
HAL Id: hal-02958323
https://hal.inria.fr/hal-02958323

Preprint submitted on 5 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GECKO: Reconciling Privacy, Accuracy and Efficiency
in Embedded Deep Learning

Vasisht Duddu, Antoine Boutet, Virat Shejwalkar

To cite this version:
Vasisht Duddu, Antoine Boutet, Virat Shejwalkar. GECKO: Reconciling Privacy, Accuracy and
Efficiency in Embedded Deep Learning. 2020. �hal-02958323�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362230753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02958323
https://hal.archives-ouvertes.fr

GECKO: Reconciling Privacy, Accuracy and Efficiency in
Embedded Deep Learning

Vasisht Duddu
Univ Lyon, INSA Lyon, Inria, CITI

vduddu@tutamail.com

Antoine Boutet
Univ Lyon, INSA Lyon, Inria, CITI

antoine.boutet@insa-lyon.fr

Virat Shejwalkar
Univ Massachusetts Amherst
vshejwalkar@cs.umass.edu

ABSTRACT

Embedded systems demand on-device processing of data us-
ing Neural Networks (NNs) while conforming to the memory,
power and computation constraints, leading to an efficiency
and accuracy tradeoff. To bring NNs to edge devices, several
optimizations such as model compression through pruning,
quantization, and off-the-shelf architectures with efficient de-
sign have been extensively adopted. These algorithms when
deployed to real world sensitive applications, requires to resist
inference attacks to protect privacy of users training data.
However, resistance against inference attacks is not accounted
for designing NN models for IoT. In this work, we analyse
the three-dimensional privacy-accuracy-efficiency tradeoff in
NNs for IoT devices and propose Gecko training methodology
where we explicitly add resistance to private inferences as
a design objective. We optimize the inference-time memory,
computation, and power constraints of embedded devices
as a criterion for designing NN architecture while also pre-
serving privacy. We choose quantization as design choice for
highly efficient and private models. This choice is driven by
the observation that compressed models leak more informa-
tion compared to baseline models while off-the-shelf efficient
architectures indicate poor efficiency and privacy tradeoff.
We show that models trained using Gecko methodology are
comparable to prior defences against black-box membership
attacks in terms of accuracy and privacy while providing
efficiency.

KEYWORDS

Membership Privacy, Inference Attacks, Efficient Deep Learn-
ing, Embedded Computing.

1 INTRODUCTION

The tremendous performance of Machine Learning, espe-
cially Deep Learning, has resulted in their deployment to
low-powered edge devices and embedded systems. Specifically,
Internet of Things (IoT) devices extensively prefer on-device
processing to reduce communication latency and overhead,
while also preserving the privacy of data from an untrusted
data curator [29]. The design of efficient Neural Networks
(NNs) requires algorithm-hardware co-design such as model
compression, quantization, and designing special architec-
tures with higher efficiency [30]. Such NN architecture design
optimizations should conform to efficiency constraints on
memory, energy, and computation overhead on embedded
devices, and also maintain high prediction accuracy. However,
such designs often result in efficiency-accuracy trade-off [20].

Additionally, privacy laws, such as HIPAA and GDPR,
require on-device processing to maintain the privacy of user’s
sensitive data (e.g, medical records, location traces, and pur-
chase preferences). In this work we focus on Membership
Inference Attack [26], where given a target model and a tar-
get record, the adversary determines if the target data record
was part of the target model’s training data by analyzing
the target model’s output predictions. For instance, wearable
devices, which monitor its user’s health, commonly rely on
NNs for various health related predictions. Such devices are
continuously trained on the private data of a large number of
users, and therefore, by mounting membership inference at-
tacks on target device, an adversary can determine if the data
of a target user was used to train NNs on the target device.
In such cases, it is crucial to design NNs resistant to inference
attacks, where the adversary infers unobservable, sensitive
information (e.g, user’s health status) from the observable
information (e.g., model predictions). We refer to the com-
putations that achieve privacy through inference-resistance
as the privacy-preserving computation. Such privacy preserv-
ing computation mechanisms affect the model’s predictive
accuracy resulting in privacy-accuracy trade-off [2, 18, 24].

Considering the trade-offs described above, the three objec-
tives to consider while designing NNs for embedded devices
are: (a) high prediction accuracy, (b) efficiency constraints on
memory, energy, and computation overhead, and (c) preserv-
ing privacy of on-device data. However, designing a model
to preserve privacy while satisfying efficiency requirements
without a significant cost of the models predictive accuracy
is challenging. In this paper, we address this challenge by
proposing Gecko a two phase training methodology for de-
signing NNs optimized specifically for performance, accuracy
and privacy. We evaluate the privacy leakage of three state of
the art hardware software co-design techniques, i.e., namely,
model compression, quantization and efficient off-the shelf
architectures. We show that model compression (i.e., pruning
the network) leaks more information compared to baseline
(uncompressed) models indicating a higher privacy risk to
the users data while off-the-shelf architectures (MobileNet
and SqueezeNet) do not meet all the efficiency requirements
but can provide limited privacy leakage. These observations
motivate our design choice of quantizing NNs (i.e., reduc-
ing the number of bits that represent a number) as part of
Gecko training algorithm.

In Phase-I of Gecko, the model parameters and activa-
tions are binarized, i.e., constrained to {-1,+1} to reduce the
memory, energy consumption, and computation overhead. In
addition, to ensure computation efficiency, we replace the

expensive multiply accumulate operations between parameter
matrices and activation vectors to simple and cheaper XNOR
operations. We show that Phase-I of Gecko optimizes the
trained model for efficiency and privacy but at the cost of
a significant drop in accuracy. In Phase-II, we restore this
accuracy by transferring knowledge from larger full precision
models to the quantized models [10]. Here, the quantized
XNOR model uses the output predictions of the full precision
state of the art models as labels instead of using the true
labels during training. This significantly increases the predic-
tion accuracy of the model while limiting privacy leakage. We
show that aggressively quantized NN architectures obtained
in Phase-I ensure an efficient and accurate privacy-preserving
computation with higher resistance to membership inference
attacks.

Finally, we compare the models trained using Gecko with
prior state of the art defences against membership inference
attacks, namely, Adversarial Regularization [18] and Differen-
tial Privacy [2]. We show that our proposed models improve
the trade-offs between the efficiency, accuracy, and privacy
compared to the baselines approaches. Our work provides
the first systematic evaluation of efficiency-accuracy-privacy
trade-offs to design a novel training methodology. The code
of Gecko is publicly available1.

The paper is outlined as follows: Section 2 presents back-
ground and Section 3 describes Gecko . Baselines and ex-
perimental setup are described Section 4, and the evaluation
of the proposed algorithm and a comparative analysis with
state of the art baselines are given in Section 5. Related work
are then presented Section 6 before concluding in Section 7.

