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Abstract. The use of mechanistic models in clinical studies is limited
by the lack of multi-modal patients data representing different anatom-
ical and physiological processes. For example, neuroimaging datasets do
not provide a sufficient representation of heart features for the modeling
of cardiovascular factors in brain disorders. To tackle this problem we in-
troduce a probabilistic framework for joint cardiac data imputation and
personalisation of cardiovascular mechanistic models, with application
to brain studies with incomplete heart data. Our approach is based on a
variational framework for the joint inference of an imputation model of
cardiac information from the available features, along with a Gaussian
Process emulator that can faithfully reproduce personalised cardiovas-
cular dynamics. Experimental results on UK Biobank show that our
model allows accurate imputation of missing cardiac features in datasets
containing minimal heart information, e.g. systolic and diastolic blood
pressures only, while jointly estimating the emulated parameters of the
lumped model. This allows a novel exploration of the heart-brain joint
relationship through simulation of realistic cardiac dynamics correspond-
ing to different conditions of brain anatomy.

Keywords: Gaussian Process · Variational Inference · Lumped model ·
Missing features · biomechanical simulation

1 Introduction

Heart and brain are characterized by several common physiological and patho-
physiological mechanisms [6]. The study of this multi-organ relationship is of
great interest, in particular to better understand neurological diseases such as
vascular dementia or Alzheimer’s disease. The development of computational
models simulating heart and brain dynamics is currently limited by the lack of
databases containing information for both organs. Neuroimaging datasets often
provide a limited number of cardiac-related measurements, usually restricted to
brachial diastolic and systolic blood pressure (DBP, SBP) [7]. These quantities
provide a limited assessment of the cardiac function, thus compromising the
possibility of further analysis of cardiovascular factors in brain disorders.
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On the contrary, the availability of a rich set of cardiac information in heart
studies allows the use of cardiovascular models to estimate descriptors of the
cardiac function that are not possible to measure in-vivo, such as contractility or
stiffness of the heart fibers. These models optimize the parameters through data-
assimilation procedures to reproduce the observed clinical measurements [11],
but usually do not include neurological factors. The ability to jointly account for
cardiovascular descriptors and brain information is key to gather novel insights
about the relationship between heart dynamics and brain conditions.

Most of current studies relating heart and brain are based on statistical
association models, such as based on multivariate regression [5]. While this kind
of analysis allows to easily formulate and test association hypotheses, it usually
offers a limited interpretation of the complex relationship between organs. This
issue is generally addressed by mechanistic modeling, allowing deeper insights
on physiological and biomechanical aspects. These models allow for example to
describe the brain vasculature, and to quantify physiological aspects such as
blood flow auto-regulation effects in the brain [1], up to the simulation of the
whole-body circulation with detailed compartmental components [3]. Although
these approaches offer a high level of interpretability, they are usually severely ill-
posed and require large data samples and arrays of measurements to opportunely
tune their parameters.

To bridge the gap between data-driven and mechanistic approaches to heart-
brain analysis, in this work we propose to learn cardiovascular dynamics from
brain imaging and clinical data by leveraging on large-scale datasets with missing
cardiac information. This is achieved through an inference framework composed
of two nested models accounting respectively for the imputation of missing car-
diac information conditioned on the available cardiac and brain features, and
for a Gaussian Process emulator that mimics the behavior of a lumped cardio-
vascular model. This setting allow us to formulate a probabilistic end-to-end
generative model enabling imputation of missing measurements and estimation
of cardiovascular parameters given a subset of observed heart and brain features.

Results on real data from the UK Biobank show that our framework can be
used to reliably estimate and simulate cardiac function from datasets in which
we have minimal cardiovascular information, such as SBP and DBP only. More-
over, the proposed framework allows novel exploration of the joint heart-brain
relationship through the simulation of realistic cardiac dynamics corresponding
to different scenarios of brain anatomy and damage.

