
HAL Id: hal-02960390
https://hal.inria.fr/hal-02960390

Submitted on 9 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint Attention for Automated Video Editing
Hui-Yin Wu, Trevor Santarra, Michael Leece, Rolando Vargas, Arnav Jhala

To cite this version:
Hui-Yin Wu, Trevor Santarra, Michael Leece, Rolando Vargas, Arnav Jhala. Joint Attention for Au-
tomated Video Editing. IMX 2020 - ACM International Conference on Interactive Media Experiences,
Jun 2020, Barcelona, Spain. pp.55-64, �10.1145/3391614.3393656�. �hal-02960390�

https://hal.inria.fr/hal-02960390
https://hal.archives-ouvertes.fr


Joint Attention for Automated Video Editing
Hui-Yin Wu

hui-yin.wu@inria.fr
Université Côte d’Azur, Inria
Sophia-Antipolis, France

Trevor Santarra
trevor@Unity3d.com
Unity Technologies

San Francisco, CA, USA

Michael Leece
michael.o.leece@gmail.com

University of California Santa Cruz
Santa Cruz, CA, USA

Rolando Vargas
rvargas1@ucsc.edu

University of California Santa Cruz
Santa Cruz, CA, USA

Arnav Jhala
ahjhala@ncsu.edu

North Carolina State University
Raleigh, NC, USA

ABSTRACT
Joint attention refers to the shared focal points of attention
for occupants in a space. In this work, we introduce a compu-
tational definition of joint attention for the automated editing
of meetings in multi-camera environments from the AMI
corpus. Using extracted head pose and individual headset
amplitude as features, we developed three editing methods:
(1) a naive audio-based method that selects the camera us-
ing only the headset input, (2) a rule-based edit that selects
cameras at a fixed pacing using pose data, and (3) an editing
algorithm using LSTM (Long-short term memory) learned
joint-attention from both pose and audio data, trained on
expert edits. The methods are evaluated qualitatively against
the human edit, and quantitatively in a user study with 22
participants. Results indicate that LSTM-trained joint atten-
tion produces edits that are comparable to the expert edit,
offering a wider range of camera views than audio, while be-
ing more generalizable as compared to rule-based methods.

CCS CONCEPTS
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cess and methods; User models; • Applied computing →
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1 INTRODUCTION
Joint attention is an element of human communicationwhere
the attention of the group is drawn collectively towards focal
points in an environment through non-verbal processes such
as gaze, voice, and gesture[12]. Studies in film cognition have
observed how continuity and analytical editing imitate “natu-
ral attention” by using gaze and audio to draw the audience’s
attention to elements of setting and story[4][28].

In a collaboration context, we are increasingly moving to-
ward video conferences for meetings. The capacity to make
detailed records of our daily events and the explosive growth
of recorded data calls for smart methods that can understand
context in videos, and automatically process and present data
in a meaningful way, such as for digital archiving, or to sum-
marize content for someone who does not have time to go
through each recording. While intelligent camera switching
technology is available to some extent, it is based primarily
on audio, movement, and other low level features of the video
streams. Existing work shows that LSTMs have been effec-
tive not only in image recognition and NLP tasks, but also for
video summarization tasks [32] due to their ability to model
more long ranged variable dependencies, outside of a single
frame. Using LSTMs for an even more complex task such as
that of video editing would be both exciting and challenging.
Notably, they have been explored for predicting the head
movement of users in 360 degrees VR video streaming [17].
However, automated editing methods powered by machine
learning that can process, analyze, and output visual data at
a higher level of context from multiple perspectives has been
an ongoing challenge that is insufficiently addressed. More-
over, there is a strong lack in methods to evaluate smart con-
ferencing technology, both from the aspect of film-editing,
and user preferences [27]. Developing and understanding
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such tools for communication will allow us to both improve
the real-time experience of remote meeting attendees and
create context aware systems that can efficiently curate large
amounts of audio-visual data in real-time.
In this work, we present joint attention as a metric for

automated video editing in corporate meeting recordings.
We consider that each camera in the meeting room can an-
alyze the head pose of participants occupying that video.
Based on extracted head pose data and audio from individual
headphones, we designed and implemented three automated
editing methods: a naive audio-based edit, a rule-based edit
on our joint attention metric, and an LSTM method that pre-
dicts the joint attention of the meeting at each time point.
These three methods use audio data, pose data, and both
respectively to produce an automated edit of meetings. Head
pose and audio data, and the training of the model are pre-
processed, while the final edit can be done in real time.