2 BACKGROUND

2.1 Embedded Deep Learning

On-device processing is an attractive alternative compared
to centralized processing of data from IoT devices. Such on-
device processing reduces the overhead of communicating
data from the devices to the servers, lowers the privacy
and security risk associated with storing sensitive data on
untrusted central server and lowers the latency for obtaining
results from processing [29].

Different efficiency requirements can be adopted to design
NNs for embedded systems. These differences make it difficult
to decide which primitive is the best fit for designing a
privacy-preserving system for a particular application. The
list below presents the most important efficiency requirements
accounted by designers of embedded systems using NNs, and
privacy is not part of this list:

∙ Energy Efficiency. Energy consumption is a vital constraint
for low powered embedded or IoT devices which operate
for long duration while maximising their battery lifetime.
While executing NNs, every Multiply Accumulate (MAC,
a common step that computes the product of two numbers
and adds that product to a register in which intermediate
results are stored) requires memory access for reading

1Anonymized for Submission

weights, inputs and intermediate output from previous
layer and one write to store the computed output. These
read-write operations consume significantly higher energy
than actually performing the MAC operation in the CPU.
Energy efficiency is achieved by reducing the memory access
by (a) optimizing hardware to exploit sparsity in MACs
and (b) reducing the precision to increase the throughput
of data.

∙ Computation Efficiency. The total MAC operations be-
tween the parameter matrix and input activation function
quantifies the requirement of computation efficiency. The
processing rate of MAC operations is constrained by the
CPU on embedded device which is reduced by reducing
the total number of parameters. Additionally, replacing
MACs with cheaper binary arithmetic significantly lowers
the computational overhead.

∙ Memory Efficiency. The total size of the model measured
in terms of the memory storage for model parameters and
additional runtime storage for intermediate outputs should
be within the memory constraints of the embedded device.
This is achieved in two ways: (a) reducing the precision of
the parameters and intermediate outputs and (b) pruning
the parameters by increasing sparsity.

2.2 Privacy Threat: Membership Attacks

NNs for embedded systems do not account for privacy threats,
however these threats still exist if personal and potentially
sensitive data feed the system. For instance, if the adversary
learns something specific about a user’s data record used in
the training dataset, we refer to such information as privacy
leakage. This privacy leakage about a user’s record can be, for
instance, the membership details of the record in the training
set of the model, referred to as membership inference attacks.
Alternatively, an adversary can learn sensitive attributes
about the user’s data record which can be used to reconstruct
the sensitive training dataset. In this work, we specifically
use membership inference attacks to quantify information
leakage in machine learning models [26].

Machine Learning algorithms learn a function 𝑓 : 𝑋 → 𝑌
mapping from the input space 𝑋 to the space of correspond-
ing class labels 𝑌 . This is modeled as an optimization where
the objective is to find the parameters 𝜃 by minimizing the
model’s loss, 𝑚𝑖𝑛𝜃𝐿(𝑓(𝑥), 𝑦; 𝜃). Machine learning models are
more confident while predicting the class of already seen train
data record compared to an unseen test data record. Member-
ship inference attacks exploit this difference in the model’s
confidence to classify a new data record as being a ”Member”
or ”Non-Member” of the model’s training data. This is a
binary decision problem where the adversary classifies the
membership of a given input 𝑥 using the model’s output pre-
diction 𝑓(𝑥; 𝜃) to infer whether a given data record was used
in the model’s training data or not. Formally, given a user’s
data record 𝑥 ∼ 𝑃 (𝑋,𝑌), where 𝑃 (𝑋,𝑌) is the data dis-
tribution from which the training data 𝐷𝑡𝑟𝑎𝑖𝑛 was sampled,
the adversary estimates 𝑃 (𝑥 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛) using the model’s
prediction 𝑓(𝑥;𝑊). Empirically, the adversary identifies a

2

threshold to estimate whether 𝑥 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 which can also
be learnt using a binary classifier. In this work, we use the
confidence score attack where the adversary obtains 𝑓(𝑥;𝑊)
and finds the maximum posterior and infers 𝑥 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 if
the maximum is greater than a threshold [22, 34]. The at-
tack is based on the observation that the maximal posterior
of a member data record is higher (more confident) than a
non-member data record of the training dataset.

In this threat model, we consider a blackbox setting where
the adversary is assumed to have no knowledge about the tar-
get model. Formally, given a target model 𝑓(), the adversary
only sees the final model prediction 𝑓(𝑥; 𝜃). The adversary
does not know the architecture of 𝑓() and the model pa-
rameters 𝜃. We do not consider whitebox setting where the
adversary has the access to both the model output predic-
tions 𝑓(𝑥; 𝜃) as well as the architecture of 𝑓() and the model
parameters 𝜃. Indeed, this whitebox setting does not neces-
sarily result in any benefit to the adversary in terms of attack
accuracy (shown theoretically [21] and empirically [25, 28].
Consequently, blackbox setting is the more practical setting
seen typically in Machine Learning as a Service (MLaaS)
where the adversary submits an input query to the trained
model on the Cloud via an API and receives the correspond-
ing output.

3 GECKO: DESIGN OVERVIEW

In this section we detail Gecko . Gecko is a technique to
construct NNs dedicated to IoT with efficiency, accuracy and
privacy as main requirements:

∙ Privacy. The model should preserve the privacy of an
individual’s data record in the training set of the model
against inference attacks.

∙ Efficiency. The model should work with low energy, mem-
ory and computation capacity for practical deployment to
embedded and mobile devices.

∙ Accuracy. The model should be highly accurate.

To fulfill these requirements, Gecko is composed of two
phases. In Phase I (Section 3.1), a first model is trained to
ensure the efficiency and privacy. Ensuring these requirements
is however done at the cost of the accuracy. Consequently, in
Phase II (Section 3.2), the first model trained in Phase I is
then optimized for improving the accuracy.

3.1 Phase I

We first quantize the model’s parameters and intermediate
activations. We specifically binarize the values to restrict
them to the values of {+1,-1}. This operation (as seen in
Section 5.2.3) results in high resistance to inference attacks
as well as satisfies the different efficiency requirements. The
model achieves computation efficiency by replacing the expen-
sive matrix multiplications with simple boolean arithmetic
operations, i.e, XNOR computations. Alternatively, instead
of using multiplication and addition circuits in the hardware,
we leverage XNOR logic on the inputs followed by a bitcount
operation (counting the number of high bits ”1” in a binary
output sequence). The equation can be represented as follows:

x ·w = 𝑁 − 2× bitcount(xnor(x,w)) (1)

In terms of memory efficiency, binarization results in a di-
rect reduction of the model size as well as intermediate output
memory requirements by 32x to 64x. Lowering the precision
also reduces the number of memory access by 32x to 64x
resulting in a significant decrease in the energy consumption.

