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Abstract

Shape optimization based on Isogeometric Analysis (IGA) has gained popularity in recent
years. Performing shape optimization directly over parameters defining the CAD geometry,
such as for example the control points of a spline parametrization, opens up the prospect of
seamless integration of a shape optimization step into the CAD workflow.

One of the challenges when using IGA for shape optimization is that of maintaining a valid
geometry parametrization of the interior of the domain during an optimization process, as the
shape of the boundary is altered by an optimization algorithm. Existing methods impose
constraints on the Jacobian of the parametrization, to guarantee that the parametrization
remains valid. The number of such validity constraints quickly becomes intractably large,
especially when 3D shape optimization problems are considered.

An alternative, and arguably simpler, approach is to formulate the isogeometric shape
optimization problem in terms of both the boundary and the interior control points. In order
to ensure a geometric parametrization of sufficient quality a regularization term, such as the
Winslow functional, is added to the objective function of the shape optimization problem.

We illustrate the performance of these methods on the optimal design problem of elec-
tromagnetic reflectors and compare their performance. Both methods are implemented for
multipatch geometries, using the IGA library G+Smo and the optimization library Ipopt. We
find that the second approach performs comparably to a state of the art method with respect
to both the quality of the found solutions and computational time, while its performance in
our experience is more robust for coarse discretizations.

1 Introduction

Isogeometric analysis (IGA) introduced in [22] is a Galerkin method that uses splines to approxi-
mate both the geometric domain and the solutions to partial differential equations (PDEs). Splines
are commonly used in computer aided design (CAD) and IGA is an attempt to bridge the gap
between simulation and design [9]. This makes it beneficial for shape optimization as the opti-
mization can be performed directly over parameters defining the CAD geometry, for example the
control points of a spline parametrization, and it opens up the prospect of seamless integration of
a shape optimization step into the CAD workflow.

One of the key challenges when using IGA in general, is that one needs a parametrization of the
interior of the physical domain, on which the PDE is posed [42, 20, 17, 32]. This parametrization
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is used to pull back the weak form of the PDE to the parameter domain where the basis splines
(B-splines) are defined. The choice of parametrization can affect the accuracy of the resulting
IGA discretization [17, 46] and, at the very least, the parametrization should be valid (a bijective
map), that is, its Jacobian determinant should be non-zero. One approach to constructing a valid
parametrization in 2D is to search for the one which has harmonic inverse. In [20] this property is
reformulated as a nonlinear PDE and the parametrization is found by solving this PDE. In [19] this
PDE based parametrization technique is used for a gradient based shape optimization algorithm
with IGA. In [17, 33] the same property is attained by minimizing the Winslow functional [45].
The method can be made more flexible by the use of adaptive splines [11], that allow to enrich
the feasible region near to complex boundaries. In the recent works [42, 39] the approach of
parametrizing a complex domain by deforming a given template is explored. In [35] the focus is
on producing parametrizations with low-rank with respect to the coefficient tensor.

When using IGA for shape optimization the challenge of finding a valid parametrization is even
more important, since the shape of the physical domain changes during an optimization process.
This means that a valid parametrization needs to be maintained during this process.

To guarantee that the parametrization remains valid during the optimization process, shape op-
timizations methods based on IGA often rely on constraints on the Jacobian of the parametrization
[14, 33]. These can be enforced either by using injectivity cones or by using the spline coefficients
of the Jacobian determinant [47]. However the number of constraints needed quickly becomes very
large, especially in 3D. Furthermore, when using the coefficients of the Jacobian determinant for
the constraints, as we will do in this work, it may be necessary to expand the Jacobian determinant
on a finer spline space, which increases the number of constraints even further.

In this work we will compare an existing approach to IGA shape optimization, relying upon
reparametrizing the domain, with a simple approach to maintaining a valid parametrization with-
out the use of explicit validity constraints. Namely, one lets the positions of all the control points
that define the parametrization and the shape of the domain enter the formulation as independent
optimization variables and adds a regularization term to drive the optimization towards a design
with a valid parametrization. Such an approach has been considered in the context of shape
optimization in mechanics in [40], and has to the best of our knowledge, only been considered
very briefly in the context of shape optimization with IGA in [13]. It remains a question whether
this approach performs comparably to state of the art methods, and the aim of the work is to
investigate exactly this question.