This work thus addresses three main challenges:
(1) conceiving a joint attention metric expressed using

extracted head pose in multiple cameras and audio
amplitude from individual headphones

(2) designing and implementing three automated editing
methods: audio-based, rule-based, and LSTM-based
method using audio and pose data to predict joint
attention, trained on human expert edits

(3) evaluating each method qualitatively against the hu-
man edit, and through a user evaluation

In order to be unbiased, we selected an existing corpus
of meeting videos: the AMI corpus [22], established by the
University of Edinburgh, where 100 hours of meetings were
recorded in smart meeting rooms equipped with multiple
cameras, individual headsets, and microphone arrays, along
with slide data, and post-meeting annotations.

2 RELATEDWORK
Here we provide a review of existing work surrounding
methodologies that can help address automated editing chal-
lenges, including attention-based interactive systems, video
summarization, and smart cameras in virtual environments.

Interactive systems
Sound, motion, and object detection are common metrics
that are combined with either rule-based models or learned
networks such as Bayesian networks and Hidden Markov
Models to perform camera selection for editing meetings or
lecture videos in multi-camera environments [1, 3, 8, 20, 25].
Arev et al. [2] was the first to propose using joint attention
in social cameras (i.e. cameras carried around by people
participating in a group activity). Their system reconstructs
the 3D environment from the video and makes cuts and
transitions based on the camera orientations, which indicate

the focal point of the bearer. Joint attention is inferred by
the orientation of the camera held by the participants, and
not from participants in the video itself.

Many editing tools and approaches also take into account
cinematography conventions. Ozeki et al.[23] created an
online system that generates attention-based edits of pop-
ular cooking shows by detecting speech cues and gestures.
Notably Leake et al. [18] focuses on dialogue scenes and pro-
vides a quick approach that obeys a number of film idioms,
selecting cameras for each line of dialogue. Their generated
edits are based on annotations of the events and dialogue
content. Recently, machine learning technologies have been
explored for predicting the head movement of users in 360
degrees VR video [17] to improve the efficiency of streaming.
The prediction of head movements and points of interest
allows the use of smartly placed cinematographic techniques
such as snap-cuts, virtual walls, and slow-downs to facilitate
smooth playback of 360 videos [7, 26].
One notable challenge that has not been sufficiently ad-

dressed, is how different automated editing methods that
are driven by human attention change the aesthetic qualities
of the edit, and moreover, how they affect the perception
of the audience. Though studies to evaluate the usage [27]
and efficiency [7, 13, 26] of smart editing technologies exist,
the evaluation of the audience’s perceived preferences be-
tween different edits remains little addressed due to the fact
that good editing is often invisible and should not draw the
viewer’s attention.

Video summarization
Video abstraction or summarization focuses on the problem
of compiling a selection or thumbnails that can represent a
video. Some approaches use basic visual signals [29], while
Ma et al.[21] were the first to propose a attention model
comprising of the audio, visual movement, and textual in-
formation. Lee et al.[19] proposed a system that generated
a storyboard of daily tasks recorded on a wearable camera
based on gaze, hand proximity, and frequency of appearance
of an object. The output of these systems are a series of im-
ages or select meaningful segments that are representative
of the video. Previous work indicates LSTMs have been ef-
fective in NLP tasks, but recently they have been used for
video summarization [32] due to their ability to model more
long ranged variables dependencies.
Another way of editing is by moving a smaller bounded

“frame” within a fixed camera shot to create artificial cam-
era moves focusing on the most important elements inside
the shot, which is useful when adapting videos to smaller
hand-held devices. Gandhi et al.[11] proposed a method to
automatically generate edited clips of stage performances
recorded by single cameras. Audience gaze data has also been
popularly used to determine important elements in the shots,
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and create a re-edit focusing on the important gaze points
[14, 24]. These methods are targeted towards re-editing a
still camera, adding camera movements that embody the
focus of a complex performance (e.g. film or stage with lots
of movement and multiple points of interest) in an artistic
and compact manner.

Smart cameras for virtual environments
Autonomous 3D cameras has been a challenge on how best
to place cameras in virtual environments for story and navi-
gation. Jhala and Young designed the Darshak system which
generates shot sequences that fulfill story goals to show ac-
tions and events in a 3D environment[16]. Common editing
rules [10] and film editing patterns [30, 31] have also pro-
posed to ensure spatial and temporal continuity, as well as
using common film idioms. In these systems, context is cru-
cial, and selecting a camera position from seemingly infinite
options is a mathematically complex problem. Our editing
task differs from virtual cameras in two main ways. First, in
3D positions of objects and the parameters of the camera
are precise. In our meeting videos, visual analysis tasks are
necessary to determine what the camera is showing. Camera
parameters and spatial configurations of people and objects
can only be approximated. Second, the virtual camera can
be moved around at ease, while the cameras in the meeting
room are fixed and do not follow the participants.