Algorithm 1 Inference Stage of Binary Neural Network with
XNOR Operations where 𝑊 𝑏

𝑘 are the binarized weights (𝑊𝑘)
and 𝑎𝑘 is the activation of the 𝑘𝑡ℎ layer

for 𝑘 = 1 to 𝐿 do
𝑊 𝑏

𝑘 ← Binarize(𝑊𝑘)

𝑎𝑘 ← 𝑁 − 2× bitcount(xnor(ab
k−1,W

b
k))

if 𝑘 < 𝐿 then
𝑎𝑏
𝑘 ← Binarize(𝑎𝑘)

end if
end for

The complete inference stage of the Binarized NN with
XNOR computation is given in Algorithm 1. The matrix
multiplication between the previous layer activation 𝑎𝑘−1

and the current layer’s weights with the bitcount of XNOR
operation’s output. The function Binarize() is a deterministic
thresholding function which maps the input values to the
set {-1,+1}. In addition to the above design, we use addi-
tional optimizations for XNOR-Net to avoid a significant
loss in accuracy. It is well documented that it is difficult to
converge a binarized model during training [31] in case of
incompatible hyperparameter settings. To this extent, we
use the first and last layer of the model as full precision.
These additional optimizations have been used previously for
XNOR based networks [20, 30] and provides higher accuracy
and model convergence at a small cost of memory and energy
consumption overhead.

3.2 Phase II

While we optimize for both privacy and efficiency in Phase I
(at the cost of significantly degrade the accuracy), we restore
in Phase II the accuracy close to the original full precision
accuracy by using knowledge distillation [10]. Here, we con-
sider a pre-trained teacher model 𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟() with state of the
art accuracy on the classification task and use it to guide
the training of the quantized classifier. During training of
the quantized model (student), we do not compute the loss
between the true label 𝑦 and predicted label 𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥).
We instead estimate the loss between the predicted label
𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥) and the predicted label for the full precision
teacher model 𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟(𝑥). The loss function in knowledge
distillation 𝐿𝑜𝑠𝑠𝐾𝐷(𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟) is given as

𝑚∑︁
𝑘=1

𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥𝑘)𝑙𝑜𝑔(𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟(𝑥𝑘)) + 𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟(𝑥𝑘)𝑙𝑜𝑔(𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥𝑘))

(2)

This ensures that the student model learns to map the
prediction boundary of the teacher model and mimics the

3

prediction behaviour for different inputs. Therefore, the accu-
racy of the student model increases compared to the original
baseline of standalone training without the teacher model.

4 EXPERIMENTAL SETTING

We carried out an extensive evaluation of Gecko. We first
describe the datasets and architectures used in this analysis
(Section 4.1) before to present the considered comparative
baselines (Section 4.2) and metrics (Section 4.3).

4.1 Datasets and Architectures

For evaluating and comparing different efficiency algorithms,
we mainly use two standard benchmarking datasets: Fashion-
MNIST and CIFAR10. We train the model for 75 epochs for
FashionMNIST and 100-150 epochs for CIFAR10.
FashionMNIST. This dataset consists of 60,000 training
examples and a test set of 10,000 examples. Each data record
is a 28×28 grayscale image which is mapped to one of 10
classes consisting of fashion products such as coat, sneaker,
shirt, shoes. For this dataset, we use a modified LeNet archi-
tecture with two convolution layers followed by maxpool and
dense layers: [Conv 32 (3,3), Conv 64 (3,3), Maxpool (2,2),
Dense 128, Dense 10] (Architecture 1). Additionally, we use
a fully connected model [512,512,512] (Architecture 2).
CIFAR10. This dataset is a major image classification bench-
marking dataset where the data records are composed of
32×32 RGB images where each record is mapped to one of 10
classes of common objects such as airplane, bird, cat, dog. For
this dataset, we use standard state of the art architectures:
Network in Network (NiN), AlexNet and VGGNet.

4.2 Comparative Baselines

4.2.1 NN models for embedded systems. Model designers use
three state of the art approaches for designing efficient NN
models for embedded systems: (a) Model Compression via
Pruning, (b) quantization of model parameters and activa-
tions and (c) designing standard architectures (off the shelf
efficient architectures).

∙ Model Compression (Pruning). NNs are overparameterized,
i.e, have a large number of redundant weights. Pruning the
network refers to removing these redundant weights (setting
them as zero) without a degradation of model accuracy. The
pruning operation results in a model with sparse parameters
for which the hardware designers skip the multiplication
and memory storage to improve efficiency. Sparse weights
can be stored in a compressed format in the hardware using
the compressed sparse row or column format which reduces
the overall memory bandwidth [5, 6, 8]. Aggressive pruning,
while compressing the model significantly, requires to be
re-trained to restore the model’s original accuracy. For a
sensitivity threshold 𝑇 , the parameters close to zero are
replaced by zero:

𝑓(𝑊) =

{︂
0, if − 𝑇 ≤ 𝑤 ≤ 𝑇

𝑤, otherwise

∙ Off-the-Shelf Efficient Architectures. NNs can be redesigned
by changing the hyperparameters (i.e., filter size in con-
volution, number of layers and their types) to reduce the
number of parameters and hence, the memory footprint.
One approach is to replace larger convolution filters with
multiple smaller filters with less number of parameters
but covering the same receptive fields. For instance, one
5x5 filter can be replaced by two 3x3 filters. Alternatively,
1x1 convolutional layers reduce the number of channels in
output feature map, lowering the computation and number
of parameters. For instance, for an input activation of di-
mension 1x1x64, 32 1x1 convolutional filters downsamples
the activation maps to get an output of 32 channels. Such
optimizations enable to design compact network architec-
ture with layers having lower parameters compared to the
original model, extensively adopted in MobileNet [23] and
SqueezeNet [14].

∙ Quantization. Quantization reduces the precision of the
model’s parameters and the intermediate activations during
execution. Quantization maps parameters and activations
to a fixed set of quantization levels [13]. The number of
quantized levels determines the precision of the operands
(𝑙𝑜𝑔2(#𝑙𝑒𝑣𝑒𝑙𝑠)). Reducing the precision of the parameters
lowers the storage cost of the model in memory. In addition,
reducing the precision of activations lowers the computation
overhead by replacing MACs with binary arithmetic and
reduces the energy consumption by lowering the memory
accesses and increasing throughput. Aggressively quantiz-
ing the parameters and activations to binary and ternary
precision significantly improves the overall efficiency, how-
ever, at the cost of accuracy [20]. For instance, Binarized
NNs quantize the operands to {-1,+1} values [12] while
ternary NNs have values {-w, 0, w} where 𝑤 can be fixed or
learnt during training [16]. These are examples of uniform
quantization. Alternatively, weight sharing maps several
parameters to a single value reducing the number of unique
parameters [6]. This mapping is done using K-Means clus-
tering or a hashing function where a codebook maps different
parameters to the corresponding shared values.

