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Abstract

A new computational strategy is proposed for determining all elastic scatterer characteristics including the

shape, the material properties (Lamé coefficients and density), and the location from the knowledge of far-

field pattern (FFP) measurements. The proposed numerical approach is a multi-stage procedure in which

a carefully designed regularized iterative method plays a central role. The adopted approach is critical

for recognizing that the different nature and scales of the sought-after parameters as well as the frequency

regime have different effects on the scattering observability. Identification results for two-dimensional elastic

configurations highlight the performance of the designed solution methodology.

Keywords: Helmholtz equation, Elastic scatterer, Inverse scattering problem, Ill-posedness,

Regularization, Pseudoinverses, Newton-type method

Introduction

Inverse scattering problems, where information about an unknown object such as a body, or an inhomo-

geneity in a material, or a potential, is to be recovered from measurements of waves of fields scattered by this

object, are fundamental for exploring objects that are not accessible to in situ measurements. This class of

problems is notoriously very difficult to investigate mathematically and/or numerically [1]. The challenge is5

due to the fact that these problems are not only nonlinear but also ill-posed in the sense of Hadamard [2]. In

spite of their difficulties, inverse scattering problems received a great deal of attention by mathematicians,

scientists, and engineers, as attested by the prolificness of papers and conferences dedicated to this topic.

This is due in part to their relevance to a wide range of important applications including seismology [3, 4],

radar and sonar [5], optics [6], along with many other areas in science and medical imaging technology.10

The inverse scattering problem considered in this paper consists in retrieving all the properties of an

elastic scatterer that lies in an acoustic medium from the knowledge of its full aperture far-field pattern
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(FFP) measurements corresponding to one or multiple incident plane waves (see Section 2). Hence, the

prototype mathematical problem is made of the Navier equation, to model propagation in an elastic medium,

coupled with the Helmholtz equation that describes the propagation in a acoustic medium. Unlike the case15

of time-domain scattering problems [7], the full identification of an elastic obstacle has not been previously

addressed in the case of time-harmonic scattering problems. This work constitutes the first numerical attempt

to simultaneously recover all the object properties: the shape of the scatterer, its material properties (Lamé

coefficients and the density), and its location characterized here by the origin of the coordinate system of the

scatterer. All existing numerical methods have been designed and so far employed for only partial parameters20

reconstruction. More specifically, extensive efforts have been devoted during the past five decades to the

determination of the shape of an unknown object from the knowledge of its corresponding FFP measurements

and the nature of the object. Indeed, various computational procedures have been designed for this purpose

(see, e.g., [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], and the references therein). Note that in spite of the

absence of a rigorous proof of their convergence [20], regularized Newton-type methods have been among the25

primary candidates for solving inverse obstacle problems (IOP) (see, e.g., [9, 21, 22, 23, 24, 25, 26, 27, 28]).

This is due to the fact that the Newton aspect addresses effectively the nonlinearity of these IOPs whereas

the regularization procedure restores the stability. Note that a new class of numerical methods has been very

recently designed with the feature to be ”globally convergent”. The most advanced among these methods is

the so-called convexification method presented in [29, 30] for the case of a single incident plane wave. For this30

method, it is proved that if a gradient projection method starts at an arbitrary point, this method converges

to the time solution. So far, the case of Lamé coefficients has not been handled by the convexification method.

The problem of finding the material parameters (Lamé coefficients and the density) of elastic scatterers has

also been extensively studied and a wide range of numerical techniques have been developed to address it

(see, e.g., [31, 32, 33, 34] and the references therein). Likewise, various numerical approaches have been35

proposed to locate objects from the knowledge of their corresponding FFP measurements and the nature

of the objects, as reported in [35, 36, 37, 38, 39, 40, 41], among other references. To conclude, reference

[42] is the only paper that we have encountered in the literature that proposes, for time-harmonic inverse

problem, a technique to reconstruct simultaneously the shape of an object along with the two parameters

that characterize the impedance boundary condition adopted in the considered mathematical model. Note40

that for time-domain problems, the identification method proposed in [43] has been designed to determine

more than just the location of the scatterer. We have not come across of any work about fully identifying

the inverse time-harmonic scattering problem considered in Section 2 and delivering the full characteristics

of elastic scatterers from their FFP measurements.

Given that, our goal is to propose a solution methodology to fully recover the properties of an elastic45

object from the knowledge of its corresponding FFP measurements. The proposed approach is a multi-

stage strategy in which a carefully designed regularized Newton-type algorithm plays a central role (see

Section 3). The idea of using regularized Newton-type methods for solving inverse scattering problems is
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not new. The novelty here is that it is employed in a multi-stage context in order to recognize that the

sought-after parameters (shape parameters, material parameters, location parameters) have, depending on50

the frequency regime, different influences on the scattering observability. The proposed strategy delivers in

its first stage the shape and material parameters and then the scatterer’s location, defined here by the origin

of the coordinate system for the obstacle, is obtained in the second stage. Note that the scale variability

of the parameters is addressed here via a rescaling procedure applied to the forward problems (see Section

1.3), whereas an appropriate choice of the regularization matrix addresses the sensitivity to the sought-after55

parameters’ influence on the reconstruction (see Section 3.3).

The remainder of the paper is organized as follows. In Section 1, we specify the nomenclature and

assumptions adopted in this paper. We then state the forward scattering problem and introduce the rescal-

ing procedure employed to address the scale variability of the scatterer’s parameters. Last, we formulate

the considered inverse scattering problem. Section 2 is devoted to the description of the designed solution60

methodology and its salient features. The main calculations required by the proposed inversion solver are

described in Section 3. These are (a) the evaluation of the Jacobian matrix entries, (b) the solution of the

forward problems that occur at each Newton iteration, and (c) the computation of the regularization matrix

entries. A summary describing this new inversion algorithm along with its computational complexity are

reported in Section 4. We present in Section 5 illustrative numerical parameters recovery for various scat-65

terer’s configurations including a non-convex octagon and a mock-up submarine. The considered scatterers

are respectively made of steel and aluminum. These identifications have been performed using FFP mea-

surements tainted with noise level ranging from 0% to 15%. The obtained results highlight the performance

effectiveness of the proposed multi-stage solution methodology.

1. Preliminaries70

We first introduce the notations and the assumptions we adopt throughout this paper. We then state the

mathematical formulation of the elasto-acoustic time-harmonic scattering problem and its nondimensional-

ized version. Last, we formulate the considered inverse problem.

1.1. Nomenclature and Assumptions

Throughout this section, we adopt the following nomenclature and assumptions:75

• Ωs is a bounded domain of R2 representing an elastic obstacle.

• Ωf is an infinite domain representing the fluid that surrounds Ωs, i.e., Ωf = R2 \ Ω
s
.

• Γ is the boundary of Ωs and is assumed to be Lipschitz continuous.

• Σ is the exterior artificial boundary. Σ is a circle.

• x = (x1, x2)T is a point of R2 and r =‖ x ‖2 is the distance from the origin point to x (m).80
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• S1 is the unit circle in R2, i.e., S1 = {x ∈ R2, ‖ x ‖2= 1}.

• ∇ (resp. ∆) is the gradient (resp. Laplace) operator in R2.

• ν is the outward normal to the boundaries Γ and Σ, and
∂

∂ν
is the normal derivative operator.

• k is a positive number representing the wavenumber of the incident plane wave (m−1) . k =
2πf

cf
, where

f is the frequency of the propagating wave (Hz) and cf is the sound speed in the fluid (m·s−1).85

• ω represents the angular frequency of the propagating wave (rad·s−1). ω = 2πf .

• d ∈ S1 is a unit vector representing the direction of the incident plane wave.

• λ and µ are two positive numbers representing the Lamé coefficients of the considered elastic object Ωs

(Pa).

• ρs is a positive number representing the density of the elastic obstacle Ωs (kg·m−3).90

• M∗ denotes the adjoint matrix of M . M∗ is the complex conjugate of the transpose matrix of M , i.e,

M∗ = M
t
.

1.2. Mathematical Formulation of the Problem

The time-harmonic scattering problem by an elastic obstacle Ωs embedded in an infinite homogeneous

medium Ωf can be formulated as the following boundary value problem (BVP):95

(BV P )



∇ · σ(u) + ω2ρsu = 0, in Ωs, (a)

∆p+ k2p = 0, in Ωf , (b)

σ(u) · ν = −pν − pincν, on Γ, (c)

ω2ρfu · ν = ∂p
∂ν + ∂pinc

∂ν , on Γ, (d)

lim
r→+∞

√
r
(
∂p
∂r − ikp

)
= 0, (e)

(1)

where the pair (u, p) represents the elasto-acoustic scattered field vector; p is the scalar-valued fluid pressure

in Ωf , and u = (ux, uy)T is the vector-valued displacement field in Ωs; pinc = eiω/cfx·d corresponds to the

given incident plane wave. The stress tensor σ is related to the strain tensor ε by Hooke’s law [44]. Note

that this study is limited to the case of an isotropic medium, so that the stiffness tensor is invariant under

rotations and reflections [44]. Consequently, we have

σ(u) = λ∇ · uI + 2µε(u),
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where ε is the strain tensor given by

ε(u) =
1

2

(
∇u + (∇u)T

)
.