3 OVERVIEW

Figure 1: Configuration of the meeting room with screen
captures of each camera. Each participant also has an in-
dividual microphone headset. The presentation and white-
board is situated at the front of the room. (Screen captures
from the Univ. of Edinburgh AMI corpus are reused under
CC BY 4.0)

Our work consists of the design, comparison, and evalua-
tion of three automated editing methods for multi-camera
recordings in smart meeting rooms: a naive audio-based edit
that serves as a baseline, a state-of-art rule-based edit using
extracted head pose data, and an LSTM-based system that is
trained on human expert edits to predict the joint attention
score for each point of interest in the room from an input of
audio and head pose data.

We generate outputs for each method from three meetings
in the AMI Corpus [22] (meeting IDs IS1000a, IS1008d, and
IS1009d). The three recordings represent 3 types of interac-
tions: design and brainstorming, status update, and project
planning. These meetings were held with 4 participants in
the smart meeting room equipped with the seven cameras
and individual microphone headsets. The configuration of
the room, camera locations, and viewpoints are shown in
Figure 1. The seven cameras comprise of 1 overlooking the
room, 2 from the left and right, and 4 closeup cameras on
each participant. Each meeting was around 30 minutes.
The next section details the joint attention metric and

the processing of head pose data, which, along with audio
amplitude on individual headsets, are used as features to
implement the audio and rule-based edits, and to train an
LSTM. To obtain the ground-truth joint attention score, a film
expert edited the three meeting videos with the definition
of joint attention in mind. We considered that the objects
shown in the expert version of the edit were the ground truth
focus of the room.

4 POSE AND JOINT ATTENTION

Figure 2: The eight possible head orientations and their re-
lation to the visibility of the pose detection markers.

The meeting rooms are equipped with cameras from 7
viewpoints. Each camera’s video input is analyzed to deter-
mine the head orientation of each person in its view, and then
calculate the confidence level for a focal point of a person
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based on an attention matrix. The focal points of all cameras
are then considered together to calculate the focus of each
target in the room. This is used both for the rule-based edit
and training the LSTM. Below we describe the details of the
head pose and focus calculation.

Figure 3: A person’s focus is estimated based on their head
pose and room configuration. Colored arrows indicate the
approximate focus of Participant A based on head pose. If
two or more targets are close together, there is some ambi-
guity as to what A is actually looking at.

Determining focal points for each camera
Weused the OpenPose’sMPI 15-keypoint detection to extract
the head pose of participants [5], with five points on the head
– 2 ears, 2 eyes, and nose tip – calculated 25 frames/second.
For each point, the on-screen (x ,y) coordinates are given
with a confidence score between 0 and 1.

This information is assumed as input to calculate the confi-
dence level of a head orientation, based on the visibility of the
above five points on the head, shown in Figure 2. The eights
head orientations are (F)ront (looking in the same direction
as the camera), (B)ehind (looking towards the camera), (L)eft
and (R)ight from the camera’s perspective, and variations
of these: LF (left-front), RF (right-front), LB (left-behind,),
and RB (right-behind). Note that the left and right ear/eye
of the pose detection is relative to the human, whereas the
left, right, front, and behind head orientation is relative to
the camera’s perspective. The confidence level for a head
orientation is the sum of the confidence score c of each of
the n points pv that should be visible, and the sum of 1-c for
them points ph that should be hidden.

PoseConfidence =
m∑
i=1

cpvi +
n∑
j=1

(1 − cphj ) (1)

The estimated head orientation is then mapped to corre-
sponding focal points. An example is shown in Figure 3 for
participant A. Each head orientation can refer to one, none,
or more than one focal point. We build an focal point matrix
(Table 1) that shows the mapping the head orientation and
camera to corresponding focal point(s).

Table 1: The focal point matrix indicates for each camera,
what the camera shows, and what focal point a participants’
head orientation would correspond to. The targets in the
room are the presentation (P), the whiteboard (W), and par-
ticipants A, B, C, and D (A,B,C,D respectively).

Cam Shows L R LF RF F LB RB B
Ce (All) BD AC PWB PA PWAB D C CD
L AC PA C - - - PW D BD
R BD D PWB - - - C A AC
C.A A P C - - - PW D B
C.B B D PW - - - C A C
C.C C PA - - - - PW D B
C.D D C PWB - - - C PWB A

The confidence level that the focal point is a specific target
(whether person or object) t for a cameraC is the average of
the confidence levels for the x head orientations ho that have
the object or person as a focal point. This value is summed
up for each person p detected in the video.