4.2.2 Privacy defences. We consider two state of the art
baselines: Adversarial Regularization and Differential Pri-
vacy. These defences have mainly focussed on improving the
model’s generalization and reduce overfitting which has been
considered as the main cause for leakage through membership
inference attacks.

∙ Adversarial Regularization (AdvReg) [18]. Here, the prob-
lem of defending against membership inference attack is
modelled as a minimax game between two NNs: classi-
fier network and attacker network. The two networks are
trained alternatively with conflicting objectives: first, the
attacker network is trained to distinguish between the train-
ing data members and non-members followed by training
the classifier network to minimize the loss as well as fool
the attacker network. Formally, the target classifier outputs
a single probability 𝐼(𝐹 (𝑥), 𝑦) ∈ [0, 1] which indicates the
likelihood of 𝑥 being part of the training data. The classifier

4

minimizes the loss along with the output of the attacker
classifier balanced with a privacy risk hyperparameter 𝜆 :
𝑚𝑖𝑛𝜃𝑙(𝐹 (𝑥), 𝑦) + 𝜆𝑙𝑜𝑔(𝐼(𝐹 (𝑥), 𝑦)).

∙ Differential Privacy (DP) [2]. In this work, we specifically
consider DP-SGD which adds carefully crafted noise to
the gradients during backpropagation in SGD algorithm.
The noise is sampled from a Laplacian or Gaussian dis-
tribution proportional to the model’s sensitivity which is
then added to the gradients during backpropagation. This
provides provable bound on the information leaked about
an individual data record in the dataset and ensures that
the presence or absence of a data record does not change
the model’s output, hence defending against membership
inference attacks.

4.3 Metrics

Efficiency. We evaluate efficiency on memory efficiency, com-
putation efficiency and energy efficiency. Memory efficiency
is compared based on the reduction in the memory footprint
of the model computed from the parameters stored in the
memory. Computation efficiency is compared based on the
reduction in the MAC operations which influences the exe-
cution time. Finally, the energy consumption is compared
based on memory accesses from reading inputs and writing
results to the memory.
Privacy. We use the inference attack accuracy to estimate
the success of membership inference attack. An accuracy
above random guess 50% indicates a training data leakage
through membership inference attack. This indicates that
the adversary is able to identify the membership details of a
data record with an accuracy higher than random guess. The
success of inference attack accuracy is strongly correlated
with the model’s extent of overfitting empirically measured
as the difference between the train and test accuracy (i.e.,
generalization error). Higher generalization error (i.e., overfit-
ting) results in higher distinguishability between the test and
train resulting in higher membership inference accuracy [26].
Additionally, the accuracy of the model is computed using
the model’s performance on unseen test data.

5 EVALUATION

We carried out an extensive evaluation of Gecko. We first
analyse the three state of the art techniques for efficiency
model computation (Section 5.1) and privacy leakage (Sec-
tion 5.2), before summarizing the comparison (Section 5.3).
We then evaluate the proposed training methodology for
Phase I (Section 5.4) and Phase II (Section 5.5). Finally, we
compare Gecko against defence schemes (Section 5.6).

5.1 Efficiency Requirements

In this section, in the view of the memory-computation-
energy efficiency requirements, we compare the three baseline
algorithms (i.e., model compression, off-the-shelf architecture,
and quantization). Since, significant literature has compared
the efficiency empirically [30], we provide a qualitative anal-
ysis for the considered baselines.

Memory Efficiency. Off the shelf models are designed to
specifically reduce the memory footprint. For instance, the
memory footprint of Squeezenet and MobileNet is 5MB and
14Mb compared to 250Mb of Alexnet and >500Mb of VGG
architectures [14, 23]. Additionally, quantization lowering the
model precision from 64 or 32 bit floating point to binary
precision results in a direct reduction of 64x or 32x in the
overall memory footprint of the model. However, in case of
model compression the model parameters which are pruned
are simply replaced by a value of ”0”. Hence, storing even
the ”0” parameter takes up memory and does not necessarily
decrease the overall memory footprint unless the hardware
is optimized to skip the storage of all the zero values in
the memory. This requires additional logic to check for zero
valued parameters in a dictionary.
Computation Efficiency. Design of efficient off-the-shelf
architectures replaces the complex matrix-vector multiplica-
tions to smaller dimensions. This reduces the overall number
of parameters but it has been shown empirically2 that this
does not necessarily reduce the number of multiply accumu-
late operations [3]. In case of parameter pruning (i.e., model
compression), achieving efficiency requires additional hard-
ware optimization. Particularly, instead of actually computing
the multiplications with ”0” pruned values, the hardware
optimization enables the user to skip the computation and
replace the output by a ”0” directly. For quantized models
with binarized parameters and activations the MACs can
be replaced by binary XNOR operations, maxpool replaced
by OR operation, while the activations can be replaced by
checking the sign bit and hence reducing the FLOPS drasti-
cally [1]. This results in high computational efficiency and
hence, faster inference.
Energy Efficiency. Energy efficiency does not vary much
with reduction of number of parameters and data type, but
the number of memory accesses play vital role [11]. Specif-
ically, for the case of off-the-shelf architectures, while com-
putation efficiency improves, the energy efficiency is close
to large scale state of the art models like AlexNet [14, 30].
Alternatively, for the case of model compression, energy effi-
ciency can be marginally improved by additionally providing
hardware optimization [6, 33]. For quantization, however, the
energy efficiency is high as the memory access can be drasti-
cally reduced by increasing the throughput of data fetched
from the memory. Specifically, lowering the precision from 32
bit floating point to binary results in lowering the memory
accesses and 32x improvement in energy consumption [12, 20].
While some improvements are seen natively for quantized
models (from replacing MACs with XNOR), higher benefits
can be achieved via additional hardware optimization [32].
The benchmarking of energy consumption for different opti-
mization and architectures is well explored and out of scope
of this work. We refer the readers to [30] for more details.

In summary, compared to different optimization techniques,
the quantized architectures show significant benefits for dif-
ferent efficiency requirements over the other alternatives.

