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1 Introduction

Unification is a critical tool in many fields such as automated reasoning, logic programming,
declarative programming, and the formal analysis of security protocols. For many of these
applications we want to consider equational unification, where the problem is defined modulo
an equational theory E, such as Associativity-Commutativity. Since equational unification is
undecidable in general, specialized techniques have been developed to solve the problem for
particular classes of equational theories, many of high practical interest. For instance, when
the equational theory E has the Finite Variant Property (FVP) [3, 7], there exists a reduction
from E-unification to syntactic unification via the computation of finitely many variants of the
unification problem.

Another ubiquitous scenario is given by an equational theory E involved in a union of
theories F ∪ E. To solve this case, it is quite natural to proceed in a modular way by reusing
the unification algorithms available for F and for E. There are terminating and complete
combination procedures for signature-disjoint unions of theories [10, 2]. However, the non-
disjoint case remains a challenging problem. One approach to the non-disjoint combination
problem that has been successful in some cases is the hierarchical approach [5]. In this approach,
F ∪ E-unification can be considered as a conservative extension of E-unification. Then, a new
inference system related to F , say UF , can be combined with an E-unification algorithm to
obtain a F ∪ E unification algorithm. While this hierarchical approach won’t work for every
F ∪ E it can be a very useful tool when applicable. However, up to now it could be complex
to know if a combination F ∪ E could be solved via the hierarchical approach. For example,
there is no general method for obtaining the inference system UF , and the resulting hierarchical
unification procedure may not terminate.

In this paper, we consider “syntactic” theories F ∪E where UF can be defined as a system
of mutation rules, and we present new terminating instances of the hierarchical unification
procedure.

2 Preliminaries

We use the standard notation of equational and term rewriting systems [1]. An equational
theory E is regular if for any axiom l = r ∈ E, l and r have the same set of variables. An
equational theory E is collapse-free if for any axiom l = r ∈ E, l and r are non-variable terms.
An equational theory E is subterm collapse-free if for all terms t it is not the case that t =E u
where u is a strict subterm of t. A subterm collapse-free theory is necessarily regular and
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collapse-free. An equational term rewrite system, equational TRS for short, is a pair (R,E)
where R is a set of rewrite Σ-rules and E is an equational Σ-theory, Σ being a signature. An
equational TRS (R,E) is said to be E-convergent if the rewrite relation →R,E , defined via
E-matching, is E-convergent, meaning that =E ◦ →R,E ◦ =E is terminating and →R,E is
Church-Rosser modulo E. A function symbol that does not occur in {l(ε) | l→ r ∈ R} is called
a constructor for R. Let Σ0 be the subsignature of Σ that consists of function symbols occurring
in the axioms of E. An E-convergent TRS (R,E) is said to be E-constructed if all symbols in
Σ0 are constructors for R. Given two rewrite rules g → d and l→ r, the E-Forward inference
generates a new rewrite rule when l and d overlap. It is formally defined as follows:

E-Forward g → d[l′], l→ r ` (g → d[r])σ
where g → d[l′], l→ r ∈ R, l′ is not a variable, σ ∈ CSUE (l′ =? l).

An E-convergent TRS (R,E) is forward-closed if any application of E-Forward generates a rule
which is redundant in (R,E) when the premises are rules in (R,E), following an appropriate
definition of redundancy [8]. It can be shown that for any E-constructed TRS (R,E) where E
is regular, collapse-free and E-unification is finitary, (R,E) has the FVP if and only if it has a
finite closure by E-Forward.

An alien subterm of a Σ0-rooted term t is a Σ\Σ0-rooted subterm s such that all superterms
of s are Σ0-rooted. A set of equations G = {x1 = t1, . . . , xn = tn} is said to be in tree solved
form if each xi is a variable occurring once in G.