FocalPointConfidence(C, t) =
n∑

p=1

∑x
o=1 co,p(t)

x
(2)

This gives a focal point confidence value to each target in
the room from the viewpoint of C , ranking the importance
of the target. Once the targets in the room are ranked by
each camera, we then calculate the focal point of all partici-
pants. Focus F for a target t is the accumulated focal point
confidence for each camera, since the more cameras feel that
t is the focal point, the higher this score should be for t .

Ft =
7∑

q=1
FocalPointConf idence(Cq , t) (3)

This is then used as an input feature for the rule-based edit,
and as one of the features to train our LSTM, and generate
automated edits of the meetings.

5 AUTOMATED EDITING
We can now extracted audio and focus data for automated
editing. In this section we present the design and implemen-
tation of three approaches. The first is a naive audio-based
edit taking into account only microphone amplitude with
no criterion for pacing. The second is a state-of-the-art rule-
based edit that selects cameras given a set of editing rules and
focus data at a fixed pacing. The third approach is an LSTM
trained to predict the joint attention of the room, coupled
with a direct approach of selecting the camera that shows
the joint attention of the room at each moment.

Audio-based edit
We chose the “naive” audio-based edit as a baseline, a method
commonly used for existing remote conferencing solutions.
The edit is generated by selecting the closeup camera of the
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participant with the highest microphone input at any given
time. To avoid unusual noise from the environment or the
equipment, short spikes of 1 second or less are removed, and
the amplitude of the four microphones are normalised to the
same range, averaged over each second. The closeup camera
of the person whose microphone is emitting the most sound
at each second is selected.Thus minimum shot length is 1
second. No additional smoothing or pacing was added.
The main benefit of the audio-based approach is that it

is fast and adaptable to all situations. No parameters were
tuned, since amplitude is the only factor deciding the camera
stream. However, this comes with a number of limitations,
namely (1) only closeup cameras are selected with no wide
view of the room normultiple participant interactions, (2) the
pacing is jittery, and (3) important reactions or movements of
the participants are not observable when no sound is emitted.

Rule-based edit
Rule-based or optimization systems often use audio-visual
signals for determining when to cut and which camera to
choose while taking into account pacing. Our second ap-
proach uses the focal point score calculated in the previous
section to design a rule-based editing algorithm that shows
where the focus of the group is at a given time.

Algorithm 1 RuleEdit(FocalPointInfo F , DesiredShotLen s)
ShotList S ; CurCam C = Center ; CurShotLen sc = 0
for all Frames f in F do

for all Targets t do
targetscorest .append(f .scorest )

if f .num%f ps == 0 then
CamListC .score += CutCost(sc, s)
for all Targets t do

sumt = tarдetscorest .mean()
sum .sor t ()
for all i in count (Tarдets) do

for all Camera x in CamList do
if x .has(sum.at(i)) and x!=Center then

CamListC .score += F PScore .at (i)
CamListCenter .score += p

NextCam N =CamList .max()
if N == C then

S.last .endtime += 1
else

S.append(N, f .num, f .num)
CamListC .score = 0
C = N

return S

The algorithm first ranks each camera based on the sum
of the focal point score of all the targets that it shows. Cam-
eras portraying targets with higher focus are then rewarded
points. Because the value of focus varies greatly based on
the confidence of the pose detection for that frame, points

are awarded by relative ranking of the target. Because this
disproportionately benefits cameras that show more targets
(e.g. the Center camera, showing the whole room), a fixed
number of points p are allocated to Center for each step.
Cameras with no people detected are assigned 0.
After the ranking the each camera for a frame, we can

then make decisions on which camera to select for this frame
based on the the focal points of each camera. This process is
shown in Algorithm 1, involving smoothing, shot length nor-
malization, ranking the focal point score, and selecting the
best camera. To avoid jittering filter out pose data anomalies,
the focal point score is smoothed over frames per second f ps .
The algorithm then normalizes the shot length. Assuming
we have a desired shot length s seconds and current shot
length sc , the cost function CutCost(sc, s) = (sc − s)2 is used
to decide whether to stay on the current camera, or cut to
a new one. Finally, the camera with the highest score is se-
lected. If a camera change occurs, the score for the previous
camera is set to 0, allowing the score of cameras that have
not been selected for a long time to accumulate, ensuring
that (1) all cameras will be chosen at some point, and (2) the
previous camera is not selected again immediately.
The rule-based edit maintains the flexibility of setting

the editing parameters such as the pacing, the weight for
focus, or the weight of the Center camera. However, the
weights for the various parameters such as pacing and target
importance must be tuned for different situations, and due
to the fixed pacing, this method is slow in adapting to quick
exchanges between multiple participants. It also does not
take into account audio, which if included, would add an
additional parameter to be tuned.

