Mover’s distance (EMD) [28]. It is known from graph

theory that the optimal γ is a sparse matrix that has at most J +K − 1 non-zero cells.

For the numerical resolution, we use the package ot from the Python toolbox POT [29].

For the fires we study, the spatial resolution of the grid of points depends on the size of

the burned surface because the computational cost increases drastically with the number of

points. For the small burned surfaces, the resolution is approximately 20 m, while for the

largest ones, it is approximately 80 m.
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