2https://github.com/albanie/convnet-burden

5

1 1.33 1.82 2.56 3.67 5.31 7.74 11.28 16.28
2

3

4

5

6

7

8

51.5

52

52.5

53

53.5

54

54.5

Compression Rate

G
en
er
al
iz
at
io
n
E
rr
or

%

M
em

b
ersh

ip
A
ccu

racy
%Generalization Error %

Membership Accuracy %

(a) Impact of Model Pruning on Pri-
vacy (FashionMNIST)

0 20 40 60 80
50

52

54

56

58

60

62

Pruning %

M
em

b
er
sh
ip

In
fe
re
n
ce

A
cc
u
ra
cy

%

FashionMNIST

Baseline (FashionMNIST)

CIFAR10

Baseline (CIFAR10)

(b) Impact of Retraining Pruned
Model on Privacy

32b 8b 4b 3b 2b

6

8

10

12

53

54

55

56

Precision

G
en
er
al
iz
at
io
n
E
rr
or

M
em

b
ersh

ip
A
ccu

racy
%Generalization Error

Membership Accuracy %

(c) Mitigating Privacy Leakage via
Weight Sharing (FashionMNIST)

Figure 1: Pruning the model lowers the membership inference leakage at the cost of accuracy. Retraining the
pruned model to restore accuracy results in a higher membership privacy leakage compared to uncompressed
baseline model. This additional leakage can be mitigated by weight sharing at the cost of accuracy.

5.2 Privacy Leakage

In this section, we evaluate the information leakage through
membership inference attacks for the three baseline algo-
rithms considered.

5.2.1 Model Compression. We evaluate the privacy leakage
on compressing a model by pruning the connections in the
model. Here, pruning is achieved by replacing some of the
parameters with ”0” value. As described in the original pa-
per [7, 8], pruning is followed by retraining the model to
restore the model’s original accuracy with the pruned con-
nections. We validate the impact on membership privacy on
model compression on four datasets but only report results
for FashionMNIST and CIFAR10 for space reason3.

Impact of Pruning Parameters.On pruning the model,
the model’s test accuracy decreases but also lowers the mem-
bership inference accuracy (Figure 1a). As the compression
rate increases, the generalization error decreases (owing to
a decrease in both train and test accuracy) with a decrease
in membership accuracy to close to random guess. This is
expected as the parameters are responsible for memorizing
the training data information [4, 19, 27].

Impact of Retraining Pruned Model. Interestingly,
on retraining the pruned model, we observe that the mem-
bership inference accuracy is much higher than the original
unpruned baseline model (Figure 1b). This indicates that
model compression in turn increases the overall privacy leak-
age. This can be attributed to the lower number of parame-
ters forced to learn the same amount of information stored
previously in the unpruned model with larger number of
parameters. In other words, the same amount of information
is now captured by less number of parameters resulting in
higher memorization of information per parameter. As the
model is compressed (i.e., pruned), the number of parame-
ters decreases which results in increase in information per
parameter. However, on aggressive pruning, the train and

3the two other datasets (capturing preferences of online customers and
capturing location check-ins [26]) depict similar results

test accuracy also decreases resulting in a decrease in the
information per parameter, which is empirically indicated by
a decrease in membership inference accuracy from 75% of
pruning.

In summary, model compression results in a higher mem-
bership privacy leakage compared to the baseline uncom-
pressed model making it a poor candidate for applications
with sensitive data.

Mitigating the Privacy Risks in Pruned Models.
We describe a potential approach to mitigate the privacy risk
of the compressed models without requiring to modify the
model’s training. The post-hoc approach utilizes the weight
sharing (i.e., a class of quantization techniques) for the com-
pressed model. This is however, accompanied by a decrease in
the model’s prediction accuracy indicating a privacy-utility
trade-off. As shown Figure 1c, reducing the precision from
32 bits to 2 bits results in a decrease in inference accuracy
from 56.57% to 52.64% for FashionMNIST. This decrease in
inference attack accuracy is caused by a decrease in general-
ization error due to decrease in prediction (both train and
test) accuracy of the model. For the experiments, we use the
compressed model with highest privacy leakage (by sweeping
sensitivity threshold values) to evaluate the effectiveness of
weight sharing on the worst case condition. This pipeline ap-
proach of pruning followed by retraining followed by weight
sharing, not only maintains the algorithm’s objective for ef-
ficiency but is used as a post-hoc approach to reduces the
overall inference risk [6, 7].

5.2.2 Off-the-Shelf Efficient Architectures. In this section, we
evaluate two popular state of the art architectures, SqueezeNet
and MobileNet, trained on CIFAR10 dataset used for low
powered systems. This evaluation is done only on CIFAR10
dataset as these state of the art architectures are not adapted
for the FashionMNIST dataset. As seen in Table 1, the
SqueezeNet and MobileNet models shows lower membership
inference accuracy of 53.07% and 55.57% compared to larger
models which have higher privacy leakage.

6

CIFAR10

Architecture Memory Train Test Inference

Footprint Accuracy Accuracy Accuracy

SqueezeNet 5 MB 88.21% 81.92% 53.07%

MobileNetV2 14 MB 97.50% 87.24% 55.57%

AlexNet 240 MB 97.86% 80.34% 60.40%

VGG11 507 MB 99.13% 86.43% 58.04%

VGG16 528 MB 99.58% 88.95% 58.70%

VGG19 549 MB 99.09% 88.18% 57.85%

Table 1: Model complexity influences the member-
ship inference leakage.

0 5 10 15 20
50

52

54

56

Temperature Parameter

M
em

b
er
sh
ip

A
cc
u
ra
cy

%

MobileNetV2

SqueezeNet

Figure 2: The privacy leakage of off-the-shelf models
is reduced by increasing the softmax temperature
(CIFAR10 dataset).

Further, the membership inference accuracy of SqueezeNet
and MobileNet can be further reduced close to random guess
by increasing the temperature parameter of the softmax
function applied to the output. Increasing the temperature
parameter reduces the granularity of the model’s output and

is given by 𝐹𝑖(𝑥) = 𝑒
𝑧𝑖(𝑥)

𝑇 /
∑︀

𝑗 𝑒
𝑧𝑗(𝑥)

𝑇 where 𝑧(𝑥) computes
output of the model before the softmax layer. For the case of
SqueezeNet, we are able to reduce the inference accuracy to
50.93% from 53.07% while for MobileNet we can reduce the
inference accuracy to 52.62% from 55.57% as seen in Figure 2.
This reduction in membership inference accuracy is without
any cost of the prediction test accuracy of the model.

5.2.3 Quantization. In this section, we evaluate the technique
of reducing the precision of both model’s parameters and
intermediate activations. Further, we consider the extreme
case of binarizing the parameters and activations allowing to
evaluate on the most optimized case. We evaluate on Fash-
ionMNIST dataset for two architectures with convolutional
and fully connected layers as seen in Table 2.