LSTM trained joint attention
To go beyond the limitations in camera variety and pacing
in the audio and rule-based methods, we implemented the
third approach to directly learning the joint attention of the
room at any given time point with a neural network.
Our neural network is composed of an input layer, an

output layer, and a 100-neuron hidden LSTM layer, size cal-
culated with standard equation Nh = TraininдDataSize/2 ∗
(Nin +Nout ) to avoid overfitting. We used MAE loss function
and adam optimizer. An LSTM was chosen as opposed to
fully connected layers since editing is a continuous decision-
making process taking into account both rapid (e.g. who just
moved or started talking) and long-term (e.g. who has been
talking for the past few seconds) observations, and previous
editing decisions. Input features include: (1) normalized au-
dio amplitude of 4 individual headsets, (2) pose confidence
for each participant in the four CU cameras, and (3) the focal
point confidence for each of the 6 targets in the room.
To obtain a ground truth to train our model, we asked a

film expert to edit our three chosen meeting videos based
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Figure 4: Here is a detailed analyses and comparison of a meeting clip. The colored timelines show how the three methods–
rule, audio, and LSTM-based edits–compare to the human expert edit in terms of camera selection. The shortest shot is 1
second. The rule-based edit has smoother pacing. The audio-based edit is jittery, and makes multiple complete misses. The
LSTM-based makes mostly close matches (Screen captures from the University of Edinburgh AMI corpus are reused under the
Creative Commons license CC BY 4.0)

Algorithm 2 LSTMEdit(JointAttenScore J , Threshold th)
for all Entry t in J do

if J [t ][WB] >= 0.5 || J [t ][Pr ] >= 0.5 then
CamList [t ] = ”Center ”

else
for all Targets ta in J [t ] do

if ta>=0.5 then
Candidate[t ].push(ta)

if Candidate .lenдth == 0 then
if J [t ][A] + J [t ][C] > J [t ][B] + J [t ][D] + th then

CamList [t ] = ”Lef t ”;continue;
if J [t ][A] + J [t ][C] + th < J [t ][B] + J [t ][D] then

CamList [t ] = ”Riдht ”;continue;
else CamList [t ] = ”Center ”

if Candidate .lenдth == 1 then
CamList [t ] = Candidate[0].CloseupID

if Candidate .lenдth == 2 then
if OnSameSide(Candidate[0],Candidate[1]) then

CamList [t ] = Candidate[0].MedCamID
else CamList [t ] = ”Center ”

else CamList [t ] = ”Center ”
return CamList

on what the editor felt was the focus of the room. Using 1
we are able to extract from the expert edit, what the expert
considered was the joint attention of the room. For example,
if the expert chose the Left camera (showing A and C) at time
t , the score for A and C at time t (At and Ct respectively)
would be set at 1.0 while the score of (Bt ), D (Dt ), and the
whiteboard (Wt ) and presentation (Pt ) set at 0.0. Since the edit
could be switching between two or more participants that are

engaged in a dialogue, the importance of a target should not
drop from 1.0 to 0.0 between shots or vice versa, so we use
an exponential decay function–commonly used to represent
memory–to smooth the importance of the target before and
after the shot. Two meetings are used as training data over
1000 epochs, with the third as test data, cross-validating three
times. The output is the a vector of joint attention scores
between 0.0 and 1.0 of 6 targets in the room: four participants,
whiteboard, and presentation. Higher scores imply that the
target is more likely the joint attention of the room.
We designed Algorithm 2 to put together an edit based

on the joint attention score. The algorithm prioritizes the
“Center” camera when the whiteboard or presentation has a
high joint attention score. Otherwise, it determines if a single
participant solely scores over 0.5, or if two participants from
the same side of the table have a significant difference in im-
portance over the other side of the table, for which a closeup
or a medium shot of two participants is shown respectively.
Otherwise, the central camera is shown by default.