2 Methods

2.1 Problem statement

We denote by ν the vector representing brain image-derived phenotypes (IDPs)
and clinical information such as age or body surface area (BSA), and by x the
vector of cardiac IDPs and blood pressure measurements. The vector x can be
represented as x = {x̂, xobs} where x̂ represents the unobserved information
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we wish to impute and xobs the observed one. Moreover, we assume that for
each observation x a corresponding set of parameters y of the associated lumped
model is available. We would like to learn a generative model in which we assume
that the unobserved measurements are generated by a latent random variable
z conditioned on the variables ν. Hence, our generative process can be seen
as sampling from a distribution p(z|ν) and then obtaining x̂ with probability
p(x̂|z, ν). Due to the association between cardiac IDPs, x, and lumped model
parameters y, we also assume that the latter are dependent from ν through
z. Our graphical model is shown in Figure 1, while the evidence lower bound
(ELBO) of the joint data marginal p(y, x̂|xobs, ν) writes as:

log p(y, x̂|xobs, ν) =

∫
log p(y, x̂|xobs, z, ν)p(z|ν)dz

≥ Eqφ(z|xobs,ν) log p(y, x̂|xobs, z, ν)

−KL(qφ(z|xobs, ν)||pθ(z|ν))

= Eqφ(z|xobs,ν) log pω(y|xobs, z)
+ Eqφ(z|xobs,ν) log pθ(x̂|ν, z)
−KL(qφ(z|xobs, ν)||pθ(z|ν)) ≡ L(θ, φ, ω;xobs, ν)

(1)

z�

N
x y
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Fig. 1. Graphical model of our framework. From a latent variable z we generate the
unobserved features x̂ conditioned on the variables ν and we estimate y via Gaussian
process regression. During inference xobs and ν are used to estimate the approximated
posterior qφ(z|xobs, ν).

The approximation of the posterior distribution by qφ(z|xobs, ν) defines the
optimization of the ELBO through variational inference. The variational distri-
butions qφ(z|xobs, ν) and pθ(x̂|ν, z) are parametrized respectively with parame-
ters φ and θ. The term log pω(y|xobs, z) in the ELBO denotes the emulator which
approximates the mechanistic behavior of the lumped model via Gaussian Pro-
cess regression parametrized by ω. The choice of a GP as emulator is motivated
by the uncertainty of the data, hence it is desirable to obtain a distribution of
interpolating functions rather than a single deterministic function. Moreover,
GPs have already been proved to be valid emulators of 1D mechanistic vascular
models [10]. The GP allow us to sample functions f(x) from a given prior pa-
rameterized by a mean µ(x) and covariance Σ(x), i.e: f(x) ∼ N (µ(x), Σ(x)) to
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obtain the marginal y ∼ N (µ(x), Σ(x) + σ2I). The prior mean µ(x) is here set
to 0 and we use a radial-basis function (RBF) kernel for the covariance:

kj(xi, x
′
i) = α2

jexp

(
− (xi − x′i)2

2β2
i

)
, (2)

Since our data is multi-dimensional, kj(xi, x
′
i) is the kernel for the jth target

and the ith predictor. The hyper-parameters of the kernel ω = {α, β} represent
the output amplitude α and length scale β of the sampled functions. The goal
during training is to learn the hyper-parameters that maximize the marginal
likelihood of the observed data y .

The second term of the ELBO is related to the imputation of x̂. The term
log pθ(x̂|ν, z) denotes the log-likelihood of the imputed features, which can be
seen as the reconstruction error. The last term KL(qφ(z|xobs, ν)||pθ(z|ν)) is the
Kullback–Leibler divergence between variational approximation and prior for z,
that can be expressed in a closed form given that both distributions are Gaus-
sians. The imputation scheme is equivalent to a conditional variational autoen-
coder (CVAE) which has become a popular approach to feature imputation [8].
Fast and efficient optimization in our model is possible by means of stochastic
gradient descent thanks to the closed form for data fit and KL terms, the use of
the reparametrisation trick and Monte Carlo sampling.