3 Hierarchical Unification

Consider now a union of theories R ∪ E where E is regular and collapse-free and (R,E) is
assumed to be E-constructed. Thanks to this assumption, R and E are “sufficiently separated”
and thus we can envision the problem of building aR∪E-unification algorithm using an approach
based on combination. A hierarchical unification procedure is parameterized by an E-unification
algorithm and a mutation-based reduction procedure U . It applies some additional rules given
in Figure 1: Coalesce, Split, Flatten, and VA are used to separate the terms, U is used to
simplify the Σ\Σ0-equations, and finally, Solve calls the E-unification algorithm.

Coalesce {x = y} ∪G ` {x = y} ∪ (G{x 7→ y})
where x and y are distinct variables occurring both in G.

Split {f(v̄) = t} ∪G ` {x = f(v̄), x = t} ∪G
where f ∈ Σ\Σ0, t is a non-variable term and x is a fresh variable.

Flatten {v = f(. . . , u, . . . )} ∪G ` {v = f(. . . , x, . . . ), x = u} ∪G
where f ∈ Σ\Σ0, v is a variable, u is a non-variable term, and x is a fresh variable.

VA {s = t[u]} ∪G ` {s = t[x], x = u} ∪G
where t is Σ0-rooted, u is an alien subterm of t, and x is a fresh variable.

Solve G ∪G0 `
∨
σ0∈CSUE (G0)

G ∪ σ̂0
where G is a set of Σ\Σ0-equations, G0 is a set of Σ0-equations, G0 is E-unifiable and not in
tree solved form, σ̂0 is the tree solved form associated with σ0, and w.l.o.g for any x ∈ Dom(σ0),
xσ0 ∈ Var(G0) if xσ0 is a variable.

Figure 1: HE rules
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Definition 1 (Hierarchical unification procedure). Assume a Σ0-theory E for which an E-
unification algorithm is known to compute a finite CSUE (G0) for all E-unification problems
G0, a Σ-theory F ∪E for which E-unification is complete for solving the Σ0-fragment of F ∪E-
unification, and an inference system U satisfying the following assumptions: U transforms only
equations of the form x0 = f(x1, . . . , xn) where x0, x1, . . . , xn are variables and f is a function
symbol in Σ\Σ0; U is sound and complete; and U is parameterized by some finite set S of F ∪E-
equalities such that the soundness of each inference `U follows from at most one equality in S.
Under these assumptions, the HE(U) inference system is defined as the repeated application of
some inference from HE (cf. Figure 1) or U , using the following order of priority: Coalesce,
Split, Flatten, VA, U , Solve. A F ∪ E-unification problem is in separate form if it is a
normal form with respect to HE\{Solve}.

Note, that when we speak of an inference system, U , this is not just a set of rules but also
a strategy for applying those rules. This could include, as in the EAC case of Proposition 3,
methods for detecting errors such as occur-checks and non-termination [6].

Proposition 1. Let (R,E) be any E-constructed TRS such that an inference system U following
Definition 1 is known for the equational theory R ∪E, in addition to an existing E-unification
algorithm. Then E, R ∪ E and U satisfy the assumptions of Definition 1, and the HE(U)
inference system provides a sound and complete R∪E-unification procedure if the normal forms
w.r.t HE(U) are either the dag solved forms or problems that are not R∪E-unifiable. If HE(U)
is terminating, then it is a R ∪ E-unification algorithm.

3.1 Subterm Collapse-Free Theories

Hierarchical unification algorithms are known for particular subterm collapse-free theories of
particular interest for protocol analysis.

Proposition 2. ([11, 6]) Let E be the empty Σ0-theory where Σ0 only consists of a binary
function symbol ∗. Consider RD = {h(x ∗ y) → h(x) ∗ h(y)} and RD1 = {f(x ∗ y, z) →
f(x, z) ∗ f(y, z)}. The equational TRSs (RD, E) and (RD1, E) are E-constructed. Moreover,
RD ∪E (resp., RD1 ∪E) is a subterm collapse-free theory admitting a unification algorithm of
the form HE(UD) (resp., HE(UD1)).