Initial results
Figure 4 is an example output of the audio and rule-based
edits, and the edit based on LSTM-learned joint attention
scores, compared side-by-side with the expert edit. Our ac-
companying video shows all four edits of Figure 4. Before
formally comparing all methods together, there are a num-
ber of initial observations can be drawn that are not directly
obvious with a more generalized analysis.
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The baseline audio edit more accurately captures who is
talking at each point, and in this simple scenario has the
highest accuracy. However, the output is jittery and subject
to noise in the data, resulting in more errors. It also chooses
only closeup shots, which is not suitable for situations where
multiple participants are in a discussion. The rule-based edit
chooses cameras that are more or less similar to the expert,
but frequently displaced in timing, which can be explained
by Algorithm 1 slowly accumulating focal point confidence
of each target, and the regulated pacing of around 6 seconds.
In contrast, the LSTM-joint attention method switches

cameras in a more timely fashion, in many cases capturing
essential actions and reactions. It also identifies scenarios
with interchanges or discussions between multiple partici-
pants more accurately than the rule-based approach. This
shows that the LSTM learned joint attention already pro-
duces a comparable edit to the human expert, even with the
limited amount of training data and no smoothing.

6 EVALUATION
We evaluate the the various editing methods in two ways.
The first is a similarity metric by comparing the rule-based,
audio-based, and LSTM-based editing to the human edit. We
then recruited 22 users for a study on the output videos.

Similarity metric of editing methods
Here we present a more general comparison between the
three editingmethods–audio-based, rule-based, and the LSTM
joint attention-based–by measuring at each second in the
output, the method-selected camera’s dissimilarity to the
expert-chosen camera. The dissimilarity is measured on four
criterion of editing [9]:

Target visibility: Whether a shot shows the same targets. A
camera is penalized more when it misses someone than when
it shows more people than it should. For example, selecting
CU.A instead of Right (showing A and C) has a higher penalty
than choosing Right over CU.A.

Shot size: Whether the shot size is the same. There are three
shot sizes: closeups, medium shots (Left and Right cameras),
and long shots (Center). For example, there would be no shot
size penalty for choosing CU.A instead of CU.B, but there
would be a 2-point penalty for choosing Center instead of a
CU.A.

Viewpoint: Whether the selected camera is oriented in the
same direction. For example, if CU.A is chosen instead of
CU.B or CU.C (who are on the same side of a line that splits
the room in half), it would be penalized less than if the expert
chose CU.D (which is the opposite side of the room).

Pacing: Pacing is the average shot duration in seconds. Fast
pacing is generally used in more simple situations with few

participants or activities, while slow pacing is used in com-
plex situations so the viewer has time to analyse the scene.

Figure 6 shows the dissimilarity scale between a camera
selected by a proposed method and the expert edit. Darker
colors show a higher dissimilarity, while lighter colors show
higher similarity. The highest dissimilarity would be select-
ing a closeup instead of the center camera, resulting in penal-
ties on missing targets (i.e. missing 5 targets) and shot size
(two levels of difference in shot size).

From the meeting videos, we randomly chose four 30-
second clips to provide in-depth qualitative comparison. Fig-
ure 5 shows how the audio, rule, and LSTM-based edits com-
pare to the expert edit for each clip. 1000a shows more gen-
eral presentations and brainstorming among all participants,
and the clips from 1008d and 1009d show a more discussion
between two participants on a specific issue such as budget
or design. The dissimilarity timeline compares at each second
the difference between the expert-selected camera and the
method on the combined similarity metric of target selection,
size, and viewpoint. Shot size similarity only compares the
difference in shot size. Pacing is measured by the average
shot duration over the clip.

Generally, the LSTM-based edit is representative of the ex-
pert edit, especially in group discussion scenarios. It exceeds
both the rule-based and audio edit in complex cases on shot
size and pacing. However, the audio-based edit has higher
accuracy than either of the other two methods where there
is close discussion between two participants. This is because
the two participants are looking at each other while the other
participants may be taking their own notes, referring to the
slides, or watching the discussion without too much activity.
This analysis also does not take into account displacement
in timing, which is common in the rule-based edit Figure 4.
Also, the audio-based edit has a much more jittery pacing as
compared to the other methods, with average shot length of
less than 2 seconds, which would result in an uncomfortable
viewing experience.

User evaluation
Here we detail the design and results of our user evaluation
on the output of the various editing methods.

Survey design. The study consisted of a 30-minute sitting in
two parts: a quiz for data receivability, and nine pairwise
comparisons between videos using different editing methods.

For the “receivability” quiz, the user was shown three 30-
second clips, one from each meeting, followed by two to
three basic questions concerning the content. All clips only
showed the Center camera view from Figure 1. At the end,
users were asked to select from the three meetings the one
they enjoyed most/least, and the one they were most/least
willing to participate via video conference. The goal was to
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Figure 5: We compare the output of the the audio, rule, and the LSTM-based edits to the expert edit for four 30-second clips on
aspects of overall similarity throughout the clip, similarity of shot size, and average shot duration. The average shot duration
of the expert edit is shown under the meeting ID. The shot and size dissimilarity timeline show the difference between the
expert chosen camera using the scale in Figure 6. Average dissimilarity ismeasured based on shot size difference,missing/extra
targets shown, and viewpoint, with a value between 0 (exact match) and 5 (complete miss).