In both architectures, we see that computation on binarized
parameters and activations reduces the inference risk by
a small value. However, on replacing the MAC operations
with XNOR operations, we observe that the inference risk
decreases close to random guess, however, at the cost of
prediction test accuracy. The CIFAR10 results corresponding
to the XNOR operations and its privacy comparison with
full precision counterpart is indicated in Table 4.

FashionMNIST

Architecture Memory Train Test Inference

Accuracy Footprint Accuracy Accuracy

Architecture 1

Full 38.39 MB 100% 92.35% 57.46%

BinaryNet 1.62 MB 88.68% 86.9% 55.45%

XNOR-Net 1.62 MB 87.19% 85.68% 51.05%

Architecture 2

Full 29.83 MB 99.34% 89.88% 54.86%

BinaryNet 0.93 MB 97.61% 89.60% 54.30%

XNOR-Net 0.93 MB 92.67% 86.68% 51.74%

Table 2: Reducing the model precision decreases the
inference attack but at the cost of test accuracy.

In summary, we observe that quantization, specifically
binarization of parameters and activation along with XNOR
computation, provides strong resistance against inference
attacks compared to model compression and off-the-shelf
architectures.

5.3 Summary of Comparison

We summarize the properties satisfied by each of the approach
used for designing NN models for embedded systems in terms
of privacy, computation, memory and energy efficiency in
Table 3. Here, we mark the attributes which are satisfied
with , requires additional hardware optimization as G# and
does not satisfy the property with a #.

Requirements Compression Quantization Off-the-shelf

Computation Efficiency G# #

Memory Efficiency G#

Energy Efficiency G# #

Privacy # G#

Table 3: Only quantization satisfies all requirements.

In order to design NNs for embedded devices, quantization
(using binarization with XNOR computation) is an attrac-
tive design choice which not only satisfies the computation,
memory and energy efficiency but also provides high resis-
tance against inference attacks. On the other hand, model
compression without any weight sharing modifications, leaks
more training data membership details making it significantly
more vulnerable to membership inference attacks. Addition-
ally, it requires hardware support and optimization to achieve
better efficiency. Off-the-shelf architectures, while provide
decent privacy, does not satisfy all aspects of efficiency. Con-
sequently, Gecko adopts quantization as a NN design to
provide a good three dimensional trade-off between privacy-
efficiency-accuracy.

5.4 Evaluating Phase I

In Phase I of Gecko, we quantize the model and replace the
MACs with cheap XNOR operations. We observe (Table 4)
that the inference attack accuracy decreases significantly
for all the three architecture close to random guess (∼50%).
Specifically, the inference accuracy decreases from 56.69% to
51.76% for NiN, 60.40% to 51.40% for AlexNet and 58.70% to

7

CIFAR10

Architecture Train Test Inference

Accuracy Accuracy Accuracy

NiN
Full Precision 98.16% 86.16% 56.69%

Binary Precision 81.93% 78.74% 51.76%

AlexNet
Full Precision 97.86% 80.34% 60.40%

Binary Precision 68.62% 66.8% 51.40%

VGG13
Full Precision 99.58% 88.95% 58.70%

Binary Precision 79.67% 74.64% 52.65%

Table 4: Reducing the precision of models lowers the
membership privacy leakage at the cost of accuracy.

52.65% for VGGNet. However, since Phase I only optimizes
the network for privacy and efficiency, the resultant model
shows poor utility (accuracy). We observe a significant loss
in test accuracy for all the three models: around 8% accuracy
drop from 86.16% to 78.74% for NiN; 14% accuracy drop
from 80.34% to 66.8% for AlexNet; 14% for VGG model from
88.95% to 74.64%. In order to restore the accuracy, we use
knowledge distillation as described in Phase II of the Gecko
training methodology.

The privacy provided by quantized NN is due to the de-
crease in overfitting, empirically measured using the difference
between the train and test accuracy. The leakage in inference
accuracy is attributed to the higher overfitting in models
as well as memorization of the training data information in
the form of the parameters, which are specifically tuned to
achieve high performance on the train data [4, 19, 27]. This
is attributed to the reduction in learning capacity of the
model on quantizing the parameters which lowers the sensi-
tive training data information memorized by the parameters
on lowering the precision. Further, the quantization acts as
a noise to strongly regularize the model [12]. At the same
time, this optimization provides high degree of efficiency to
be executed on low powered embedded devices.

5.5 Evaluating Phase II

The objective of Phase II is to enhance the accuracy of the
model trained in Phase I (i.e., quantized model with XNOR
computations which depicts high inference attack resistance
and efficiency). In Phase II, we use the teacher-student model
(described in Section 3) to train the quantized student model
being guided using the output predictions of the full precision
teacher model. Here, Phase II is heterogeneous, i.e, we are
flexible to choose any full precision teacher model which can
provide high accuracy on the considered dataset (Table 5).
Here, we consider pre-trained state of the art architectures4:
DenseNet169 and ResNet50, along with the full precision
versions of NiN, Alexnet and VGGNet. The standalone test
accuracy of the DenseNet169 and ResNet50 architectures
are 92.84% and 92.12% respectively with inference accuracy
around to 55% while the full precision accuracies for NiN,
AlexNet and VGGNet are given in Table 4.

The first set of experiments combine the same full preci-
sion model architectures with the quantized model versions,

4https://github.com/huyvnphan/PyTorch CIFAR10

Teacher Student Train Test Inference

Accuracy Accuracy Accuracy

Standalone Models

Binary NiN None 81.93% 78.74% 51.76%

Binary AlexNet None 68.62% 66.8% 51.40%

Binary VGG13 None 79.67% 74.64% 52.65%

Homogeneous Architecture Distillation

NiN Binary NiN 90.49% 83.52% 53.90%

AlexNet Binary AlexNet 76.79% 73.5% 51.85%

VGG13 Binary VGG13 89.45% 81.58% 54.98%

Heterogeneous Architecture Distillation

DenseNet169 NiN 92.84% 83.71% 54.95%

DenseNet169 AlexNet 81.87% 76.23% 53.51%

DenseNet169 VGG13 93.45% 85.8% 54.17%

ResNet50 NiN 91.74% 83.77% 54.53%

ResNet50 AlexNet 80.12% 74.92% 53.12%

ResNet50 VGG13 94.23% 86.52% 54.46%

Table 5: Phase II of Gecko improves the accuracy of
the private-efficient model from Phase I.