Hence, Ωs is assumed to be a homogeneous scatterer. Observe that the direct problem BVP (1) contains

the standard exterior Helmholtz problem given by equations (b) and (e), and the Navier equation given

by (a) governing the equilibrium of an elastic scatterer. These equations are coupled via the transmission

conditions given by (c) and (d). The first one is a dynamic interface condition whereas the second one is

a kinematic interface condition [44]. Furthermore, p∞, the far-field pattern (FFP) corresponding to the

scattered pressure field p, can be expressed using the following integral representation [1]:

p∞(x̂) =
eiπ/4√

8πk

∫
Γ

(
e−ikx̂·y

∂p

∂ν
(y)− ∂e−ikx̂·y

∂ν
p(y)

)
dX; x̂ ∈ S1. (2)

Note that BVP has been extensively studied. Mathematical results pertaining to existence, uniqueness,

and regularity of the solution can be found in [44, 45, 46, 47, 48, 49], among other references.

1.3. Nondimensionalization of the Forward Problem

The characteristic parameters of a given elastic scatterer Ωs are of different nature. Indeed, it has been

reported in [50, 47] that the sensitivity of the FFP given by (2) to changes on the shape Γ is in general quite

different to the ones on the material parameters triplet (λ, µ, ρs). Such a variability can have, depending

on the frequency regime, a dramatic impact on the scattering observability. Furthermore, the magnitude

of these parameters is also different. For example, in the numerical experiments reported in Section 5, the

Lamé coefficients λ and µ are of order 1 GPa, the density ρ is of order 104 kg·m−3, whereas the size of

the obstacle is of order 10−3m. Such a difference constitutes a serious numerical challenge when attempting

to simultaneously recover these parameters from FFP measurements. Given that, there is undoubtedly a

real advantage in rescaling the forward problem prior to solving the inverse obstacle problem introduced in

Section 1.4. To this end, we proceed in a classical way by rescaling each of the parameters in BVP (1) by a

characteristic unit of measure to be determined. Specifically, we introduce the following notation:

v̂ =
v

v0
,

where v represents one of the parameters ω, cf , ρs, λ, µ, ux, uy, p and v0 is a characteristic unit of measure

v to be determined. In addition, we use a dilation factor L for the position coordinates x = (x, y)T , i.e.,100

x̂ = 1
Lx. Furthermore, we assume that ux,0 = uy,0 = u0. We then rewrite BVP(1) in terms of the new

dimensionless quantities v̂. We also set all the arising constants to be 1, i.e.,

C0

x2
0ω

2
0ρs,0

=
c2f,0
L2ω2

0

=
ω2

0u0ρs,0L

p0
=

C0u0

Lp0
=

ω0L

cf,0
= 1. (3)

In doing so, we deduce that (û, p̂) also satisfies BVP(1) but with dimensionless quantities. Last, we must

point out that in all numerical experiments reported in Section 5, we have selected:

• p0 = 1 Pa.105
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• ω0 is the angular frequency in each considered numerical experiment.

• L = L(0), where L(0) is the characteristic size of the initial obstacle Ωs (0) selected during the iterative

procedure at Stage I for the shape and material parameters recovery.

• C0 = λ(0) + 2µ(0), where λ(0) and µ(0) are Lamé coefficients of the initial obstacle Ωs (0).

The values of the remaining quantities ρs,0, cf,0, u0 are then deduced from the relations given by (3).110

1.4. The Inverse Problem Formulation

As stated in the Introduction, the main goal of this work is to fully identify elastic scatterers from the

knowledge of some corresponding FFP measurements. Therefore, we consider the following inverse obstacle

problem (IOP):

115

Given one or several measured far field patterns p̃∞(x̂) corresponding to one or several given directions

d and wavenumbers k of incident plane waves, find Γ the shape of the scatterer Ωs, its Lamé coefficients

(λ, µ), its density ρs, and its origin xc such that

F (Γ, λ, µ, ρs,xc) (x̂) = p̃∞(x̂); x̂ ∈ S ⊆ S1, (4)

where F is the far-field operator that maps (Γ, λ, µ, ρs,xc) onto the far-field pattern p̃∞.

The tilde notation designates a measured quantity, i.e., a quantity that can be tainted with errors during

the measurement process.

To the best of our knowledge, there were no attempts, reported in the literature, to investigate IOP (4),

either mathematically or numerically. It is worth noting however that in the case of a rigid obstacle, i.e.,120

Γ being the only unknown in IOP(4), in addition to an extensive numerical investigation (see, e.g.,[1, 8,

22, 21, 9, 11, 51]), various results pertaining to the uniqueness have been established and can be found in

[1, 11, 52, 53], among other references.

2. The Proposed Multi-Stage Solution Methodology

As stated earlier in the Introduction, the main goal of this study is to propose an efficient computational125

procedure for solving IOP(4). The method we have designed is a multi-stage strategy in which a regularized

Newton-type algorithm plays a central role. The multi-stage feature of the method is adopted to recognize

that the shape, the material parameters, and the origin of the sought-after elastic object, depending on the

frequency regime, have different effects on the acoustic scattering observability. More specifically:

• The shape of the scatterer and its material properties are of different nature and scales. Their variations130

have different influence on the amplitude diffusion of the scattered field, as reported in [50, 47]. Hence,

the proposed approach addresses the scale issue by considering the non-dimensional formulation (see
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Section 1.3) when solving the forward scattering-type problems that occur at each Newton iteration.

Furthermore, the different nature aspect is addressed through the Tikhonov regularization procedure.

Indeed, the choice of the set of the regularization parameters depends on the target parameters, as135

detailed in Section 3.3.

• It is well-known that, in general, Newton-type methods cannot determine the location of the sought-

after object from the knowledge of the phaseless FFP measurements (the FFP modulus measurements).

This is due to the fact that the FFP intensity is invariant under translation of the scatterer [53, 1]. On

the other hand, it is also well-known that, in practice, FFP intensity measurements are more accurate140

than the measurements of the phase of the FFP. Hence, since accurate data are very important to ill-

posed problems, the proposed method employs phaseless FFP to first recover the shape and the material

parameters while keeping the origin of the sought-after obstacle ”frozen” at the origin of the plane. Once

this stage is completed, the proposed algorithm uses the full FFP measurements to locate the origin of

the scatterer.145

Next, we examine the algorithmic and computational considerations of the proposed solution methodology

and report on its performance when applied to retrieving the parameters of two two-dimensional elastic

objects: a non convex octagon made of steel and a mockup submarine made of aluminium. Note that

for simplicity purpose, the method is presented in the case where the material parameters are assumed

to be constant. The proposed approach can be extended at the formulation level to the case where these150

parameters depend on the spatial variable x since the characterization of the Fréchet derivatives is possible

[50]. However, the numerical aspect is certainly much more challenging. The main challenge lies in finding

the appropriate values of the regularization parameters, a critical aspect of the method for convergence and

accuracy.

2.1. The Regularized Newton Method155

As stated in the Introduction, regularized iterative methods have been among the primary candidates

since the mid-80s for solving both two -and three- dimensional scattering problems (see, e.g., [9, 21, 22, 23,

24, 25, 26, 27, 28]). The Newton iterative aspect of these methods addresses effectively the nonlinearity of the

IOPs whereas the regularization component is incorporated to restore the stability, as defined by Hadamard

in [2]. In what follows, we recall the main features of the regularized Newton method that we employ in the160

context of the proposed multi-stage solution methodology.

2.1.1. The parametrization

We assume that the sought-after fluid-structure interface Γ can be parametrized as follows:

Γ = Γ(s) ; s = [s1, ..., sNs ]
T ∈ RNs ,
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where Ns denotes the total number of shape parameters sj . The choice of the parameters depends on the a

priori knowledge on the shape of the scatterer [9, 1]. We set

q =
[
sT , λ, µ, ρs,xc

T
]T ∈ RNq ,

where xc = (xc, yc)
T

, the origin of the scatterer, represents the location of the sought-after scatterer. Nq is

the total number of unknown parameters of IOP (4). Hence, Nq = Ns + 5.