Figure 6: The similarity between two cameras is calculated
based on targets visible and shot size. This figure shows the
scale of dissimilarity between the camera selected by the
method and the expert selected camera, used in Figure 5 to
represent distance of chosen cameras from the expert cho-
sen ones. CU .X is a closeup on participant X .

(1) ensure that the data is receivable by checking that the
users were concentrated on the tasks, and (2) identify strong
preferences between the different meetings.
The second part of the study consisted of nine pairs of

video clips, which users viewed, and selected the one that
was easier to follow, and the one they preferred. Nine 30
second clips, three from each meeting, were randomly se-
lected, each edited with the four different editing methods,

creating a pool of 36 videos. Four versions of 9 pairwise com-
parisons questions (total of 36 distinct pairs) were generated.
Clip selection and pairings take inspiration from the Youden
squares design [15], with equal distribution and combina-
tions of meeting-edit pairs across the 36 questions. Each pair
of video clips evaluated by the user always shows content
from two different meetings and editing methods. This was
specifically avoid drawing attention to the editing method
itself and overlooking the overall appreciation of the video.
The users were not told that the videos used different editing
methods, and asked to judge the videos solely on their feel-
ings. Since the four versions of pairwise comparisons were
randomly assigned, some meeting/editing pairs in Tables 2, 3,
and 4 had more results than others.

Pilot study. To validate our experimental design, we first
conducted a pilot study with only pairwise comparisons
with clips from the human expert and audio edits. Users
from the pilot study did not overlap those from the formal
study. Only one clip per meeting was selected, and the video
pairs could feature the same editing method, though any pair
of clips were still from different meetings. Users just selected
the video clip that they preferred. A total of 432 pairwise
comparisons were recorded.
Results, shown in Table 2, demonstrate that the editing

method strongly influences user preferences, and found a
significant preference of human-edited videos over audio-
edited ones (p=0.0069).
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Table 2: This table summarizes results of the pilot study, for
each editing method of each meeting clip, the number of
times it was preferred in a pairwise comparison (in total),
and the number of times it was preferred over the opposite
editing method.

Meeting ID Video preferred Method preferred
Video Edit Count Percentage Count Percentage
1000a Human 82 / 134 61.2% 44 / 59 74.6%
1000a Audio 51 / 127 40.2% 25 / 73 34.2%
1008d Human 61 / 146 41.8% 37 / 71 52.1%
1008d Audio 53 / 147 36.1% 19 / 69 27.5%
1009d Human 85 / 139 61.2% 45 / 71 63.4%
1009d Audio 100 / 171 58.5% 45 / 87 51.7%

Final study. We recruited 22 users to evaluate the outputs of
the various editing methods.

In the first phase of the evaluation, all the data was deemed
receivable, with maximum two questions wrong out of seven.
We found that users had a stronger preference for meeting
1000a on both enjoyability and willingness to participate, and
least for meeting 1009d, shown in Figure 7. Due to this bias, in
the second part of the study we also analyse pairwise results
between meetings, and the preference of editing methods
within meetings.

Figure 7: This figure shows the number of userswho selected
eachmeeting to be themost (in green, positive numbers) and
least (in red, negative numbers) enjoyable and the meeting
they are most/least willing to participate in through video
conference. Users preferred meeting 1000a most on both
metrics, and meeting 1009d least on both metrics. We pay
particular attention to this for the second part of the study
to remove the bias that themeeting content would influence
the video preference.

A total of 198 pairwise comparisons were observed in the
second part. Table 3 summarizes the number of pairwise
comparisons for any two editing methods.

Overall, results show that users felt uniformly that the hu-
man edit was both easier to follow and more preferred when
compared to any other automated editing method. However,
in both preference and ease to follow, human, LSTM-based

Table 3: A total of 198 pairwise comparisons were observed,
summarised two metrics: Ease to follow and Preference. The
valuesMethod1−Method2 indicate respectively the number of
timesMethod 1 is preferred overMethod 2, and the opposite.
The method more preferred for each pair is highlighted in
bold, and asterisk indicate p-value < 0.05.