i.e, full precision NiN with Binarized NiN (i.e., homogeneous
knowledge distillation). Here, we see that there is 5% increase
in test accuracy (from 78.74% reported Table 4 to 83.52%)
for NiN with an increase of 2% in inference attack. Similarly,
there is an increase of 7% test accuracy for AlexNet with
a very minimal privacy leakage increase of 0.45%; and in-
crease of 7% test accuracy at the cost of 2% inference attack
accuracy for VGGNet. For heterogeneous knowledge distil-
lation, i.e, combining other architectures (DenseNet169 and
ResNet50) with the quantized models from Phase I, we see
that the increase in test accuracy is only minimally higher
than the homogeneous models for NiN and AlexNet but a
significantly higher increase in the inference attack accuracy.
However, in case of VGGNet, we observe an increase of 4%
additional test accuracy compared to homogeneous knowl-
edge distillation with a minimal decrease in the inference test
accuracy. In Phase II, increase in test accuracy is accompa-
nied with a small but acceptable increase in the inference
attack accuracy indicating a privacy-utility trade-off. Hence,
the choice of using homogeneous or heterogeneous knowledge
distillation is specific to the architecture and the privacy-
utility requirements of the application. Compared to the full
precision counterparts, we observe that the distilled models
show an accuracy degradation of only 3% for NiN(86.66%
to 83.77%), 4% for AlexNet (80.34% to 76.23%) and 2% for
VGGNet (88.95% to 86.52%).

The Gecko framework results in models which make the
output confidence of the train and test data records similar
reducing the inference attack accuracy (Figure 3). Further,
the knowledge distillation enables to lower the loss of the
model compared to the model trained in Phase I resulting
in higher test accuracy as shown Figure 3 (c). However, this
loss function is still higher than the full precision version
indicating the test accuracy degradation of the proposed
framework and a privacy-utility trade-off.

8

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Classes

C
o
n
fi
d
en

ce
S
co
re

(a)

Member
Non-Member

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

Classes

C
o
n
fi
d
en

ce
S
co
re

(b)

Member
Non-Member

0 50 100 150 200 250 300 350

0.5

1

1.5

2

2.5

Number of Iterations

L
o
ss

(c)

Full Precision

Binarized

Distilled Binarized

Figure 3: (a) Confidence scores are distinguishable between train and test data records in undefended models
making them vulnerable to membership inference attacks, (b) Gecko models have indistinguishable confidence
scores, (c) Loss functions in Phase I (Binarized) are higher than Phase II (Distilled Binarized) indicating the
improvement in accuracy.

5.6 Gecko versus Prior Defences

The privacy defences proposed in literature can be catego-
rized into (a) regularization based train-time defences and (b)
post-training inference time defence. Adversarial Regulariza-
tion, Differential Privacy and other standard regularization
techniques such as L2 and Dropout modify the training of
the neural network. Our Gecko training framework is also
part of category (a) where we modify the training of the
machine learning model in order to provide acceptable levels
of privacy and accuracy. We do not consider post-training
defences (e.g., MemGuard [15] which adds carefully crafted
noise to the target model’s output observations to ensure the
misclassification of the adversary’s attack classifier network)
in the comparison as they can be used in addition to Gecko
training framework.

The comparison of models trained using Gecko is shown
Figure 4 (FP stands for Full Privacy and reports results with-
out protection). Models trained using Gecko are comparable
in test accuracy and resisting membership inference leakage
to Adversarial Regularization and Differential Privacy. The
inference accuracy for NiN is 52.90% (Gecko) compared
to 54.09% (DP) and 51.92% (AdvReg) and test accuracy
of 83.52% (Gecko) compared to 85.11% (DP) and 83.66%
(AdvReg). For AlexNet, the inference accuracy is 51.85%
(Gecko) compared to 52.81% (DP) and 51.83% (AdvReg)
and test accuracy of 73.5% (Gecko) compared to 79.27%
(DP) and 71.02% (AdvReg). For VGGNet, the inference ac-
curacy is 53.17% (Gecko) compared to 52.90% (DP) and
53.33% (AdvReg) and test accuracy of 85.8% (Gecko) com-
pared to 84.91% (DP) and 85.19% (AdvReg). In addition, our
proposed models additionally provide efficiency guarantees
enabling them to be used for embedded systems.

6 RELATED WORK

Data privacy in Machine Learning addresses different infer-
ence attacks such as membership inference in a blackbox
setting [22, 26] or in the context of whitebox setting [19].
Further, generative model have been shown to be vulnerable

FP AdvReg DP Gecko FP AdvReg DP Gecko FP AdvReg DP Gecko
0

10

20

30

40

50

60

70

80

90

100

NiN AlexNet VGG
Number of Layers

A
cc
u
ra
cy

%

Train Accuracy Test Accuracy Inference Accuracy

Figure 4: Gecko models are comparable to prior
state of the art privacy defences in terms of test
accuracy and inference accuracy while additionally
ensuring efficiency.

to membership inference attacks [9] and distributed setting
such as in federated learning have also been exploited [17, 19].
These privacy leakage in machine learning models have been
mainly attributed to the memorization of training data by the
models [4, 27]. In order to mitigate against inference attacks
several defences have been explored such as Differential Pri-
vacy [2], simple and adversarial regularization [18, 22] which
aim to generalize the model and alternatively, adding noise
to the predictions to increase error [15]. Alternatively, confi-
dential computing aims to privately and efficiently compute
machine learning models using secure multiparty computa-
tion [1]. Interestingly, post-training approaches assuming the
adversary uses shadow model attack (e.g., MemGuard [15]),
can exploit Gecko by using the models trained by this
framework before to add noise.

Hardware-software co-design is crucial to accelerate the
performance of NNs for embedded systems. Hardware accel-
erators reuse weights and intermediate computation enable

9

significant performance improvement [5]. Algorithmic opti-
mizations have explored model compression through prun-
ing [8] and reducing the precision of the model parame-
ters and activations to binary [12], ternary [16] and generic
quantization [13]. Binarization enables to replace multipli-
cation with simple boolean logic improving the overall per-
formance [20]. Alternatively, hardware optimizations have
enabled to design NN accelerators for low precision NNs for
further efficiency [32]. Further, specialized architectures de-
signed for low memory footprint have also been extensively
used for low powered devices such as mobile phones and
micro-controllers [14, 23]. However, all these optimization
designs do not accounted for the resistance against inference
attacks. In this paper, we quantify the privacy leakage for
different optimization and design algorithms for NNs and
propose a training framework to reduce it.