Since the far-field pattern p∞ of the scattered pressure field p is measured at a finite number of points

x̂j ∈ S1, denoted by Nx̂, we project IOP (4) onto a finite dimensional space of L2(S1), which is the natural

choice for the measurements’ space, and transform it onto the following algebraic problem: Find q ∈ RNq such that

F (q) (x̂j) = p̃∞(x̂j); j = 1, ..., Nx̂.
(5)

Observe that the resulting inverse problem given by (5) is a discrete formulation of IOP (4). It is a

nonlinear algebraic system with Nx̂ equations and Nq unknowns; Nx̂ being larger than Nq when recon-

structing with full aperture measurements. The finite-dimensional inverse problem given by (5) is a discrete

formulation of IOP(4). It is a nonlinear algebraic system with Nx̂ equations and Np unknowns. Note that

this system can also be formulated as an (unconstrained) optimization problem, and that its solution p can

also be defined by

q = arg min
p∈RNq

∥∥∥∥∥∥∥∥∥
[F (Γ(p))](x̂1)− p̃∞(x̂1)

...

[F (Γ(p))](x̂Nx̂
)− p̃∞(x̂Nx̂

)

∥∥∥∥∥∥∥∥∥
2

, (6)

where arg is used to denote that q is the minimizer of the considered vector function over RNq
165

2.1.2. The regularized Newton equation using full FFP measurements

The solution of the nonlinear inverse problem IOP (5) by the Newton method incurs, at each Newton

iteration n, the solution of the following linear algebraic system:

JF

(
q(n)

)
δq(n) = p̃∞ − p(n)

∞ , (7)

where

• JF
(
q(n)

)
is the Nx̂ ×Nq Jacobian matrix of the operator F .

• p̃∞ is the FFP measurements vector, that is,

p̃∞ = [p̃∞(x̂1), ..., p̃∞(x̂Nx̂)]
T
.

• p(n)
∞ is the FFP computed vector at iteration n, that is,

p(n)
∞ =

[
p(n)
∞ (x̂1), ..., p(n)

∞ (x̂Nx̂)
]T
.
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Once the vector δq(n) ∈ RNq is calculated, the value of the sought-after parameter vector is then updated

as follows:

q(n+1) = q(n) + δq(n). (8)

Moreover, since in practice the number of observation points Nx̂ is greater than the number of the

parameters Nq, the linear system (7) is overdetermined. Therefore, it is solved in the least-squares sense.

Hence, the linear system given by (7) is replaced by the following corresponding normal equations:

J∗F

(
q(n)

)
JF

(
q(n)

)
δq(n) = J∗F

(
q(n)

)(
p̃∞ − p∞(n)

)
. (9)

Due to the ill-posedness nature of IOP (4), the discrete linear system (9) is severely ill-conditioned. This170

means that small perturbations in the data may lead to large changes in the solution. For this reason, a

regularization procedure must be incorporated into (9) to address the lack of stability [54, 55]. We propose

a Tikhonov-based strategy to restore the stability to the linear system (9) [56, 57]. This consists in replacing

(9) by the following regularized system:

(
J∗F

(
q(n)

)
JF

(
q(n)

)
+ R(n)

)
δq(n) = J∗F

(
q(n)

)(
p̃∞ − p∞(n)

)
, (10)

where R(n) is a Nq×Nq diagonal and positive definite matrix, called the regularization matrix. The selection175

of the diagonal entries of R(n) is discussed in Section 3.3. Note that (10) is used in Stage II of the proposed

algorithm to retrieve the location of the scatterer. Therefore, the unknown parameters vector q is in fact a

vector in R2 whose entries are the coordinates of the scatterer’s location, i.e., q = qII = [x1, x2]T .

2.1.3. The regularized Newton equation using phaseless FFP measurements

It is well-known that in practice the FFP intensity measurements are obtained with higher accuracy level

than the corresponding phase measurements. In addition, accurate data are very important to ill-posed

problems. Note that it is possible to reconstruct both the shape and the material parameters using the

full FFP measurements, as reported in [30]. Therefore, we propose to use these reduced FFP data when

retrieving the parameters s, λ, µ, and ρs. Note that the intensity of the FFP is defined here as the square of

the amplitude of the FFP:

U
(
q(n)

)
(x̂j) = F

(
q(n)

)
(x̂j)F

(
q(n)

)
(x̂j) =| p∞(n)(x̂j) |2; j = 1, ..., Nx̂.

Consequently, the computation of the vector δq(n) needed in (8) is obtained by solving the following regu-180

larized least-squares system:

(
J∗U

(
q(n)

)
JU

(
q(n)

)
+ R(n)

)
δq(n) = J∗U

(
q(n)

)(
Ũ − U

(
q(n)

))
, (11)

where JU
(
q(n)
)

is the Jacobian matrix corresponding to the intensity operator U
(
q(n)
)
. It is given by

JU

(
q(n)

)
= 2Re

[
F (q(n))

T
JF (q(n))

]
, (12)

9



where Re designates the real part of a complex valued quantity and Ũ denotes the measured intensity vector.

It is defined by

Ũ =
[
| p̃∞(x̂1) |2, ..., | p̃∞(x̂Nx̂) |2

]T
.

Furthermore, the vector U
(
q(n)

)
is the computed intensity vector at iteration n. It is given by

U
(
q(n)

)
=
[
U
(
q(n)

)
(x̂1), ..., U

(
q(n)

)
(x̂Nx̂)

]T
.

We must point out that, in general, it is not possible to retrieve the location of the sought-after scatterer

given by xc from the knowledge of its corresponding FFP intensity. This is due to the fact that the FFP

intensity operator is invariant under translations of the scatterer Ωs (see, e.g., [1, 53, 36] or Appendix D,

pp. 207–208 in [50]). For this reason, the linear system (8) and (11) will only be employed to recover185

the shape and the material parameters of Ωs. Therefore, the unknown parameters vector q used in (11)

is in fact a vector in RNx̂+3 whose entries are the shape parameters and the material parameters, i.e.,

q = qI = [s, λ, µ, ρs]
T .

2.2. The Multi-Stage Solution Procedure

The proposed solution method is a multi-stage procedure in which the regularized Newton algorithm190

given by (8)-(10) or (8)-(11) is its corner stone. The proposed method recognizes that the sought-after

parameters have different influence on the scattering observability and can be described as follows:

Stage 0. We initiate the algorithm by selecting an arbitrary value of the initial vector parameter q(0).

Stage I. This stage is devoted to the simultaneous recovery of the shape and material parameters q = qI =

[s, λ, µ, ρs]
T . This is accomplished by iterating the regularized Newton system (11) and (8).195

Stage II. This stage is dedicated to the determination of the origin q = qII = x1, x2]T of the elastic scatterer

computed in Stage I. This goal is achieved by iterating the regularized Newton system (10) and

(8).

3. The Computational Requirements

We describe in this section the three critical computational requirements of the algorithm: the evaluation200

of the Jacobians, the solution of the forward problem, and the selection of the regularization matrix entries.

3.1. Effective Evaluation of the Jacobians

As indicated in (10) and (11), a key step for employing the proposed multi-stage strategy is the computa-

tion, at each Newton iteration n, of the Nx̂ ×Nq entries of the Jacobian matrix JF (q(n)). Such calculations

must be performed efficiently and with a high accuracy level to ensure stability, fast convergence, and cost205

effectiveness of the proposed computational procedure. To this end, we exploit the mathematical results
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pertaining to the dependence of the operator F with respect to the domain [58, 48] and to the material

parameters [50, 47]. The results established in [58] state that the operator F is continuously differentiable

with respect to the domain Ωs. This result has been established assuming the domain Ωs to be Lipschitz

continuous. Moreover, the result reported in [48] provides a characterization of the derivative of F with210

respect to the boundary of Ωs, that is of practical computational interest. The proof of the result assumes

Ωs to be a Lipschitz continuous polygonal domain. Furthermore, the results established in [50, 47] prove that

F is also continuous differentiable with respect to the material parameters and provide a characterization

of its corresponding derivatives. More specifically, let p
′(n)
l (resp. u

′(n)
l ) be the derivative of the pressure

field p (resp. displacement field u) in the direction of a considered parameter ql; l = 1, ..., Nq at iteration n,215

i.e., corresponding to the configuration Ωs(q(n)). Then, the pair (p
′(n)
l , u

′(n)
l ) is the solution of the following

elasto-acoustic scattering-type problem:

(BV P )



∇ · σ(u
′(n)
l ) + ω2ρsu

′(n)
l = f

(n)
1 , in Ωs(n), (a)

∆p
′(n)
l + k2p

′(n)
l = f

(n)
2 , in Ω

f(n)
b , (b)

σ(u
′(n)
l ) · ν + p

′(n)
l ν = g

(n)
1 , on Γ(n), (c)

ω2ρfu
′(n)
l · ν − ∂p

′(n)
l

∂ν = g
(n)
2 , on Γ(n), (d)

lim
r→+∞

√
r

(
∂p

′(n)
l

∂r − ikp
′(n)
l

)
= 0, (e)

(13)

where f
(n)
1 , f

(n)
2 , g

(n)
1 and g

(n)
2 are functions whose expressions depend on the nature of the parameter ql.