Different frameworks for shape optimization with IGA exist in the literature. For example in
[29] a tetrahedral mesh is used to represent the interior of the computational domain, while still
representing the boundary using splines. The authors rely on external mesh generator software,
while we in this work aim to avoid mesh generation by instead maintaining a parametrization
of the interior. In [15] the shape is represented implicitly as the level set of a function. The
PDE is then posed on a design domain, which remains constant during the optimization, and the
level set function enters the formulation by the ersatz material approach. This framework has
the advantage that it allows for changes in the topology of the shape, however at the same time
the final shape is represented as a level set and therefore post processing is required to represent
this shape using splines, which is necessary for importing the shape into CAD software. In our
work the optimization is performed directly on the spline representation and thus the result can be
readily imported into CAD software after the optimization. Another possible approach is to use the
isogeometric representation of geometry combined with the boundary element method (IGABEM)
[28, 6]. In IGABEM the PDE is reduced to an integral formulation on the boundary of the domain,
and therefore maintaining a parametrization of the interior of the domain is avoided altogether.
However in this case one has to deal with the standard complications of BEM, in particular the
fact that the system matrices are dense, non-symmetric, and costly to compute. Additionally the
Greens function for the considered PDE has to be known, which is not always the case.

In this work we illustrate that the simple regularization based approach is able to handle
complicated geometries, by comparing its performance to a shape optimization approach based
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on using a linearization of the Winslow minimization problem as a parametrization strategy, and
employing locally refined splines to represent the Jacobian determinant. The method closely
resembles the one in [33]. The main difference is that we use Truncated Hierarchical Basis splines
(THB-splines) [16], which possess the partition of unity property, to refine the spline space in which
the determinant is expanded locally. This reduces the number of constraints needed compared with
tensor product global refinement.

We will apply the two methods and compare their performance on the shape optimization
problem of designing electromagnetic reflectors. In this problem we have two metallic reflectors in
a dielectric medium and search for a shape that maximizes the electrical energy close to a chosen
point. The same problem has been studied with topology optimization in [1, 44, 7], and with IGA
in [33].

The methods are implemented for multipatch geometries, using the IGA library G+Smo1 and
the optimization library Ipopt2. A benchmark study on the performance of different optimiza-
tion algorithms in the context of structural optimization can be found in [38]. For a review
of implementation aspects of IGA in general we refer the reader to [34] and for details of the
G+Smo library we refer the reader to [26, 30]. The code used for this work can be found at
https://github.com/gismo/shapeopt.

The paper is organized as follows. In section 2 we outline the relevant notation, and in sections 3
and 4 we describe the two methods we are going to compare. In section 5 we apply these methods
to the aforementioned shape optimization problem, and discuss and compare the performance of
the two approaches. We end the paper with some discussion and conclusions. Some of the more
technical details are presented in the appendices.

2 Preliminaries and notation

Let us consider the following PDE-constrained shape optimization problem:

max
Ω∈Oad

E(Ω, u), (1a)

s.t. aΩ(u, v) = `Ω(v) for all v ∈ V, (1b)

where Oad is a set of admissible shapes, E is the objective and (1b) is the governing PDE in the
weak form.

Within the IGA framework both Ω and u will be approximated numerically using splines.
Namely, we have Ω = G(]0, 1[d), with the parametrization

G(ξ) =

Ng∑
i=1

ciR
g
i (ξ), (2)

where ci ∈ Rd are the control points, Ng is the number of control points, and Rgi are the basis (B)
splines. In this work, unless specifically stated otherwise, we will use tensor product B-splines. The
superscript g indicates that the B-splines Rgi (that is, their degrees and knotvectors) are specific
to the geometry representation. Within the shape optimization framework it will sometimes be
necessary to distinguish between boundary and inner control points. We will therefore introduce
the notation

c =

[
cb

ci

]
, (3)

where cb are the boundary control points and ci are the inner control points. The Jacobian
J = ∂G

∂c will also play an important rôle in the forthcoming development.

1https://github.com/gismo
2https://github.com/coin-or/Ipopt
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Similarly to (2), we approximate the state of our system as a pulled back spline

uh =

N∑
i=1

uiRi ◦G−1, (4)

where Rgi , i = 1, . . . , N are B-splines. The expansion coefficients ui, i = 1, . . . , N will be found by
solving a system of linear algebraic equations

Kc u = fc.

As standard in the Galerkin approach, the elements of the stiffness matrix Kc and the load vector
fc are computed as Kc,i,j = aG(]0,1[d)(Rj ◦ G−1, Ri ◦ G−1), and fc,i = `G(]0,1[d)(Ri ◦ G−1). Note
that the dependence of Kc, fc on the control points is encapsulated in (2) and (4).

Already at this point the importance of the geometry parametrization should be apparent.
Indeed, at the very least it should be an invertible map, which is used to pull back the weak form
of the PDE defined on the physical domain Ω into the parameter domain ]0, 1[d. In particular,
for all ξ ∈]0, 1[d it is necessary that det(J(ξ)) > 0. 3 A sufficient condition, which guarantees the
validity of the parametrization, is discussed in Appendix A.

3 Boundary-driven approach to IGA shape optimization

In this section we will consider one possible approach to IGA shape optimization, which follows
the ideas developed in [33, 17]. Within this framework we formulate the optimization problem in
terms of boundary control points cb. The collection of interior control points ci for the geom-
etry parametrization is treated as an implicit function of cb, see Appendix B. Additionally, the
parametrization validity constraints det(J) > 0, or a sufficient condition for these (cf. Appendix A),
have to be explicitly included into the problem formulation.