7 CONCLUSIONS

On device processing of sensitive data using NNs on embed-
ded systems requires a careful analysis of privacy, efficiency
and accuracy of the algorithms which is currently lacking
in literature. In this work, we propose a two phase Gecko
training framework to design private, efficient and accurate
NNs for execution on low powered embedded devices. We
quantify the privacy leakage using membership inference at-
tacks where the adversary aims to infer whether a given
data record was used in the model’s training data. We first
provide a comprehensive privacy and efficiency analysis of
state of the art algorithms for improving efficiency: model
compression (pruning), quantization and efficient off-the-shelf
architectures. We show that model compression leaks more
information compared to the original (uncompressed) model
while off-the-shelf architectures do not provide the best ef-
ficiency guarantees. Based on these observations, we use
quantization as a design choice which shows high resistance
against inference attacks while satisfying all the efficiency
requirements. While Phase I of Gecko optimizes for pri-
vacy and efficiency, in Phase II, we improve the accuracy
of the resultant model using knowledge transfer from full
precision models. Our extensive evaluations of state of the
art architectures on CIFAR10 dataset indicates that models
trained using the proposed framework provides high resis-
tance against membership inference attacks (comparable to
other state of the art defences) but keeping high efficiency.

REFERENCES
[1] 2019. XONN: XNOR-based Oblivious Deep Neural Network In-

ference. In USENIX Security.
[2] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan,

Ilya Mironov, Kunal Talwar, and Li Zhang. 2016. Deep Learning
with Differential Privacy. In CCS. 308–318.

[3] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. 2016.
An Analysis of Deep Neural Network Models for Practical Appli-
cations. (05 2016).

[4] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and
Dawn Song. 2019. The Secret Sharer: Evaluating and Testing Un-
intended Memorization in Neural Networks. In USENIX Security.
267–284.

[5] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram,
Mark A. Horowitz, and William J. Dally. 2016. EIE: Efficient

Inference Engine on Compressed Deep Neural Network. In ISCA.
243254.

[6] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compres-
sion: Compressing Deep Neural Network with Pruning, Trained
Quantization and Huffman Coding. In ICLR.

[7] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong,
Shijian Tang, Erich Elsen, Peter Vajda, Manohar Paluri, John
Tran, Bryan Catanzaro, and William J. Dally. 2017. DSD: Dense-
Sparse-Dense Training for Deep Neural Networks. ICLR (2017).

[8] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learn-
ing Both Weights and Connections for Efficient Neural Networks.
In NIPS. 1135–1143.

[9] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristo-
faro. 2019. LOGAN: Membership Inference Attacks Against Gen-
erative Models. PETS 1 (2019), 133 – 152.

[10] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling
the Knowledge in a Neural Network. In NIPS Deep Learning and
Representation Learning Workshop.

[11] M. Horowitz. 2014. Computing’s energy problem (and what we
can do about it). In ISSCC. 10–14.

[12] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. 2016. Binarized Neural Networks. In NIPS.
4107–4115.

[13] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. 2017. Quantized Neural Networks: Training
Neural Networks with Low Precision Weights and Activations. J.
Mach. Learn. Res. 18 (2017), 6869–6898.

[14] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song
Han, William J. Dally, and Kurt Keutzer. 2016. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <1MB
model size. CoRR abs/1602.07360 (2016).

[15] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and
Neil Zhenqiang Gong. 2019. MemGuard: Defending against Black-
Box Membership Inference Attacks via Adversarial Examples. In
CCS. 259274.

[16] Fengfu Li and Bin Liu. 2017. Ternary Weight Networks. (2017).
[17] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vi-

taly Shmatikov. 2019. Exploiting unintended feature leakage in
collaborative learning. In SP.

[18] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2018. Machine
Learning with Membership Privacy using Adversarial Regulariza-
tion. In CCS. 634–646.

[19] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Com-
prehensive Privacy Analysis of Deep Learning: Stand-alone and
Federated Learning under Passive and Active White-box Inference
Attacks. SP (2019).

[20] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. 2016. XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks.

[21] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann
Ollivier, and Herve Jegou. 2019. White-box vs Black-box: Bayes
Optimal Strategies for Membership Inference (PMLR), Vol. 97.
5558–5567.

[22] Ahmed Salem, Yang Zhang, Mathias Humbert, Mario Fritz, and
Michael Backes. 2018. ML-Leaks: Model and Data Independent
Membership Inference Attacks and Defenses on Machine Learning
Models. NDSS (2018).

[23] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. 2018. MobileNetV2: Inverted
Residuals and Linear Bottlenecks. In CVPR. 4510–4520.

[24] Virat Shejwalkar and Amir Houmansadr. 2019. Reconciling
Utility and Membership Privacy via Knowledge Distillation.
arXiv:1906.06589 (2019).

[25] Virat Shejwalkar and Amir Houmansadr. 2019. Reconciling Utility
and Membership Privacy via Knowledge Distillation. CoRR
abs/1906.06589 (2019).

[26] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. 2017. Membership inference attacks against machine
learning models. In SP.

[27] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. 2017.
Machine Learning Models That Remember Too Much. In CCS.
587601.

[28] Liwei Song and Prateek Mittal. 2020. Systematic Evaluation of Pri-
vacy Risks of Machine Learning Models. arXiv:2003.10595 [cs.CR]

[29] V. Sze. 2017. Designing Hardware for Machine Learning: The
Important Role Played by Circuit Designers. IEEE Solid-State
Circuits Magazine (2017), 46–54.

10

https://arxiv.org/abs/2003.10595

[30] V. Sze, Y. Chen, T. Yang, and J. S. Emer. 2017. Efficient Pro-
cessing of Deep Neural Networks: A Tutorial and Survey. Proc.
IEEE (2017), 2295–2329.

[31] Wei Tang, Gang Hua, and Liang Wang. 2017. How to Train a
Compact Binary Neural Network with High Accuracy?

[32] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella,
Michaela Blott, Philip Heng Wai Leong, Magnus Jahre, and
Kees A. Vissers. 2017. FINN: A Framework for Fast, Scalable

Binarized Neural Network Inference. In FPGA.
[33] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing

Energy-Efficient Convolutional Neural Networks using Energy-
Aware Pruning. (2017).

[34] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. 2018. Pri-
vacy Risk in Machine Learning: Analyzing the Connection to
Overfitting. In CSF. 268–282.

11

	Abstract
	1 Introduction
	2 Background
	2.1 Embedded Deep Learning
	2.2 Privacy Threat: Membership Attacks

	3 Gecko: Design Overview
	3.1 Phase I
	3.2 Phase II

	4 Experimental setting
	4.1 Datasets and Architectures
	4.2 Comparative Baselines
	4.3 Metrics

	5 Evaluation
	5.1 Efficiency Requirements
	5.2 Privacy Leakage
	5.3 Summary of Comparison
	5.4 Evaluating Phase I
	5.5 Evaluating Phase II
	5.6 Gecko versus Prior Defences

	6 Related Work
	7 Conclusions
	References