More specifically:

• If ql is a shape or a position parameter, then f
(n)
1 = f

(n)
2 = 0,

g
(n)
1 = −htj∇σ(u(n))ν −∇(p(n)T · h(n)

j ν + σ(u(n))[h′j ]
tν + (p(n)T [h′j ]

tν,

and

g
(n)
2 = −(ω2ρf∇u(n) −∇(∇(p(n)T ))hj · ν + (ω2ρfu

(n) −∇(p(n)T ) · [h′j ]tν,

where

h
(n)
l =

∂Γ

∂ql
(q(n)).

• If ql is the Lamé coefficient λ, then f
(n)
2 = g

(n)
2 = 0 and we have

f
(n)
1 = −∇ ·

(
∇ · u(n)I

)
and g

(n)
1 = −

(
∇ · u(n)I

)
· ν.
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• If ql is the Lamé coefficient µ, then f
(n)
2 = g

(n)
2 = 0 and we have

f
(n)
1 = −2∇ · ε(u(n)) and g

(n)
1 = −2 ε(u(n)) · ν.

• If ql is the density coefficient ρ, then f
(n)
2 = 0; g

(n)
1 = g

(n)
2 = 0 and we have

f
(n)
1 = −ω2u(n).

Once the derivatives p
′(n)
l and u

′(n)
l are evaluated, the “far-field pattern” p

′(n)
l,∞ , at iteration n, is then

post-processed using the integral representation given by (2) with p
′(n)
l and Γ(n). Consequently, we deduce

the entries of the Jacobian matrix JF (q(n)) as follows:

JF (q(n))lj = p
′(n)
l,∞(x̂j); j = 1, ..., Nx̂; l = 1, ..., Nq.

Hence, it follows that, at each regularized Newton iteration n, the Jacobian matrix JF (q(n)) can be220

computed by solving Nq direct elasto-acoustic scattering-type problems that differ only by additional terms

in the right-hand sides of transmission conditions and/or in the wave equations. This means that, at the

algebraic level (that results from any finite element-type discretization [59]), the matrix entries of JF (q(n))

are obtained by solving a single linear system with multiple right-hand sides.

Remark 1. We must point out that employing adjoint-based formulations could be an attractive al-225

ternative for solving inverse obstacle elasto-acoustic problems. One of the main advantages of this class

of methods is that the derivatives are expressed for all perturbations, which makes this class of methods

independent of the number of the shape parameters. In addition, these methods require solving one forward

problem and its corresponding adjoint problem. However, since the resulting linear system corresponding to

the direct problem is symmetric but not Hermitian, its factorization cannot be reusable to solve the adjoint230

problem. Hence, the computational cost associated with the assembly and the factorization of two linear

systems could be superior to the one required for the solution of one linear system with multiple right-hand

sides.

3.2. Solving Efficiently the Forward Problem

At each iteration n, the regularized Newton system (see (10) and (11)) calls for the solution of the235

elasto-acoustic scattering problem BVP(1) and BVP(13). Although these problems are linear in nature,

their numerical solutions are notoriously difficult due mainly to the following two reasons: (a) they are set in

an unbounded (infinite) domain and (b) the scattered field is highly oscillatory (for high frequency regime).

To address the unboundness aspect, we propose to reformulate BVPs (1) and (13) in a bounded domain

ΩfΣ, by surrounding the scatterer Ωs with an artificial boundary Σ (see Fig. 1). The Sommerfeld condition

(see (e) of BVPs (1) and (13)) is then replaced by the following exterior boundary condition of first order,

in the sense of the pseudo-differential framework adopted in [60]:

∂p

∂ν
= ikp− κ

2
p, on Σ, (14)
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Ωs

Ωf

Γ

pinc

u

p

Σ

Figure 1: Schematic description of the problem statement in a finite domain.

where κ denotes the curvature of Σ. Since we have chosen Σ to be a circle of radius R, then κ = 1
R . We have

chosen this Robin-type boundary condition for mainly the following two considerations: (a) its computational240

simplicity and (b) its performance efficiency. Indeed, the approximation of the boundary condition (14) by

a finite element method introduces only additional mass-like matrices defined on the exterior boundary Σ.

Building these matrices is straightforward. Moreover, when compared to a second-order absorbing boundary

condition [61] or to a perfectly matched layer (PML) condition [62], it has been reported in [63] that the first-

order absorbing boundary condition (14) exhibits a comparable accuracy level, if not better, when employed245

in the low- and mid- frequency regime, i.e., the frequency band considered in this paper. Needless to say

that one may use higher order absorbing boundary condition when performing these calculations in high

frequency regime.

Once the direct scattering problems BVP (1) and BVP (13) are formulated in a bounded domain ΩfΣ,

we solve them numerically using the interior penalty discontinuous Galerkin (IPDG) method introduced in250

[64]. The proposed IPDG method possesses two distinctive features. First, it employs high-order polynomial

functions to ensure an accurate approximation of highly oscillating waves. Second, it is equipped with curved

boundary edges to provide an accurate representation of the fluid-structure interface Γ. The importance of

an accurate representation of Γ has been demonstrated by the numerical results reported in [64]. These

results indicate that (a) there is an improvement on the accuracy level by -at least- two orders of magnitude255

and (b) unlike when approximating Γ by a ”broken” line, there are no more spurious internal resonances in

the fluid region.

The IPDG formulation can be expressed, at the algebraic level, as follows [64]: Af + C B

B∗ As

 P

U

 =

 F1

F2

 , (15)

where Af and As are symmetric matrices given by:

Af =
1

ω2
(Kf − k2Mf − Jf + Sf ),
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and

As = Ks − ω2ρsM
s − Js + Ss,

where

• Kf (resp. Ks) is the stiffness matrix associated to the pressure (resp. the displacement) field.260

• Mf (resp. Ms) is a block diagonal mass matrix associated to the pressure (resp. the displacement) field.

• Jf (resp. Js) is a matrix that contains the jump terms. The entries of this matrix are defined over the

interior edges in the fluid (resp. in the solid).

• Sf (resp. Ss) is a block-diagonal mass-like matrix defined over the interior edges in the fluid (resp. the

solid) resulting from the penalty term.265

The matrix C is the complex-valued damping matrix. It is a mass-like matrix whose entries are all zeros

except for the elements located at the exterior boundary Σ. The matrix Af + C is symmetric but non-

hermitian, and thus not positive-definite. Note that the interior penalty term compensates the weak ellipticity

of the equation operator. Hence, As is positive-definite up to the Jones frequencies [49, 45]. The matrix B is

a mass-like boundary matrix whose entries are defined on the interface edges only, whereas F1 and F2 are the270

source vectors. The vector P (resp. U) is the fluid pressure (resp. structural displacement) representation

in the finite element basis.

The linear system given by (15) is thus composed of sparse matrices whose symmetry property allows

for an optimized storage. This system is solved with the LU factorization procedure developed for sparse

systems and incorporated in the open-source program suite MUMPS [65, 66]. Note that, in the low- and mid-275

frequency regimes, the sparse implementation allows for running the numerical experiments on a personal

computer.

Last, as stated in Section 3.1, the Fréchet derivative of the elasto-acoustic scattered field with respect

to the parameter qj can be evaluated at each iteration by solving the same linear system (15), but with

different right-hand sides.280

3.3. Computation of the regularization matrix R(n)

It is well-known that the convergence of any regularized iterative algorithm highly depends on the choice of

the regularization procedure. For this reason, various strategies have been developed for selecting ”optimal”

regularization values [67, 68, 69, 70]. However, all these strategies have been designed based on theoretical

considerations that unfortunately are limited to linear problems. Given that, we propose to employ a trial285

and error strategy for selecting, at each Newton iteration, the diagonal entries of the regularization matrix

R(n). Such a choice is a balance act between the stability of the algorithm and its accuracy. Note that the

proposed ”brute force” approach recognizes the different influences of the sought-after parameters on the

scattering observability. This is why the choice of the entries of R(n) depends on the algorithm stage.
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In what follows, we provide a succinct description on how to select the regularization matrix R(n) in each290

stage of the proposed iterative algorithm.

3.3.1. The choice of R(n) in Stage I

We first recall that Stage I is dedicated to the simultaneous search of the shape parameter vector s ∈ RNs

and the material parameter triplet (λ, µ, ρs) ∈ R3. In this case, the regularization matrix R(n) is a diagonal

matrix whose Ns + 3 diagonal entries R
(n)
ll are given by295

R
(n)
ll =


α

(n)
s ; 1 ≤ l ≤ Ns,

α
(n)
p ; Ns + 1 ≤ l ≤ Ns + 2,

α
(n)
ρs ; l = Ns + 3,

where the regularization parameters α
(n)
s , α

(n)
p and α

(n)
ρs are positive numbers.