In order to compute domain parametrizations of high quality we rely upon minimizing the
Winslow functional (Section B.2). However, to avoid solving a non-linear optimization problem
at each shape optimization iteration, we construct a quadratic approximation to the Winslow
functional around a reference parametrization, and update the reference parametrization when
it becomes necessary to do so. Specifically, given a reference parametrization G0 defined by the
control points c0, to find a new parametrization we consider the quadratic programming problem

min
∆ci

1

2
∆cTH(c0)∆c+∇W (c0)T∆c+W (c0), (5)

where W is the Winslow functional, and H is its Hessian. The minimizer of this problem can be
found by solving a linear system

H(c0)∆c = −∇W (c0).

Using (3), this can be restated as

Hci,ci∆c
i = −∇Wci −Hci,cb∆c

b, (6)

where [Hci,ci ]ij = ∂2W/∂cii∂c
i
j , [Hci,cb ]ij = ∂2W/∂cii∂c

b
j and [∇Wci ]i = ∂W/∂cii. The new

parametrization is then defined by the control points given by c = c0 + ∆c.

3It is equivalent to require that det(J(ξ)) < 0, however in this work we will use the constraint det(J(ξ)) > 0
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With this in mind, to approximate (1) numerically we solve a sequence of subproblems

max
∆cb

E(c,u), (7a)

s.t. Kc u = fc, (7b)

Hci,ci∆c
i = −∇Wci −Hci,cb∆c

b, (7c)

c = c0 + ∆c, (7d)

d ≥ ε, (7e)

cbL ≤ cb ≤ cbU , (7f)

where c0 is the reference parametrization, ∆c = (∆cb,∆ci), and (7e) is the sufficient condition for
the validity of the parametrization discussed in Appendix A. Each time we solve the subproblem
(7) we update the reference parametrization. In the model problem considered in this work we
saw no further progress after 5 to 10 reparametrizations.

Reference parametrizations can be computed as follows. We minimize the Winslow functional
as described in Appendix B, and check if the sufficient condition d > 0 is violated. If it is, then
this condition is too strict and should be relaxed. To facilitate this we refine the spline space Sdet

where we compute expansion coefficients d of detJ . To reduce the number of constraints resulting
from such refinement steps, we utilize local refinement. Specifically, we use Truncated Hierarchical
B-splines (THB-splines) as basis functions. Note that it is important here to use the truncated
version of hierarchical splines, since the partition of unity property (cf. [16]) implies that the spline
control polygon converges locally to function values. Note that other locally refinable splines with
this property are available, for example Polynomial splines over Hierarchical T-meshes (PHT-
splines) [10] or Locally Refinable (LR B-splines) [24]. For a comparison of these methodologies we
refer the reader to [27].

The refinement strategy we employ is as follows. For all indices i that have negative spline
expansion coefficient di ≤ 0 of det J , we refine the support of the associated basis function Rdet

i .
This is repeated until di > 0 for all i = 1, . . . , Ndet.

4 In the subproblem (7) we then put ε = ρ·min
i
di

with ρ = 0.25, see (11).
The full optimization loop is illustrated in Figure 1. Note that we have chosen to carry out the

spline space refinement described above only when the reference parametrization, and therefore
also the subproblem (7), is updated. This allows us to keep the number of constraints constant
when solving (7) numerically and therefore employ off-the-shelf optimization software. The initial
guess for the non-linear Winslow optimization problem is generated using Coons’ patches, see
Appendix B.

4 Regularization-driven approach to IGA shape optimiza-
tion

In this section we discuss an alternative approach to shape optimization using IGA, which does
not involve explicit constraints on det J . The positions of the inner control points ci enter this
formulation as independent optimization variables, in the same way as cb. Consequently, we do
not need to explicitly compute a domain parametrization, as this will be part of the outcome of
the optimization process.

To this end we add the Winslow functional W as a regularization term to the objective function.
Its role is to penalize configurations of control points that result in poor parametrizations. This

4In practice we terminate this procedure either if d > 0 or when a maximum level of refinement (7 in our
numerical experiments) is attained. The latter termination criterion has not been observed in our experiments.
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Solve min
ci
W to find refer-

ence parametrization c0.

Compute d.

While ∃i di ≤ 0 refine support
of Rdet J

i and recompute d.

Solve the shape optimization
subproblem (7) at c0 with
ε = ρmin di for ρ ∈ (0, 1].

Did we converge?

Stop.