2.2 Data processing and cardiovascular model

From UK Biobank we selected a subset of 3445 subjects for which T1, T2 FLAIR
magnetic resonance images (MRI) and several brain and cardiac IDPs were avail-
able. Among the brain IDPs we used total grey matter (GM), total white matter
(WM) and ventricles volumes. We used T1 and T2 FLAIR images to obtain the
number of white matter hyper-intensities (WMHs) and their total volume relying
on the lesion prediction algorithm (LPA), available from the lesion segmentation
toolbox (LST) [14] of SPM 3. WMHs are a common indicator of brain damage
of presumably vascular origin [15]. We combined WM and GM volumes into a
single measurement that we denoted as brain volume. The WMHs total volume
and number of lesions presented a skewed distribution, and were Box-Cox trans-
formed prior to the analysis. Regarding the cardiac IDPs we selected stroke
volume (SV), ejection fraction (EF) and end-diastolic volume (EDV) for the
left ventricle. All brain-related volumes were normalized by head size. Besides
IDPs, we had access to blood pressure measurements (DBP, SBP) and socio-
demographic features such as age and body surface area (BSA). We used DBP
and SBP to compute MBP as MBP = DP + (SP − DP )/3. Next, we used
the lumped cardiovascular model derived in [4] to obtain additional indicators
of the cardiac function. In particular we estimated the contractility of the main
systemic arteries (τ), peripheral resistance (Rp) , the radius of the left ventricle
(R0), contractility of the cardiac fibers (σ0) and their stiffness (C1). The param-
eters of the model were selected based on the available clinical data. To obtain

3 https://www.fil.ion.ucl.ac.uk/spm



Joint data imputation and mechanistic modelling 5

the target values for the emulator, the data-assimilation procedure was carried
out according to the approach presented in [2, 12].

2.3 Experiments

The data was split in two sets: one containing the full-information (2309 sub-
jects), and one in which cardiac IDPs (x̂) and the estimated model parameters
(y) were removed (1136 subjects, Table 1). The quality of imputation was com-
pared to conventional methods such as mean, median and k-nearest neighbors
(KNN) imputation. We subsequently assessed the relationship learnt by our
model between brain features and cardiovascular parameters through simula-
tion. Starting from the mean values of each parameter we sampled along the
dimension of the different conditional variables ν that we used to parameter-
ize the prior. This procedure allowed us to assess their influence in the inferred
simulation parameters.

Table 1. Variables used in our framework. Mean blood pressure (MBP), diastolic
blood pressure (DBP), stroke volume (SV), end-diastolic volume (EDV), ejection frac-
tion (EF), heart fibers contractility (σ0), ventricle size (R0), heart fibers stiffness (c1),
peripheral resistance (Rp) and aortic compliance (τ)

Input (xobs) Condition (ν) Imputed (x̂) Predicted (y)

MBP Brain volume SV σ0

DBP Ventricles volume EDV R0

WMHs volume EF c1
Num. WMHs Rp
BSA τ
Age

3 Results

Data imputation and regression. We assessed the performance of our model
by measuring the mean squared error (MSE) on the testing data, for both the im-
putation of missing cardiac information and the emulation of the lumped model
parameters. The results in Figure 2a show that our method gives significantly
better estimates than mean and median imputation, and comparable predictions
to KNN, for which the optimal number of neighbors was optimized through 10-
fold cross-validation and corresponds to K = 10. At the same time the emulator
consistently gives low errors for the parameters’ estimation (Figure 2b). In supp.
Figure 3 we present the most relevant predictors for each emulated feature based
on their β values, while a qualitative comparison between the distributions of
imputed and emulated features compared to the ground truth data is available
in in supp. Figure 4.
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* *

**
* * * * *

Fig. 2. Mean squared error (MSE) a) of the imputation of missing cardiac measure-
ments (x̂) b) of the estimated parameters of the emulated cardiovascular lumped model
(y). * denotes that the MSE distributions are significantly different with respect to our
method according to the Wilcoxon rank-sum test using a significance level of a = 0.05,
Bonferroni corrected by multiple comparison.