At each iteration n, the ”optimal” value of the triplet (α
(n)
s , α

(n)
p , α

(n)
ρs ) is obtained by sweeping each of the

three regularization parameters over a large interval of positive numbers and evaluating the corresponding

residuals, i.e., the relative errors, in the euclidean norm in RNx̂ , between the measured FFP intensity vector Ũ

and the computed one U
(
q(n)

)
, and then selecting the value of the triplet that leads to the minimum residual300

(up to the noise level in the data), i.e., the convergence of the algorithm. Note that we also monitor, at the

same time, the relative errors between two successive solutions q(n) and q(n+1) to determine whether or not

the algorithm is stagnating, i.e., the algorithm is ”trapped” at local minimum. Note that stagnation occurs

when the successive relative difference on the computed parameters is lower than a prescribed tolerance and

in the same time the relative residual values are still above the prescribed accuracy level dictated by the305

noise level in the measurements. In all the numerical experiments reported in Section 5, we have set this

tolerance to be 0.1. Furthermore, we must point out that the proposed brute force approach for selecting, at

each iteration, the ”optimal” value of the regularization triplet is actually not a systematic three dimensional

sweeping procedure that leads to a prohibitive computational cost. The proposed strategy consists in tracking

the ”optimal” value along a one-dimensional curve. Indeed, after an appropriate initialization, we proceed310

in three steps. In each step, we vary the values of one regularization parameter while the values of the two

others remain ”frozen”. More specifically, we proceed as follows:

• Initialization: selecting an initial guess. All three regularization parameters are chosen to be two

order of magnitude greater than the largest diagonal entries of the normal system in (11), i.e., we set:

α(0)
s = α(0)

p = α(0)
ρs = 102 max

1≤l≤Ns+3

(
J∗U

(
q(0)

)
JU

(
q(0)

))
ll
.

• Step 1: Varying α
(n)
s only. We start running the algorithm using the regularization matrix R(0). At

each iteration, we evaluate the relative residual and the successive relative error. If stagnation occurs

and/or the relative residual increases, then the value of α
(n)
s is reduced while the values of the two others315

remain unchanged, i.e., α
(n)
p = α

(0)
p and α

(n)
ρs = α

(0)
ρs .
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A typical reduction factor of α
(n)
s employed in the experiments reported in Section 5 is 1/10. We continue

iterating the algorithm and decreasing α
(n)
s until either the corresponding FFP intensity residual reaches

the noise level or stagnation occurs. At stagnation, we go to Step 2.

We must point out that we have observed, as anticipated, that only the sequence of the shape parameter320

vector s(n) tends to converge, in this step, to the sought-after parameter s.

• Step 2: Varying α
(n)
p only. This step is similar to Step 1. The only difference is that here the value of

α
(n)
p varies whereas α

(n)
s remains frozen. Indeed, in this step, the value of α

(n)
ρs is still the initial value, i.e.,

α
(n)
ρs = α

(0)
ρs and the value of α

(n)
s is set to be the last selected value in Step 1. We iterate the algorithm

and decrease the value of α
(n)
p at each stagnation or oscillation of the relative residual. We continue until325

the FFP residuals reach the noise level or the algorithm stagnates. If stagnation occurs, we go to Step 3.

Similarly to Step 1, we have observed that at the end of this step, the sequence of material parameters

(λ(n), µ(n)) tends to converge to the target parameter values (λ, µ).

• Step 3: Varying α
(n)
ρs only. We repeat exactly the same process described in Step 1 and Step 2. The

only difference is that in this step, we decrease the value of α
(n)
ρs while setting the value of α

(n)
s (resp.330

α
(n)
p ) to be the last value selected in Step 1 (resp. Step 2). Note that at the end of Step 3, the density

sequence ρ
(n)
s tends to converge to the target value ρs.

We must point out that in the event that the relative residual value does not reach the noise level, we

repeat the full process starting with an initial guess for each parameter being the latest value selected at

each corresponding step and using FFP measurements corresponding to a higher wavenumber k.335

Remark 2. The main motivation for selecting a unique regularization parameter for the Lamé coefficients

is to use the smallest possible number of regularization parameters for two practical reasons. First, we

observed that when solving this inverse problem and determining the Lamé coefficients only, that is, we

assume that the shape and the location of the scatterer along with its density are known, there was not need

to use more than one regularization parameter for successfully recovering these parameters [50]. Second,340

in the absence of theoretical results on the choice of the regularization parameters optimal values, their

determination is accomplished via a trial and error strategy. Hence, involving a number of parameters larger

than three will quickly make the process of selecting these values extremely challenging (if not impossible!)

and most likely computationally prohibitive.

3.3.2. The Choice of R(n) in Stage II345

We recall that Stage II is dedicated to the determination of the origin of the scatterer xc = (xc, yc) using

the regularized Newton equation given by (8) and (10). In this case, the regularization matrix R(n) is a

diagonal matrix given by

R(n) = α(n)
c I,
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where I is the 2×2 identity matrix and α
(n)
c is a positive number representing the regularization parameter.

Due to the small size of the linear system (10), the trial and error strategy for finding the optimal value of

α
(n)
c is simpler and “cheaper” than in Stage I.

4. Algorithm Summary and Computational Complexity

The description of the proposed solution methodology is summarized in this section along with the350

required calculations that affect the complexity and the computational cost for its implementation.

4.1. Algorithm Summary

The proposed multi-stage solution methodology for solving the inverse problem IOP(4) can be summa-

rized as follows.

Stage 0: Initialization. The following initial data are required:355

• A measured set of FFP, for one or several frequencies, at some observation points x̂1, ..., x̂Nx̂ , i.e., the

FFP vector

p̃∞ = [p̃∞(x̂1), ..., p̃∞(x̂Nx̂)]
T ∈ CNx̂ ,

and its corresponding intensity

Ũ =
[
| p̃∞(x̂1) |2, ..., | p̃∞(x̂Nx̂) |2

]T ∈ RNx̂ .

The tilde indicates that these measurements are tainted with a known noise level.

• An initial parameter vector q(0) =
[
s(0), λ(0), µ(0), ρ

(0)
s

]T
∈ RNs+3. The coordinates of the vector q(0)

are selected arbitrarily, i.e., q(0) is a ”blind” guess. Note that the initial origin xc
(0) of the scatterer is

typically set to be the origin of the plane, that is, xc
(0) = (0, 0)T .

We then construct the initial domain Ω
(0)
s and solve BVP(1) to deduce the FFP p

(0)
∞ and its corresponding360

intensity U (0).

Stage I: Retrieving simultaneously the shape and material parameters q = [s, λ, µ, ρs]
T

. For

a given frequency, this stage requires accomplishing successively the following tasks:

• The construction, at each iteration n, of the Jacobian matrix JU (q(n)) given by (12).

• The application of the regularized Newton algorithm given by (8) and (11) until either the FFP residual365

reaches the noise level or a stagnation occurs.

Note that the regularization matrix R(n) is selected according to the guidelines provided in Section 3.3.1.

Moreover, at each iteration n, the intensity field U(q(n)) must be computed to monitor the algorithm

convergence. If stagnation occurs, we switch to a higher wavenumber k and repeat the procedure described

in Stage 1 with an initial guess q(0) being the computed value q(n) at the stagnated iteration.370
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Stage II: Recovering the origin parameters, i.e., q = [xc, yc]
T

. The initial guess at this stage

is q(0) = [0, 0]T and the initial shape and material parameters correspond to the computed parameters[
s(n), λ(n), µ(n), ρ

(n)
s

]T
at convergence in Stage 1. This stage requires accomplishing successively the following

two tasks:

• The construction, at each iteration n, of the Jacobian matrix JF (q(n)) defined in Section 2.1.2.375

• The application of the regularized Newton algorithm given by (8) and (10) until either the FFP residual

attains the noise level or a stagnation occurs. The regularization matrix R(n) is selected according to

the procedure described in Section 3.3.2. Note that we switch to a higher frequency if the algorithm

stagnates.

4.2. Computational Complexity380

The proposed multi-stage procedure for solving IOP (4) mainly requires, for a given frequency, the

following calculations.

Stage 0. Only one sparse linear system that results from the IPDG-discretization of BVP(6) (see section

3.2) needs to be solved. This is accomplished using an LU factorization, as indicated in Section 3.2.

Stage I. Two linear systems are solved. These are:385

− The sparse linear system given by (15) with Ns + 3 different right-hand sides in order to determine the

entries of the Jacobian matrix.

− The linear system given by (11) to determine the update δq(n). This is accomplished, for each selected

regularization matrix (see Section 3.3.1), using LU-factorization.