Proposition 3. ([6]) Let AC = AC(~), RE = {exp(exp(x, y), z) → exp(x, y ~ z), exp(x ∗
y, z) → exp(x, z) ∗ exp(y, z)} and RF = {enc(enc(x, y), z) → enc(x, y ~ z)}. The equa-
tional TRSs (RE , AC) and (RF , AC) are AC-constructed. Moreover, EAC = RE ∪ AC (resp.,
FAC = RF ∪ AC) is a subterm collapse-free theory admitting a unification algorithm of the
form HAC(UE) (resp., HAC(UF )).

3.2 Forward-Closed E-Constructed TRSs

For any forward-closed E-constructed TRS (R,E) such that E is regular and collapse-free, a
R ∪ E-unification algorithm of the form HE(U) can be obtained by defining some inference
system U based on the Basic Syntactic Mutation approach initiated for the class of theories
saturated by paramodulation [9], and already applied in [4] to a particular class of forward-
closed equational TRSs.

Let BSMR be the inference system given in Figure 2. One can notice that each inference rule
in BSMR generates some boxed terms. This particular annotation of terms, detailed in [9, 4],
allows us to control the rules application in such a way that BSMR is terminating.
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Imit
⋃
i{x = f(v̄i)} ∪G ` {x = f(ȳ) } ∪

⋃
i{ȳ = v̄i} ∪G

where f ∈ Σ\Σ0, i > 1, ȳ are fresh variables and there are no more equations x = f(. . . ) in G.

MutConflictR {x = f(v̄)} ∪G ` {x = t , s̄ = v̄} ∪G
where f ∈ Σ\Σ0, f(s̄) → t is a fresh instance of a rule in R, f(v̄) is unboxed, and (there is
another equation x = u in G with a non-variable term u or x = f(v̄) occurs in a cycle).

ImitCycle {x = f(v̄)} ∪G ` {x = f(ȳ) , ȳ = v̄} ∪G
where f ∈ Σ\Σ0, f(v̄) is unboxed, ȳ are fresh variables and x = f(v̄) occurs in a cycle.

Figure 2: BSMR rules

Lemma 1. Assume E is any regular and collapse-free theory such that an E-unification algo-
rithm is known. Let (R,E) be a forward-closed E-constructed TRS and BSMR the inference
system given in Fig. 2. Then HE(BSMR) is a R ∪ E-unification algorithm.

Example 1. Consider R = {π1(x.y) → x, π2(x.y) → y, dec(enc(x, y), y) → x} and E =
{enc(x.y, z) = enc(x, z).enc(y, z)}. E-unification algorithms are know for this type of one-
sided distributivity [11] and can be used in a hierarchical unification procedure of the form
HE(BSMR). Since (R,E) is forward-closed and E-constructed, HE(BSMR) provides an R∪E-
unification algorithm.

4 Combined Hierarchical Unification

We are now interested in combining hierarchical unification algorithms known for E-constructed
TRSs. Given two E-constructed TRSs, say (R1, E) and (R2, E), the problem is to study the
possible construction of a (combined) hierarchical unification algorithm for (R1 ∪R2, E) using
the two hierarchical unification algorithms known for (R1, E) and (R2, E).

4.1 Combining Subterm Collapse-Free Theories

Let us first consider a technical lemma which is useful to get a hierarchical unification procedure.

Lemma 2. Let (R1, E) and (R2, E) be two E-constructed TRSs sharing only symbols in E
such that, for i = 1, 2, Ri ∪ E admits a sound and complete unification procedure of the form
HE(Ui). Assume that R1 ∪R2 ∪ E is subterm collapse-free, and for any Σ1\Σ0-rooted term t1
and any Σ2\Σ0-rooted term t2, t1 cannot be equal to t2 modulo R1∪R2∪E. Then, HE(U1∪U2)
is a sound and complete R1 ∪R2 ∪ E-unification procedure.

We study below a possible way to satisfy the assumptions of Lemma 2.