Cardiovascular dynamics simulation and model plausibility. In Figure
3a we observe the change in the predicted parameters of the cardiovascular model
as we sample along the range of values of the different conditional variables ν.
Figure 3b shows the pressure-volume (PV) loops generated by the lumped model
using the inferred parameters. The simulated PV loops highlight meaningful
relationships:

– An increase in the volume of WMHs is associated to decreased SV and EDV,
together with a smaller reduction of ESV, leading to a decrease of EF which
is related to reduced contractility.

– Similar dynamics are associated to brain volume loss.
– The number of WMHs exhibits different dynamics than WMHs volume,

associated to the increase in afterload and the increase of EDV.

From the plots showing the estimation of the parameters we can observe the
ones driving the observed dynamics. For example, WMHs and brain volumes
changes are mainly driven by the joint evolution of peripheral resistance (Rp),
contractility (σ0) and size of the left ventricle (R0). The changes in the num-
ber of WMHs are related to heart-remodelling changes, driven by R0 and by a
decrease of σ0 and the ventricular stiffness c1. In supp. Figure 2 we provide anal-
ysis and discussion of the remaining conditional features (age, BSA and brain
ventricles volume). Overall, in the simulated dynamics we can identify several
physiological responses in line with the clinical literature. Moreover, our model
may be useful to give insights in currently controversial topics such as concern-
ing the pathogenesis of WMHs. Our results suggest that the evolution of cardiac
function with respect to brain and WMHs volumes is similar to the one due to
aging (see supp. Figure 2), while the effect induced by the number of WMHs is
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Pressure-volume loop evolution
Variation in the estimation of model parameters 

based on the evolution of conditional features
a) b)

Fig. 3. a) Inferred model parameters and their respective confidence interval as we sam-
ple along the dimension of the different conditional variables ν while keeping the other
elements of the generative framework constant. b) Pressure-volume loops generated by
the the cardiovascular lumped model given the mean inferred parameters.

similar to the one related to ventricles enlargement. In both cases the changes
in R0, σ0 and C1 suggest that the increase in the number of WMHs and the
enlargement of the brain ventricles are related to heart-remodelling processes,
such as loss of contractility or decrease in compliance. These findings are in line
with clinical observations [9] relating lower cardiac output with higher burden
of WMHs and reduced brain volume.

4 Conclusion

We presented a generative model that enables the analysis of complex physio-
logical relationships between heart and brain in datasets where we have minimal
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available features. The framework allow us to emulate a lumped cardiovascular
model through data-driven inference of mechanistic parameters, and provides us
a generative model to explore hypothetical scenarios of heart and brain relation-
ships. In the future, the model will allow to potentially transfer the knowledge
learnt in UK Biobank to datasets where we have minimal cardiac information,
to explore the relationship between brain conditions and cardiovascular factors
in specific clinical contexts, such as in neurodegeneration. Our approach could
also be extended to account for deep learning architectures, and the framework
could be further improved by jointly accounting for multiple outputs, which
are currently modelled independently, or by including spatial information from
imaging data, beyond the modelling of scalar volumetric features. Furthermore,
while the cardiovascular features considered in this study are rather general,
more complex features will allow to study more realistic cardiovascular models.
For example, while the mechanistic model used in this study does not simulate
cerebral blood flow, previous studies suggested that WMHs may be due to local
vascular impairment [13]. Hence, by selecting appropriate clinical features we
could constrain the imputation by means of any biophysical model representing
the desired aspect of systems biology. This could represent an innovative tool in
real world scenarios, for which multi-modal patient data is often limited or not
available.
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