Stage II. Two linear systems need also to be solved. These are:390

− The sparse linear system (15) with two different right-hand sides in order to determine the entries of the

Jacobian matrix.

− A 2×2 linear system given by (10) to determine the update δq(n). This is accomplished for each selected

regularized parameter αc (see Section 3.3.2), using an analytical inversion.

5. Performance Assessment: Numerical Investigation395

We investigate the convergence and the accuracy of the proposed multi-stage solution methodology, as

well as its robustness to the noise level in the measurements. To this end, we consider synthetic FFP

measurements corresponding to a single incident direction ~d = (1, 0) but for one or multiple frequencies. The

measured data are obtained by sampling the full aperture of the FFP at 360 points. They are contaminated

with white noise of levels ranging from 0% to 15% to mimic possible errors in the measurements. Note400

that the noise level is measured in the sense of the Euclidean norm. In what follows, we report on the
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determination of the values of the parameters characterizing two non-convex elastic scatterers: (a) a non-

convex octagon and (b) a mockup-submarine. Note that the first scatterer is made of steel, whereas the

second one is made of aluminum.

We first analyze the performance of the algorithm when the synthetic measurements are noise-free. We405

then investigate its sensitivity to the noise level. Last, we present results to illustrate the importance of

using multiple frequencies to improve both the convergence and the accuracy of the inversion procedure,

particularly when retrieving the material parameters. More numerical identification results are reported

in [71], which can be found in the Hal repository, a multi-disciplinary open-access archive for the deposit

and dissemination of scientific research documents, whether they are published or not.410

We must point out that this numerical investigation considers three scenarios of practical interest. First,

we focus on parameter identification problems or detailed design problems where the shape of the elastic

scatterer is known in some general sense but its size and the size of its features are unknown. Then, we con-

sider a blind problem situation where the target obstacle cannot be described by the shape parametrization

adopted for representing the trial solutions. Last, we consider an other category of blind problems where415

little if any specific information about the shape of the target and therefore for which as general as possible

a parametrization is warranted.

5.1. Performance analysis in the absence of noise

We analyze in this section the performance efficiency of the proposed computational procedure when

using noise-free synthetic FFP measurements. We will conduct this investigation by focusing on parameter420

identification problems or detailed design problems where the shape of the elastic scatterer is known in some

general sense. In this particualr scenario, it is known that the target obstacle is an octagon or a mockup

submarine but its size and the size of its features are unknown.

5.1.1. Case of an octogonal-shaped domain

In this experiment, we determine the characteristic parameter values of a non-convex octagon elastic425

scatterer Ωs immersed in water Ωf (see Fig. 2(a)). The sought-after scatterer Ωs is made of steel and its

wet boundary Γ is represented by the following piecewise linear parametrization:

Γ =

{
(xc, yc)

T +

8∑
j=1

(1− t)Xj + tXj+1 ; t ∈ [0, 1]

}
, (16)

where the vertices Xj are given by:

Xj = sj

 cos θj

sin θj

 ; j = 1, ..., 8.

Note that the vertices are uniformly distributed in the polar coordinate angle. The values of the shape

parameters sj together with the center of the scatterer (xc, yc), as well as the material parameters (λ, µ, ρ)

are reported in Fig. 3.430
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(a) Target (b) Initial guess

Figure 2: Octogonal scatterers. Target vs. Initial Guess.
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(a) Material parameter values.
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(b) Shape parameter values.

Figure 3: Characteristic parameter values for octogonal-shaped scatterer experiment. Target vs. Initial Guess.

Since the synthetic FFP measurements cannot be generated analytically, they were computed using the

IPDG solver introduced in [64]. However, in order to avoid the inverse crime [1], we employed a mesh with

a finer resolution than the one used during the inversion process.

To solve the considered thirteen-parameter inverse problem (see Eqs. (8), (10), and (11)), we used as an

initial guess a regular convex octagon elastic scatterer Ω(0) (see Fig. 2(b)) whose characteristic parameter435

values are reported in Fig.3. The results of this inversion experiment are also reported in Figs. 4-7. The

following observations are noteworthy:

• The initial guess for the parameters values has been selected outside the pre-asymptotic convergence

region, ensuring that the algorithm is ”blind” to the sought-after thirteen values of the parameters, as

reported in Table 3. Indeed, the initial relative errors in the shape parameters, Lamé coefficients, the440

density, and the origin of the scatterer, are about 53%, 51%, 62%, and 50%, respectively. These values

lead to a computed initial FFP with a relative residual that exceeds 80% on the intensity and 115% on

the FFP measurements.

• Fig. 4 illustrates the convergence performance of the algorithm. More specifically, the determination of

the shape and material parameters (in Stage I) is completed after 18 iterations. The relative residual on445

the FFP intensity drops from above 80% to below 1%. In Stage II, i.e., the determination of the origin

of the scatterer, the relative residual on the FFP drops from above 115% to below 1% after 13 iterations.
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Figure 4: Convergence history in the case of the octogonal-shape scatterer experiment. f = 55.7kHz and noise free measure-

ments.

• At convergence in Stage I, the algorithm delivers the shape parameters, the Lamé coefficients, and the

density with relative errors of 0.08%, 2% and 0.5%, respectively (see Figs. 5(e)-6(e)). At convergence,

i.e., at the end of Stage II, the location of the scatterer is retrieved with a relative error of about 2% (see450

Fig. 6(g)). Clearly, the proposed algorithm recovers all the parameter values with an impressive accuracy

level.

• Stagnation phases occurred during the iterative process (see Figs. 5(a)-(e) and Figs. 6(a)-(e)). As stated

earlier, lowering the regularized parameter values each time allows to reduce the FFP residuals to the

tolerance level (below 1%).455

• Note that the condition number of the linear system (11) without no regularization is about 1015, whereas

employing the proposed regularization procedure reduces it by 7 orders of magnitude.

5.1.2. Case of a mockup submarine

The goal here is to retrieve the characteristic parameter values of a mockup submarine made of aluminum

(see 8(a)). The wet surface Γ of the considered elastic scatterer is represented by

Γ =

{
(xc, yc)

T +

M∑
k=1

r(θ)(cos θ, sin θ)T ; θ ∈ [0, 2π)

}
, (17)

where r represents the polar radius whose expression is given by the following Fourier polynomial of order

M :

r(θ) = s0 +

M∑
k=1

s2k−1 cos kθ + s2k sin kθ ; θ ∈ [0, 2π).

The values of the shape parameters sj together with the center of the scatterer (xc, yc), as well as the material

parameters (λ, µ, ρ) are reported in Fig. 9.460

Similarly to the experiment pertaining to the non-convex octogonal scatterer, we have generated the

synthetic FFP measurements points at frequency f = 55.7kHz using the IPDG solver introduced in [64].

Here again, in order to avoid the inverse crime [1], we employed a mesh finer than the one used during the

inversion process.
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(b) Stage I: Iteration 6.
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(c) Stage I: Iteration 10.
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(d) Stage I: Iteration 16.
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(e) Stage I: Iteration 18.

Figure 5: Material parameters for the octogonal-shaped scatterer experiment. Target vs. Computed Values at the occurred

stagnation phases in Stage I. f = 55.7kHz and noise free measurements.
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•
•

(a) Stage I: Iteration 0.

•
•

(b) Stage I: Iteration 6.

•
•

(c) Stage I: Iteration 10.

•
•

(d) Stage I: Iteration 16.

•
•

(e) Stage I: Iteration 18.

••

(f) Stage II: Iteration 5.

••

(g) Stage II: Iteration 13.

Figure 6: Shape and location of the octogonal-shaped scatterer experiment. Target vs. Computed Values at the occurred

stagnations. f = 55.7kHz and noise free measurements.
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Figure 7: Characteristic shape parameter values of the octogonal-shaped scatterer experiment. Target vs. Computed Values at

convergence. f = 55.7kHz and noise free measurements.

(a) Target scatterer (b) Initial scatterer

Figure 8: Shape configurations for the mockup submarine experiments: Target vs. Initial Guess.
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(a) Material parameter values.
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(b) Shape parameter values.

Figure 9: Characteristic parameter values for the mockup submarine scatterer experiment. Target vs. Initial Guess.

To solve the resulting 14-parameter inverse problem (see Eqs. (8), (10), and (11)), we applied the proposed465

multi-stage algorithm starting from an initial configuration Ω(0) set to be a disk-shaped domain (see Fig.

8(b)). The characteristic parameter values of Ω(0) are reported in Fig. 9 and the results of this numerical

experiment are reported in Figs. 10-12. The following observations are noteworthy:

• The proposed algorithm is initiated outside the pre-asymptotic convergence region. Indeed, the considered

initial configuration, a disk-shaped domain, differs significantly from the target configuration (see Figs. 9,470

12(a)). The initial relative errors on the shape parameters, the origin parameters, Lamé coefficients, and

the density are about 41%, 100%, 55%, and 85%, respectively. The initial relative residual on the FFP

is of about 63% on the phaseless FFP measurements and of about 120% on the full FFP measurements.