Yes

No

Figure 1: Flowchart of the optimization algorithm.

idea has been used previously in the context of shape optimization in mechanics [13, 40]. Thus for
a regularization parameter τ > 0 we consider the optimization problem

min
c

τW (c)− E(c,u), (8a)

s.t. Kc u = fc, (8b)

cL ≤ c ≤ cU . (8c)

We put W (c) = ∞ if det J ≤ 0 at one of the quadrature points used for the integration when
calculating W (c). In this way, when the optimization algorithm enforces e.g. the standard suf-
ficient decrease condition, such a choice ensures that the chosen step will always have positive
determinant at the quadrature points. This does not guarantee that it is positive everywhere, but
it means that the numerics will not collapse due to a division by zero.

The regularization parameter τ needs to be tuned for the specific problem at hand. If it is
too large the minimization will find a design with a small value of the Winslow functional but
disregarding the objective E(c,u). If it is too small the optimization will find positions of the
control points that have a low objective E(c,u), but with a poor parametrization, which might
give a large discretization error of the discretized PDE. The appropriate values of τ would lead
to a compromise between these two extreme situations. One simple strategy for choosing such a
value is to solve a sequence of problems (8) for decreasing values of τ .5

The two points above constitute the main drawback of this method. Namely that, in contrast
to a constraint based method, we cannot guarantee that the parametrization is valid in between
the quadrature points. Additionally one has to find a suitable value of the regularization parameter
τ , which is problem-dependent.

5We should note that the literature on regularization is quite extensive, see for example [18] and references
therein, and this topic is somewhat beyond the scope of this work.
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Reflector (Gold)

Air

Point with maximum field

Electromagnetic wave

Truncated Domain

?

?

Figure 2: Sketch of the shape optimization problem. The goal is to find a shape of the reflector
that maximizes the field close to a point.

5 Case study: Optimization of electromagnetic reflectors

In this section we will consider a 2D shape optimization problem originating from the field of
electromagnetism. Our goal is to design a reflector that concentrates electrical energy in a desired
area. This problem will serve as a model problem for comparing the two optimization approaches
outlined in Sections 3 and 4.

5.1 Physical model

We consider a two dimensional scattering problem where a plane wave with frequency f travels
in a dielectric (air) and is scattered by two symmetric metallic (gold) reflectors, as depicted in
Figure 2. Let εcr and µr denote the complex permittivity and permeability of the medium. Using
the first order absorbing boundary condition [23] at the boundary Γt of the truncated domain, the
electromagnetic field û should satisfy the following PDE:

∇ ·
(

1

εcr
∇û
)

+ k2
0µrû = 0 in Ω, (9a)

∂(û− ui)
∂n

+ (jk0 +
1

2rt
)(û− ui) = 0 on Γt. (9b)

In the equations above, k0 = 2π
√
ε0µ0 is the wave number and ε0, µ0 refer to the permittivity

and permeability, respectively, of free space. The imaginary unit is denoted by j, the radius of the
truncated domain is given by rt, and ui is the incident plane wave, given by

ui(x, y) = e−jk0
√
εcrµrx.

The objective function of the shape optimization will be given by

E(c, u) =

∫
Ω

δ|û|2dx,

where δ is a Gaussian bell-function

δ(x, y) = e−
x2+y2

2α2 ,
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f µr µsr σ ε0 µ0 εr,gold

4 · 1014[Hz] 1.0 1.0 106[S/m] (µ0c
2)−1 4π10−7 −20.199 + j1.381

Table 1: Physical parameters

P1

P2

P3

P4

P5

Figure 3: Patch layout.

with α = 0.1. Thus we aim to focus the incoming energy in the vicinity of the origin (0, 0). The
physical parameters that we use are given in Table 1. The complex permitivity of the reflector is
calculated as εscr = εr,gold − j σ

ωε0
.

The weak statement of the PDE (9) is to find û ∈ H1(Ω) such that for all test functions
v̂ ∈ H1(Ω) the following equality holds∫

Ω

1

εcr
∇̂û · ∇̂v̂dx+ k2

0

∫
Ω

µrûv̂dx+

(
jk0 +

1

2rt

)∫
Γt

1

εcr
ûv̂ds

=
1

εcr

∫
Γt

(
∂ui

∂n
+

(
jk0 +

1

2rt

)
ui
)
v̂ds. (10)

Due to the symmetry we only consider the upper half of the geometry shown in Figure 2. To
accommodate the change of material parameters between the metallic reflector and the surrounding
dielectric medium, we will split the domain into five patches, one for the reflector and the other
four for the surrounding air. The layout is shown in Figure 3.6 Each patch is parametrized using
splines of degree p = 2 as described in Section 2. We will use strong patch coupling to enforce C0

continuity at the patch interfaces, while noting that other alternatives exists, for example weak
coupling [21] and strong C1 coupling [5].

The shape of the reflector is represented via the patch interfaces, which consist of 4 spline curves
with C0 continuity at the 4 corners. Such a description, for example, allows shapes that are only
piecewise smooth such as e.g. the classical bowtie antenna [8]. There are other applications of IGA
where even more complex geometries are relevant, for example when modelling crack propagation
as in [37, 36].