Methods No. pairs Ease to follow Preference
Human - Audio 34 18 - 16 21 - 13
Human - Rule 35 23* - 12 26* - 9
Human - LSTM 32 20 - 12 21 - 11
Audio - Rule 32 28* - 4 25* - 7
Audio - LSTM 34 15 - 19 15 - 19
Rule - LSTM 31 12 - 19 14 - 17

and audio-based edits had no statistical significant difference.
In contrast, though both LSTM-based and rule-based edit
performed less well than human, users still ranked LSTM
over rule. The greatest difference between these two meth-
ods comes to when they are compared against the audio-
based edit. While the audio-based edit significantly defeats
the rule-based edit, LSTM-based edit is ranked higher than
audio-based edit.

Table 4: Pairwise preferences between meeting combina-
tions in the same format as Table 3. No meeting performs
uniformly better or worse than all other meetings.

Meetings No. pairs Ease to follow Preference
1000a - 1008d 65 30 - 35 25 - 40
1008d - 1009d 65 28 - 37 29 - 36
1009d - 1000a 68 35 - 33 25 - 43

Since each pair of videos showed different meetings, to
rule out bias due to the content, we analyse pairwise prefer-
ence between meetings. Table 4 regroups information from
Table 3 shows pairwise how each combination of meetings
performed. No meeting performed uniformly better or worse
than all other meetings, and results here do not reflect the
meeting preferences from the first part of the study (Table 7).
As mentioned, no pairwise comparisons had two videos

from the same meeting in order to avoid users from focusing
on the editing instead of the viewing experience. However,
when reorganizing statistics from Table 3 to observe the
ranking of editing methods within the same meeting (Fig-
ure 8), we see that the chance a video is considered easier
to follow or preferable is significantly linked to the editing
method, and is similar across all meetings. This comparison
echoes the findings in Table 3 showing that the human edit
was selected over all other methods on both metrics, and the
rule-based edit was the least preferred.
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Figure 8: We regroup data from Table 3 to show the frequency an editing method is preferred within the same meetings.
Though no pairwise comparisons consisted of video clips from the same meeting, results here show that the editing method
had a strong influence over the chance that one video would considered easier to follow or preferable over another.

7 DISCUSSION
James E. Cutting et al. [6] argue that there is a strong corre-
lation between the speed of cuts, and viewers’ attention and
expectations. An observer expects to see a constant balance
between visual composition, cinematic rules and editing pace
that matches the audiovisual material. Finding this balance
would be the key to designing an optimal editing system.

One prospect of this work was to develop real-time film
editing systems, and study the perception of users of these
systems. While LSTMs shows high potential with viewers
over conventional rule and naive audio-based systems, and
can be trained offline, pose data extraction is currently a
bottleneck. Libraries with high accuracy such as OpenPose
require longer computation, while those that can perform in
real-time have trouble detecting faces that are not directly
looking at the camera. Another challenge was the source
material: the low video and audio quality was significantly
limiting when extracting head pose data. Also, due to the
difficulty of obtaining expert edits, the training of the LSTMs
operated on a more limited data size, and results would be
influenced on which videos were used as training data. This
remains a big challenge when designing learning models for
applications such as film editing that have room for creativity,
and for which data is difficult to obtain. Thus the use of
LSTMs for real-time editing is still constrained.

Finally, evaluation was an enormous challenge, since film
editing is considered most successful when it doesn’t draw
attention, and little work has been done on how to evaluate
outputs of automated editing systems. Beyond basic criterion
of pacing or shot similarity, it is difficult to evaluate the
quality of the output. In our user evaluation, we could see that
the editing technique did have a strong impact on whether a
video was considered easy to follow or preferable, and that
for different meeting content, different editing techniques
could be more or less suited.

From these first promising findings, we intend to address
these limitations by (1) expanding the training dataset with
expert edits from different film editors, to observe global use
of joint attention in editing decisions, and (2) conducting
user studies at a larger scale to observe statistical significance
between perception of different editing treatments.

8 CONCLUSION
We introduced the use of a joint-attention metric from cogni-
tive psychology to design and implement automated editing
techniques that allow us to have an edit on the level of at-
tention of participants occupying and interacting within the
same space. It has also proven to be a lightweight metric for
machine learning models, as demonstrated with an LSTM,
bringing more variety to viewpoints while maintaining fo-
cus on important elements, and with minimal tuning. This is
further highlighted from the comparison of various editing
methods against the expert edit. Our user evaluation shows
that the editing method strongly influences the viewing ex-
perience, and that users do prefer edits that show multiple
viewpoints using indices of attention.

Our vision is for such attention-based automated editing
techniques to be used in live event streaming for better re-
mote viewing experience. We would improve our current
approaches by learning transition parameters across multiple
elements in the scene to generate edits that can determine
higher level contexts–such as presentation, group discussion,
etc.–and make edits according to audio-visual elements that
are more essential to these contexts.
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