• The convergence of the algorithm in this case is clearly demonstrated in Fig. 10. More specifically, Stage

I is completed after 24 iterations. Indeed, the relative residual on the FFP intensity drops from 63% to475

0.17%. Furthermore, the algorithm converges in Stage II after only 10 iterations. The relative residual

on the full FFP measurements drops from 152% to 0.57%.

• Similarly to the previous numerical experiment, the algorithm recovers all the sought-after parameters of

the mock-up submarine with an impressive accuracy level. Indeed, the relative errors on the computed

shape parameters, Lamé coefficients, and the density are 0.43%, 1%, and 2.7%, respectively (see Fig. 11).480

The center (xc, yc) of submarine is recovered with a relative error of about 0.1% (see Fig. 12).

• The stagnation phenomenon also occurs here at several instances during the iteration process (see Figs.

11-12). This phenomenon is treated each time it happened by lowering the value of the regularization

parameter.

• Similarly to the octagon experiment, the proposed multi-stage strategy algorithm is able to successfully485

recover all the parameters of the mockup submarine from the knowledge of the FFP measurements

corresponding to only a single incident plane wave (i.e., one incident direction and one frequency). This

success is most likely due to the fact that the employed data are measured over the full aperture.
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Figure 10: Convergence history for the mockup submarine scatterer experiment. f = 55.7kHz and noise free measurements.

• Note that the condition number of the linear system (11) without no regularization attains exploding

values of orders 1028, whereas employing the proposed regularization procedure reduces it to about 108.490

5.2. Performance analysis in the presence of noise. Case of an octogonal-shaped scatterer

In what follows, we investigate the robustness and the accuracy of the proposed multi-stage solution

methodology to the noise effect. We continue focusing on the parameter identification problems scenario. Due

to space limitations, we present illustrative numerical results corresponding to only the octagon configuration

given by Figs. 2 and 3. Results for other objects can be found in [71],495

We analyze here the noise effect on the determination of the characteristic parameter values corresponding

to the non convex elastic scatterer described in Fig. 2(a). To this end, we consider the same numerical

experiment set up presented in section 5.1.1. The only difference here is that we add to the measured FFP

white noise of three different levels: 5%, 10%, and 15%. The results reported in Table 1 clearly indicate that

the proposed computational strategy exhibits high performance efficiency. Indeed, we observe that:500

• For all three noise levels, the proposed computational methodology is initiated outside the pre-asymptotic

convergence region. Indeed, the initial residuals on the phaseless FFP (resp. the full FFP) measurements,

for all noise levels, exceed 80% (resp. 120%).

• For all noise levels, the sought-after parameters of the scatterer are retrieved with a high accuracy level,

as reported in Table 1.505

5.3. Recovery with multiple-frequency measurements. Case of a mockup submarine

We present here numerical results demonstrating, as it can be expected, that using FFP measurements

corresponding to more than one frequency significantly improves the performance accuracy of the proposed

algorithm. The improvement in the accuracy is remarkably noticeable when retrieving the material param-

eters with highly noisy data. Here also, we focus on the parameter identification problems scenario. We510

consider the thirteen parameters inverse problem introduced in section 5.1.2. Specifically, the goal is to

recover the parameter’s values of the mockup submarine made of aluminum depicted in Fig. 8(a). These
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(a) Stage I: Iteration 0.
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(b) Stage I: Iteration 3.
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(c) Stage I: Iteration 11.
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(d) Stage I: Iteration 14.
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(e) Stage I: Iteration 20.
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(f) Stage I: Iteration 23.

Figure 11: Material parameters for the mockup submarine scatterer experiment. Target vs. Computed Values at the occurred

stagnation phases in Stage I. f = 55.7kHz and noise free measurements.

Noise level
Relative Residual (%) Relative Error (%)

Intensity Field Shape Lamé Density Location

0% 1.02 1.88 1.02 2.61 0.47 1.53

5% 4.95 5.53 2.05 4.53 0.96 1.75

10% 10.98 12.77 4.64 9.14 11.58 3.87

15% 15.2 15.36 5.86 11.81 18.69 5.01

Table 1: Final relative residual and relative errors for the octogonal-shaped scatterer experiments for various noise levels and

for frequency f = 55.7kHz.

26



(a) Stage I: First stagna-

tion at iteration 3.

(b) Stage I: Second stag-

nation at iteration 11.

(c) Stage I: Third stagna-

tion at iteration 14.

(d) Stage I: Fourth stag-

nation at iteration 20.

(e) Stage I: Fifth stagna-

tion at iteration 23.

(f) Stage II: Convergence

at iteration 10.

Figure 12: Shape and location for the mockup submarine scatterer experiment. Target vs. Computed Values at the occurred

stagnations. f = 55.7kHz and noise free measurements.

values are reported in Fig. 9. We initiate the algorithm from the same circular-shaped domain introduced in

section 5.1.2 (see Fig. 8(b) and Fig. 9). We employed in this numerical experiments two sets of FFP mea-

surements. We first apply the algorithm using FFP data corresponding to an angular frequency ω1 = 0.35,515

i.e., f1 = 55.7kHz, the frequency regime used in section 5.1.2. When Stage II of the algorithm is com-

pleted, i.e., at convergence or stagnation, we re-apply the algorithm starting from the obtained final domain

configuration, but this time using FFP measurements corresponding to a higher frequency regime ω2 = 1

(f2 = 159.15kHz). Note that both sets of FFP measurements are tainted with white noise of level ranging

from 0% to 15%. The results of these numerical experiments are reported in Table 2 and Fig. 13. These520

results suggest the following remarks:

• Similarly to all previous experiments, the algorithm is initiated outside the pre-asymptotic convergence

region. Indeed, the initial configuration, a circular-shaped domain, differs significantly from the target

mockup submarine, as indicated in Fig. 8.

• The accuracy on the shape parameters at convergence is quite satisfactory when employing the first525

frequency f1, as reported in Table 2 and depicted in Fig. 13. On the other hand, the recovery of the

material parameters and location is less accurate but still acceptable, as reported in Table 2. Given the

quality of the reconstruction, one may even consider to stop the experiment at this step.

• Using FFP measurements for higher frequency (f2 = 159.15kHz) and re-initiating the algorithm from
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Frequency Noise
Relative Residual (%) Relative Error (%)

(kHz) level Intensity Field Shape Lamé Density Location

0% 0.17 0.57 0.43 4.96 1.15 0.12

f1 = 55.7 5% 5.12 5.23 1.60 17.55 4.95 0.53

10% 9.30 11.34 3.79 14.19 14.33 2.29

15% 15.29 17.82 2.34 17.15 11.36 4.75

0% 1.42 1.09 0.50 0.90 0.84 0.21

f2 = 159.15 5% 4.05 6.46 0.53 0.89 0.90 0.21

10% 12.76 13.05 3.75 2.52 0.68 1.66

15% 13.01 14.62 2.33 6.74 8.37 0.91

Table 2: Relative Residual and Relative error for the mockup submarine scatterer for various noise levels in the measurements.

Case of a reconstruction with two frequencies: f1 = 55.7kHz and f2 = 159.15kHz.

the computed configuration with the FFP data corresponding to the lower frequency (f1 = 55.7kHz)530

enables to retrieve all the parameters with a quite remarkable accuracy, particularly for highly noisy

measurements. Indeed, the accuracy on the material parameters is improved by a factor two to over

an order of magnitude, depending on the noise level. Moreover, the accuracy level on the origin of the

scatterer is significantly improved (the error is reduced by almost a factor 5 in the case of 15% noise

level), as reported in Table 2 and Fig. 13.535

5.4. Performance analysis in the case of an incomplete parametrization

We consider in this section the situation where the target obstacle cannot be described by the shape

parametrization adopted for representing the trial solutions. Such problems are likely to be encountered

in practical applications. To this end, we consider the octagon configuration given by Figs. 2(a)-3 and we

employ the shape parametrization given by (16) but with only four shape parameters, that is, twice less shape540

parameters than for the identification parameter problem in Section 5.1. Hence, we attempt here to recover

an obstacle that cannot be represented by the chosen parametrization. The selected shape parametrization

contains only quadrilateral-shaped objects. This numerical experiment is of practical interest since for many

realistic applications, one cannot expect to be able to describe the unknown scatterer with a parametrization

chosen a priori. The obtained results depicted in Figs. 14-16 have been obtained with both noise free and545

10% noisy measurements. The following remarks are noteworthy:

• The initial relative errors on the shape, the material parameters, and the location of the scatterer are

about respectively 38%, 62%, and 50% respectively. Hence, the selected initial guess for the parameter

values (See Fig. 15(a) and Fig. 16(a)) have been selected outside the pre-asymptotic convergence region.
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•• ••

(a) Noise level 0%.