Using the parametrizations we can pull back the equation (10) to the parameter domain and
apply the Galerkin method to it, which ultimately results in a system of linear algebraic equations;
see Appendix C for details. To evaluate the integrals involved we use element-wise Gauss-Legendre
quadrature, owing to their immediate availability in the G+Smo library, while noting that more
efficient alternatives exists [4, 2].

6For automatic generation of patch layouts the interested reader is referred to [49].
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5.2 Results with boundary-driven approach

In this section we apply the method described in Section 3 to our model problem. We start with
an initial design where the reflector has the shape of a circle. We consider two different spline
spaces in which to approximate the PDE (9), namely where the knotvectors used for representing
the geometry are refined uniformly either 3 or 4 times.7 Both spline spaces have degree p = 2,
and the number of degrees of freedoms are Ncoarse = 2548 and Nfine = 9300, respectively. We will
refer to these as the coarse and fine meshes.

We will use a tolerance tol = 10−3 when solving the subproblems (7) and a fixed number
of reparametrizations, namely 10 when using the coarse mesh and 5 when using the fine mesh.
We observed that using more reparametrizations did not lead to significant improvements in the
design. In our experiments the results with this method are sensitive to the number of quadrature
points used when calculating the Winslow functional. To produce the results presented here we
use 12 quadrature points per knot interval, to avoid under-integration 8.

In our implementation we use the interior point solver Ipopt to solve the subproblems (7).
As we solve a sequence of subproblems a warm start is available, namely the minimizer from the
previous subproblem; so an interior point algorithm might not be the best choice of optimization
algorithm [25]. However with the following parameter tuning we found the method to work well
with Ipopt. Namely, after solving one of the subproblems (7) some of the design bounds (7f) will
be active; however, since Ipopt is an interior point algorithm, the starting point for the subsequent
subproblem will be pushed away from the boundary as controlled by the parameter bound push.
We found that this parameter needs to be lower than the default value since the constraints on
det J are quite sensitive and a relatively small perturbation of the control points might violate
these constraints, which is undesirable. The default value is 0.1, but in the experiments we set it
to 10−5 instead.

Another key parameter is the barrier parameter mu init. Specifically, we use the monotone

strategy, where the barrier parameter is monotonically decreased as the optimization algorithm
progresses. However, if this parameter is too large in the beginning of the algorithm we found
that it will push the design towards configurations with large det J . To remedy this, instead
of the default value 0.1 we use 10−4. For more information about the optimization algorithm
implemented in Ipopt and its parameters see [43].

In Figure 4 the design at different stages of the optimization is presented, when using the
coarse mesh. We observe that the design becomes increasingly hard to parametrize as the
objective increases each time we change the reference parametrization. In Figure 5 the objective
is plotted against the number of iterations. We see that the objective function increases after
the reference parametrization is changed, but relatively quickly reaches a plateau. We already
use a fairly large tolerance of 10−3 for the stopping criterion when solving the subproblems (7),
however this behaviour indicates that it might help to relax the stopping criterion even further
in these subproblems to improve the overall efficiency of the method. However, to allow for a
fair comparison between the two methods, we do not investigate this further and use the same
tolerance for both methods. The final objective, after 10 reparametrizations when using the coarse
mesh, is Eh = 1.803. However if we calculate the objective with a mesh that is refined uniformly
twice we get Eh/4 = 1.556, that is, a 16% difference. This means that there is actually a significant
discretization error at this refinement level, which leads to an artificially large objective value.

As described in Section 3 we use local refinement to adapt the constraints on det J to the
current design. This is done by using local refinements in the areas where the spline coefficients
are non positive. The resulting meshes are plotted in Figure 6 to illustrate where the refinement is
needed. We see that it is primarily inside the reflector and near the reflector-air interface, that this

7Note that while we here use tensor product spline spaces for the approximation of the solution to the PDE,
adaptive methods that use local refinement exist, see for example [16].

8In the IGA formulation (20) we also integrate non-polynomials. We use 3 quadrature points for the mass matrix
M and 7 quadrature points for the stiffness matrix K .
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(a) The initial design, Eh = 0.200 (b) After 1 reparametrization, 67 itera-
tions, Eh = 1.230

(c) After 2 reparametrizations, 143 itera-
tions, Eh = 1.484

(d) After 10 reparametrizations, 579 iter-
ations, Eh = 1.803

Figure 4: The designs at different stages of the optimization process, when using validity con-
straints and the coarse mesh. The reflector is outlined with a black line, and the control points
of this boundary is colored black. The grey lines are parameter lines mapped with the geometry
map, to illustrate the parametrization.
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Iteration count

0.2
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0.6

0.8

1

1.2

1.4

1.6

1.8

E
h

Coarse mesh

Fine mesh

Eh/4

Eh/4

Figure 5: The objective function during optimization process for the coarse and fine meshes. The
vertical lines indicate where the parametrization is updated. Eh/4 is the objective calculated on a
refined mesh.