Definition 2 (Layer-preservingness). Let (R,E) be an E-constructed TRS over the signature
Σ. A Σ-term t is said to be Σ0-capped if there exist a constant-free Σ0-term u and a substitution
σ such that t = uσ, Dom(σ) = V ar(u) and Ran(σ) is a set of Σ\Σ0-rooted terms. The TRS
(R,E) is said to be layer-preserving if R ∪ E is subterm collapse-free and any normal form of
any Σ\Σ0-rooted term is Σ0-capped.

Remark 1. The assumption that rules in R are Σ\Σ0-rooted was used in [5], and layer-
preservingness generalizes this assumption.
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The property of being E-constructed and layer-preserving is modular.

Lemma 3. Assume E is subterm collapse-free, for i = 1, 2, (Ri, E) is an E-constructed layer-
preserving TRS whose signature is Σi, and Σ1∩Σ2 = Σ0. If =E ◦ →R1∪R2

◦ =E is terminating,
then (R1 ∪R2, E) is an E-constructed layer-preserving TRS, and for any Σ1\Σ0-rooted term t1
and any Σ2\Σ0-rooted term t2, t1 cannot be equal to t2 modulo R1 ∪R2 ∪ E.

By Lemma 3, the two assumptions of Lemma 2 can be satisfied, and this leads to a hier-
archical unification procedure for the combined TRS. In the following, we consider a notion of
decreasingness in order to study the termination of this unification procedure.

Definition 3 (Decreasingness). Consider a complexity measure defined as a mapping C from
separate forms to natural numbers. A HE(U) inference system is said to be C-decreasing if
for any separate form G ∪ G0 we have that (1) for any G′ such that G ∪ G0 `U G′ ∪ G0, the
separate form of G′ ∪G0 does not increase C; (2) for any G′

0 such that G ∪G0 `Solve G ∪G′
0,

then either the separate form of G ∪G′
0 is in normal form w.r.t HE(U), or it decreases C.

Consequently, HE(U) is terminating if there exists some C such that HE(U) is C-decreasing.

Theorem 1. Assume E is a subterm collapse-free theory such that an E-unification algorithm
is known, and C is a complexity measure defined on separate forms. Let (R1, E) and (R2, E)
be two E-constructed TRSs sharing only symbols in E such that, for i = 1, 2, (Ri, E) is layer-
preserving, and Ri ∪ E admits a C-decreasing unification algorithm of the form HE(Ui). If
=E ◦ →R1∪R2

◦ =E is terminating, then (R1 ∪ R2, E) is an E-constructed TRS such that
(R1 ∪R2, E) is layer-preserving, and R1 ∪R2 ∪E admits a C-decreasing unification algorithm
of the form HE(U1 ∪ U2).

Example 2. Consider the theories EAC and FAC introduced in Proposition 3 and the corre-
sponding hierarchical unification algorithms HAC(UE) and HAC(UF ) where the mutation rules
defining UE and UF can be found in [6]. Let SV C be the complexity measure defined as follows:
given a R ∪ E-unification problem in separate form G ∪ G0, SV C(G ∪ G0) is the number of
equivalence classes of variables shared by G and G0 that are variables abstracting Σ\Σ0-rooted
terms.

One can check that the unification algorithms HAC(UE) and HAC(UF ) are both SV C-
decreasing. By Theorem 1, we get that EAC ∪ FAC admits a SV C-decreasing unification al-
gorithm of the form HAC(UE ∪ UF ). We suspect that this complexity measure, SV C, could be
useful for proving termination in other theories.

4.2 Combining Forward-Closed E-Constructed TRSs

The union of two forward-closed E-constructed TRSs remains a forward-closed E constructed
TRS. Thus, a hierarchical unification algorithm can be constructed in a modular way in unions
of forward-closed E-constructed TRSs.

Theorem 2. Assume E is a regular and collapse-free theory such that an E-unification algo-
rithm is known. Let (R1, E) and (R2, E) be two forward-closed E-constructed TRSs sharing
only symbols in E. Then R1 ∪R2 ∪E admits a unification algorithm of the form HE(BSMR1

∪
BSMR2).
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