•• ••

(b) Noise level 5%.

•• ••

(c) Noise level 10%.

•• ••

(d) Noise level 15%.

Figure 13: Accuracy level on the shape and location parameters’ values for the mockup submarine scatterer experiments.

Sensitivity to the noise level in the measurements. Case of a two frequencies reconstruction: f1 = 55.7kHz (right pictures) and

f2 = 159.15kHz (left pictures).

• Fig. 14 illustrates the convergence performance of the algorithm. More specifically, the determination550

of the shape and material parameters (in Stage I) is completed after 15 iterations with and without

noise. The relative residual on the FFP intensity drops from above 87% to about 9% in the absence

of the noise and to about 14% for 10% noisy measurements. In Stage II, i.e., the determination of the

origin of the scatterer, the relative residual on the FFP drops, after 8 iterations from above 120% to

about 28% in the absence of the noise and to about 29% for the noisy case.555

• Fig. 15(b)-(c) and Fig. 16(b)-(c) show that at convergence in Stage I, the overall silhouette of the

obstacle is well reproduced in spite of the fact that the trial shape parametrization contains only four

vertices of the sought-after octagon. The algorithm is able to deliver the four shape parameters with a

relatively good accuracy. Indeed, the relative error is about 8% without the noise and 7% in the noisy

case. On the other hand, the accuracy level on the Lamé coefficients, and the density is respectively560

31% and 28% without the noise and 28% and 33% with the noise. This is not surprising since the

accuracy of the material parameters is very sensitive to the one the shape of the corresponding elastic

object. Moreover, the location of the scatterer is retrieved in Stage II with a relative error of about

17% for both cases (see Fig. 15(b)-(c)).

5.5. Performance analysis in the case of blind problems565

We consider in this section the situation where little a priori information on the shape of the target object

is available. This problem falls into the category of blind problems where a more generic parametrization is

needed to capture a wider class of shapes. We focus in this section on the octagonal-shaped object introduced

in Section 5.1 and investigate the performance of the proposed method in the case of two parametrizations:
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Figure 14: Convergence history for the octogonal-shape scatterer experiment with an incomplete parametrization (four shape

parameters) and FFP measurements corresponding to f = 55.7kHz.

•
•

(a) Initial Guess vs. Target

••

(b) Computed vs. Target. No noise

••

(c) Computed vs. Target. 10% noise level

Figure 15: Accuracy level on the shape and location parameters’ values for octogonal-shaped scatterer experiments with

incomplete parametrization (four shape parameters). f = 55.7kHz.
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(b) Computed vs. Target. No Noise
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(c) Computed vs. Target. Noise level 10%

Figure 16: Material parameters for the octogonal-shaped scatterer experiment with an incomplete parametrization (four pshape

parameters). f = 55.7kHz.
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the piecewise linear parametrization and the Fourier-type parametrization570

5.5.1. Reconstruction with the piecewise-linear parametrization

We focus on the reconstruction of the shape of the octagon introduced in Section 5.1 and employ the

shape parametrization given by (16) for representing the trial solutions but this time with 16 parameters,

thai is twice more shape parameters than needed. Hence, the only information available is that the sought-

after object is a polygon with at most 16 sides, as illustrated by the choice of the initial guess. We report on575

the reconstruction of the octagon in the case where the FFP measurements are (a) noise free and (b) tainted

with a 10% white noise level. The obtained results are depicted in Figs. 17-19. We observe the following:

• The initial relative error on the shape is about 53% and the corresponding initial relative residual is

about 82% (resp. 86%) for noise free (resp. 10% noisy) measurements. This clearly shows that the

proposed algorithm is starting outside the pre-asymptotic convergence region.580

• The reconstruction of the shape requires using successively three frequencies in the absence of the noise

and two with noisy measurements, as indicated in Figs. 17-19.

• In both cases the algorithm converges. The initial relative residual drops to about .16% (resp. 15%)

in the absence (resp. the presence) of the noise.

• The shape of the octagon is retrieved with a very high accuracy level in both cases. Indeed, the relative585

error at convergence is about .2% (resp. 6.6%) in the absence (resp. the presence) of the noise.
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Figure 17: Convergence history for the octogonal-shape scatterer experiment with 16 parameters and and FFP measurements

corresponding to multiple frequencies. Sensitivity to the noise.

5.5.2. Reconstruction with Fourier-type parametrization

We continue focusing on the reconstruction of the shape of the octagon introduced in Section 5.1 but

this time we employ the Fourier parametrization given by (17) for representing the trial solutions. This is a

situation where we do not know if the target is a polygon or a disk. We report on the reconstruction of the590

octagon in the case where the FFP measurements are (a) noise free and (b) tainted with a 10% white noise

level. The obtained results are depicted in Figs. 20-22. We observe the following:
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••

(a) Initial Guess vs.

Target

••

(b) Computed vs. Target

with f1 = 15.92KHz

••

(c) Computed vs. Target

with f2 = 31.83KHz

••

(d) Computed vs. Target

with f3 = 47.75KHz

Figure 18: Accuracy level on the shape for the octogonal-shape scatterer experiment with 16 parameters. Case of a three-

frequency successive reconstruction with noise free measurements.

••

(a) Initial Guess vs.

Target

••

(b) Computed vs. Target

with f1 = 15.92KHz

••

(c) Computed vs. Target

with f2 = 31.83KHz

Figure 19: Accuracy level on the shape for the octogonal-shape scatterer experiment with 16 parameters. Case of a two-frequency

successive reconstruction with measurements tainted with 10% of white noise.
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• The initial guess is a disk and the corresponding initial relative residual is about 82% (resp. 83%) for

noise free (resp. 10% noisy) measurements. This clearly shows that the proposed algorithm is starting

outside the pre-asymptotic convergence region.595

• The reconstruction of the shape requires using successively two frequencies in the absence of the noise

and only one with noisy measurements, as indicated in Figs. 20-22.

• In both cases the algorithm converges. The initial relative residual drops to about 0.9% (resp. 11%)

in the absence (resp. the presence) of the noise.

• The silhouette of the octagon is very well reproduced in both cases. Indeed, the relative error at600

convergence is about 6.9% (resp. 7.2%) in the absence (resp. the presence) of the noise.
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Figure 20: Convergence history for the octogonal-shape scatterer experiment with Fourier parametrization and FFP measure-

ments corresponding to multiple frequencies. Sensitivity to the noise.

••

(a) Initial Guess vs.

Target

••

(b) Computed vs. Target

with f1 = 15.92KHz

••

(c) Computed vs. Target

with f2 = 31.83KHz

Figure 21: Accuracy level on the shape for the octogonal-shape scatterer experiment with Fourier parametrization. Case of a

two-frequency successive reconstruction with noise free measurements.

6. Conclusions & Remarks

We have designed a solution methodology for retrieving all the parameters characterizing an elastic

scatterer from its corresponding FFP measurements. To the best of our knowledge, this is the first attempt
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••

(a) Initial Guess vs.

Target

••

(b) Computed vs. Target

with f = 15.92KHz

Figure 22: Accuracy level on the shape for the octogonal-shape scatterer experiment with Fourier parametrization. Case of a

mono-frequency reconstruction with FFP measurements tainted with 10% of white noise.

to solve numerically this challenging time-harmonic inverse scattering problem, a relevant problem to various605

real-world applications. The proposed numerical approach is a multi-stage iterative procedure in which a

carefully designed regularized Newton-type algorithm plays a central role. The reported numerical results

clearly demonstrated the effectiveness of the proposed computational strategy for solving this important

class of inverse problems, even when the data are highly noisy.
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thesis, Université de Pau et des Pays de l’Adour (2018).

[51] D. Colton, A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,

Inverse problems 12 (4) (1996) 383.720

[52] R. Kress, W. Rundell, Inverse obstacle scattering with modulus of the far field pattern as data, Inverse

problems in medical imaging and nondestructive testing (1997) 75–92.

[53] O. Ivanyshyn, R. Kress, Inverse scattering for surface impedance from phase-less far field data, Journal

of Computational Physics 230 (9) (2011) 3443–3452.

[54] H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Vol. 375, Springer Science &725

Business Media, 1996.

[55] S. F. Gilyazov, N. Gol’dman, Regularization of ill-posed problems by iteration methods, Vol. 499,

Springer Science & Business Media, 2013.

[56] A. N. Tikhonov, V. Y. Arsenin, Methods for solving ill-posed problems, John Wiley and Sons, Inc, 1977.

[57] A. N. Tikhonov, Regularization of incorrectly posed problems, in: Soviet Mathematics Doklady, Vol. 4,730

1963, pp. 1624–1627.
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