(a) Initial mesh,
Ndet = 380

(b) After 1 reparametrization, Ndet = 392.

(c) After 2 reparametrizations, Ndet =
448.

(d) After 10 reparametrizations, Ndet =
572.

Figure 6: The mesh (knot lines), used for representing det J during the subproblems (7) for the
constraints (11). The number of constraints is given by Ndet and the designs are obtained using
the coarse mesh.
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Figure 7: The final design using validity constraints and the fine mesh, Eh/2 = 1.638

refinement is applied. We see that the number of constraints increases during the optimization
process, but by no more than a factor of two. If we were to use uniform refinement the number of
constraints would increase by more than a factor of 9.

The final design, after 5 reparametrizations, when using the fine mesh, is shown in Figure 7.
We see that it is similar to the design obtained using the coarse mesh. The final objective here
is Eh = 1.638. After the mesh is refined uniformly the electrical energy is Eh/4 = 1.628, which
is only a 0.6% difference. The objective function during the optimization process is plotted in
Figure 5. We see that the algorithm converges faster when using the fine mesh as no progress was
observed after 5 reparametrizations.

5.3 Results with regularization-driven approach

In this section we will present the results obtained with the method described in Section 4. With
this method we perform the optimization with all control points as optimization variables while
using the Winslow functional as a regularization term. Again we use the interior point solver Ipopt
with a tolerance of tol = 10−3 for solving the problem (8). The regularization parameter is set
to τ = 1

8 .
One can compare the design evolution shown in Figure 8 with those obtained previously, see

Figure 4. The designs obtained using the regularization approach seem to have more regular
parametrizations compared to those in Figure 4.

The final objective is Eh = 1.684. If we calculate the electrical energy for this design on a
twice refined mesh we get Eh/4 = 1.546, that is, a difference of 9% . This is less than the 16% we
observed when using the boundary-driven method. This increase in accuracy might be due to the
parametrization being of higher quality.

In Figure 9 we plot the electric energy Eh, the regularization term τW and the objective
function τW − Eh.

When using the method with the fine mesh we get the final design shown in Figure 10. We
see that the shape of the reflector is very similar to the one shown in Figure 8d. The main
difference is that when using the fine mesh the parametrization is more regular, since the error in
the discretization of the PDE is smaller, and therefore the optimization cannot exploit it to the
same extent. This is especially notable at the bottom of the reflector were the inner control points
where moved away from the point of interest when using the coarse mesh, as seen in Figure 8d.
The final objective is Eh = 1.545 and when evaluating it on a refined mesh we get the same
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(a) The initial design, Eh = 0.202 (b) 67 iterations, Eh = 1.461

(c) 143 iterations, Eh = 1.593 (d) The final design after 432 iterations ,
Eh = 1.683

Figure 8: The designs at different stages of the optimization process when using the regularization
approach. The reflector is outlined with a black line, and the control points that controls this
boundary is colored black. The grey lines are parameter lines mapped with the geometry map, to
illustrate the parametrization.
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Figure 9: The objective function during the optimization process when using the regularization
based approach, with the fine and coarse mesh.
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Figure 10: The final design when using the regularization approach and the fine mesh, Eh/2 =
1.545.

result Eh/4 = 1.545 with the difference at the 5th digit. The objective during the optimization
process is plotted in Figure 9. The behaviour is similar for the two meshes, however the tolerance
tol = 10−3 is reached with fewer iterations when using the fine mesh.

5.4 Comparison and discussion

In Table 2 we summarize the performance of the two methods. We report the objective after
a fixed number of iterations, in this case after 100 iterations, the final objective computed on 3
different refinement levels and the average running time per iteration.

We observe that the average execution time per iteration is the same order of magnitude for
the two methods. The main portion of the running times is spent on solving the state equation
and computing the gradient of the objective function. The difference in the running time that
we observed between the two methods might be due to a different number of function evaluations
per iteration needed for trial steps of the algorithm. If we were to consider a larger problem, for
example in 3D, the large number of validity constraints would likely lead to an increase in running
time for the boundary-driven approach. For the boundary-driven approach the computation of
reference parametrizations by minimizing of the Winslow functional only accounts for 2.4% and
0.25% of the total running time for the coarse and the fine grid respectively.

Regarding the quality of the designs we find, we note that shape optimization problems are
prone to having many local optima, so it could be that the two methods find two different local
optima. Therefore it can be futile to directly compare objective values. That being said, we
observe that the boundary-driven approach happens to find solutions with slightly higher (better)
objective value. On the other hand, the regularization based approach seems to estimate the
objective value more accurately on coarser meshes, since our results were more reliable using this
method, probably due to the better quality of the parametrizations it produced.

Also, observe that with the regularization based approach we only need the objective Eh, the
Winslow functional and their first order derivatives. In addition we can solve a single optimization
problem with design bounds as the only constraints. This means that the method is significantly
easier to implement.
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Method Eiter=100 Eh Eh/2 Eh/4
Eh−Eh/4
Eh/4

Avg time per iteration

Linearizations coarse mesh 1.482 1.803 1.589 1.556 16% 9.68 sec
Regularization coarse mesh 1.529 1.684 1.561 1.546 9% 11.54 sec

Linearizations fine mesh 1.495 1.638 1.629 1.628 0.6% 53.5 sec
Regularization fine mesh 1.482 1.545 1.545 1.545 0.003% 71.0 sec

Table 2: Comparison of the two methods from Section 3 and 4 on two different meshes. Eiter=100

is the objective after 100 iterations. Eh is the objective computed on the mesh used in the
optimization. Eh/2 and Eh/4 are the objectives computed after refining the mesh uniformly, once
and twice. The execution time was measured on a 64 bit HP EliteBook 840 G4 with and Intel(R)
Core(TM) i7-7500U CPU, with clock rate of 2.70 GHz.

5.5 Conclusion

We described and compared two methods for shape optimization on spline-based representations.
One uses validity constraints to enforce the validity of the geometry parametrization. The other
uses a regularization term, and thus avoids both the validity constraints and the need for an ex-
plicit parametrization strategy altogether. We demonstrated how this simple approach performed
comparably to the more complicated approach in terms of the final design, while requiring similar
running times for the 2D problem we considered. The regularization based approach seems to
produce more reliable results and it is in addition much simpler to implement, since we only need
the objective, the Winslow functional and their first order derivatives.

These results are encouraging and we plan to use the regularization based approach for 3D
problems, where we expect that the efficiency advantages of the regularization approach will be
more prominent, since the number of validity constraints for 3D parametrizations grows quickly.
For obtaining competent overall running times, one can couple the approach with low-rank ap-
proximation techniques, which have been recently introduced in IGA [31, 41] and have proved
efficient in the frame of PDE-constrained optimization [3].
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[20] J. Hinz, M. Möller, and C. Vuik. Elliptic grid generation techniques in the framework of
isogeometric analysis applications. Computer Aided Geometric Design, 65:48–75, 2018.

[21] Q. Hu, F. Chouly, P. Hu, G. Cheng, and S. P. Bordas. Skew-symmetric nitsche’s formulation
in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless
contact. Computer Methods in Applied Mechanics and Engineering, 341:188–220, 2018.

[22] T. Hughes, J. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Comp. Meth. Appl. Mech. Engrg., 194(39–41):4135–
4195, 2005.

16



[23] J.-M. Jin. The finite element method in electromagnetics. Wiley, 1993.

[24] K. A. Johannessen, T. Kvamsdal, and T. Dokken. Isogeometric analysis using lr b-splines.
Computer Methods in Applied Mechanics and Engineering, 269:471–514, 2014.

[25] E. John and E. A. Yıldırım. Implementation of warm-start strategies in interior-point methods
for linear programming in fixed dimension. Computational Optimization and Applications,
41(2):151–183, 2008.
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A A sufficient condition for a valid parametrization

As pointwise constraints det(J) > 0 are, generally speaking, difficult to deal with, we utilize the
spline nature of the geometry parametrization (2). Namely, when the geometry map G ∈ Ck is a
spline of degree p, then det J ∈ Ck−1 is a spline with degree d · p − 1. This means that we can
construct a spline space Sdet that contains det J .9 We can therefore find the expansion coefficients
d of det J with respect to B-splines in this space.10

9Specifically, the smallest spline space containing det J can be obtained by increasing the multiplicity of each
knot in geometry map knotvector by (d− 1) · p to account for the reduction in the differentiability and increase of
the degree.

10This could be done using either interpolation or L2 projection. In either approach one has to solve a linear
system to obtain the expansion coefficients. The linear system matrix needs to be inverted only once for a given
spline basis and, moreover, the matrix has a Kronecker/separable structure (cf. [31]) therefore the solution can be
obtained extremely fast.
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Now we can use this expansion to derive a sufficient condition to replace the pointwise parametriza-
tion validity constraints det(J) > 0, by requiring that

d ≥ ε, (11)

where ε is a small positive algorithmic parameter. This condition guarantees that det J > 0
since B-splines are non-negative and form a partition of unity. This is not a necessary condition,
meaning that we might have di ≤ 0 for some i even though det J(ξ) > 0, ∀ξ ∈]0, 1[d. But if the
spline space Sdet is refined then the spline expansion coefficients will move closer to values of the
spline. So if ε is small enough and det J > 0 then the constraint is likely to be satisfied for a
sufficiently refined spline space Sdet.

B Domain parameterization techniques

In this section we review some techniques for finding a parametrization of the interior given the
boundary. In IGA this comes down to finding the position of the inner control points given
boundary control points. We do not aim to give a thorough review of all the techniques that are
available, as this is out of the scope of this work. We will only introduce the methods that are
related, or directly used, by the two shape optimization methods considered in this work

B.1 Coons patch and spring method

Two simple methods for constructing a grid of control points are the Coons patch [12] and the
spring method [17]. They both produce inner control points that depend linearly on the boundary
control points, however they only produce valid parametrizations for geometries that are not too
complicated. In this work we will use these methods for finding an initial guess for the optimization
based approach that is described below.

B.2 Optimization–based techniques

A more complex, and in general nonlinear, class of parametrization methods consists of optimization–
based methods. Here the geometry map G is chosen such that it minimizes a quality metric w(ξ)

min
G

∫
]0,1[d

w(ξ) dξ, (12)

s.t. G|∂[0,1]d = γ, (13)

where γ is a given boundary curve.
There are several different quality metrics to choose from, cf. [17, 48]. In this work we will

consider the Winslow functional which is given in terms of the Jacobian matrix J as

W =

∫
]0,1[d

w(ξ) dξ, (14)

with

w =
tr
(
JTJ

)
det J

. (15)

In 2D the Winslow functional has the nice property that its minimizer has a harmonic inverse [17].
This guarantees that the minimizer of (12) is unique and bijective, i.e. det J 6= 0. It should be noted
that this minimizer is not necessarily a spline, so looking for a spline parametrization on the form
(2) by minimizing (12) with the Winslow functional will only guarantee a valid parametrization if
the spline space used for the parametrization has high enough resolution.
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Within the shape optimization context we also need first and second order partial derivatives
of w. The derivative with respect to a parameter α is given by

∂w

∂α
= 2(det J)−1tr

(
JT

∂J

∂α

)
− tr

(
J−1 ∂J

∂α

)
tr(JTJ)

det J
, (16)

where we used the relation
∂

∂α
det J = detJ tr

(
J−1 ∂J

∂α

)
. The second order derivative is given

by

∂2w

∂α∂β
= 2(det J)−1tr

(
∂J

∂α

T ∂J

∂β

)

− 2(det J)−1tr

(
J−1 ∂J

∂α

)
tr

(
JT

∂J

∂β

)
− 2(det J)−1tr

(
J−1 ∂J

∂β

)
tr

(
JT

∂J

∂α

)
+

tr(JTJ)

det J
tr

(
J−1 ∂J

∂α

)
tr

(
J−1 ∂J

∂β

)
+

tr(JTJ)

det J
tr

(
∂J

∂β

T

J−1 ∂J

∂α
J−1

)
,

(17)

using the fact the fact that ∂
∂αJ

−1 = −J−1 ∂J
∂αJ

−1 and assuming that J depends linearly on α,

which is the case when α is a coordinate of a control point. Calculation of ∂w
∂α and ∂2w

∂α∂β can be
implemented as an assembly of a linear and bilinear forms within IGA framework. In G+Smo this
can, for instance, be accomplished using the gsExprEvaluator class that is typically employed for
isogeometric stiffness matrix assembly purposes.

C IGA discretization details

Using the spline parametrizations of patch geometries we pull back the weak form (10) to the
parameter domain, which results in the following equation:∫

]0,1[2

1

εcr
J−T∇u · J−T∇v |det J |dξ − k2

0

∫
]0,1[2

µruv |det J |dξ

+

(
jk0 +

1

2rt

)∫
G−1(Γt)

1

εcr
uv

∣∣∣∣∂G∂t
∣∣∣∣ dt

=
1

εcr

∫
G−1(Γt)

1

εcr

(
∂ui

∂n
◦G+

(
jk0 +

1

2rt

)
ui ◦G

)
v

∣∣∣∣∂G∂t
∣∣∣∣dt (18)

where we have u = û ◦G, v = v̂ ◦G and where t is the parameter on the boundary. After applying
the Galerkin method to (18), we arrive at the linear system of linear algebraic equations

Au = (K +M + T )u = f (19)
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where u = (u1, . . . , uN )T and K, M , T and f is given by

Kkl =

∫
[0,1]2

1

εcr
J−T∇Rk · J−T∇Rl |det J | dξ, (20a)

Mkl = −k2
0

∫
[0,1]2

µrRkRl |det J | dξ, (20b)

Tkl =

(
jk0 +

1

2rt

)∫
G−1(Γt)

1

εcr
RkRl

∣∣∣∣∂G∂t
∣∣∣∣ dt, (20c)

fl =

∫
G−1(Γt)

1

εcr

(
∂ui

∂n
◦G+

(
jk0 +

1

2rt

)
ui ◦G

)
el

∣∣∣∣∂G∂t
∣∣∣∣ dξ. (20d)

Note that the values of εcr and µr are set to the properties of gold in patch 4 and for air in the
other patches. Owing to the restriction of the IGA library we are utilizing, we further reformulate
the system of complex algebraic equations (19) as[

<(A) −=(A)
−=(A) −<(A)

] [
<(u)
=(u)

]
=

[
<(f)
−=(f)

]
.
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