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Abstract

We study games with reachability objectives under energy constraints. We first
prove that under strict energy constraints (either only lower-bound constraint or
interval constraint), those games are LOGSPACE-equivalent to energy games with
the same energy constraints but without reachability objective (i.e., for infinite
runs). We then consider two relaxations of the upper-bound constraints (while
keeping the lower-bound constraint strict): in the first one, called weak upper
bound, the upper bound is absorbing, i.e., when the upper bound is reached, the
extra energy is not stored; in the second one, we allow for temporary violations of
the upper bound, imposing limits on the number or on the amount of violations.

We prove that when considering weak upper bound, reachability objectives
require memory, but can still be solved in polynomial-time for one-player are-
nas; we prove that they are in coNP in the two-player setting. Allowing for
bounded violations makes the problem PSPACE-complete for one-player arenas
and EXPTIME-complete for two players. We then address the problem of exis-
tence of bounds for a given arena. We show that with reachability objectives,
existence can be a simpler problem than the game itself, and conversely that
with infinite games, existence can be harder.

Keywords: Games, Energy

1. Introduction

Weighted graphs are a convenient formalism to address questions related
to consumption, production and storage of resources: vertices represent the
possible configurations of the system under study, and transitions carry positive
or negative integers to represent the evolution of resources. When dealing with
open systems, weighted graphs are used as the arenas of two-player turn-based
game, modelling the interactions of the system with its hostile environment.
Various objectives have been considered for such games, such as optimizing
the total or average amount of resources that have been collected along the
play, or maintaining the total amount within given bounds. The latter kind
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of objectives, usually called energy objectives [CdAHS03, BFL+08], has been
widely studied in the untimed setting [CD12, CDHR10, DDG+10, FJLS11,
JLR13, JLS15, VCD+15, BMR+15, BHM+17, DM18], and to a lesser extent in
the timed setting [BFLM10, BLM12]. Energy objectives can be used to model
the evolution of the available energy in an autonomous system that has to
achieve its tasks, but also recharge batteries to avoid running out of power.
Energy objectives were used to model moulding machines: such machines inject
molten plastic into a mould, using pressure obtained by storing liquid in a
tank [CJL+09]; the level of liquid has to be controlled to maintain sufficient
pressure, but excessive pressure in the tank reduces the lifetime of the valve.

Energy games impose strict constraints on the energy level at all stages of
the play. Two kinds of constraints have been mainly considered in the literature:
lower-bound constraints (a.k.a. L-energy constraints) impose a strict lower bound
(usually 0), but no upper bound; on the other hand, lower- and upper-bound
constraints (a.k.a. LU-energy constraints) require that the energy level always
remains within a bounded interval [L;U ]. Finding strategies that realize L-
energy objectives along infinite runs is in PTIME in the one-player setting, and in
NP ∩ coNP for two players; for LU-energy objectives, it is respectively PSPACE-
complete and EXPTIME-complete [BFL+08]. Some works also consider the
existence of an initial energy level for which a winning strategy exists [CDHR10].

In this paper, we focus on weighted games combining energy objectives with
reachability objectives. Our first result is the (expected) proof that L-energy
games with or without reachability objectives are interreducible; the same holds
for LU-energy games. We then focus on relaxations of the energy constraints, in
two different directions. In both cases, the lower bound remains unchanged, as it
corresponds to running out of energy, which we always want to avoid. We thus
only relax the upper-bound constraint. The first direction concerns weak upper
bounds, already introduced in [BFL+08]: in that setting, hitting the upper bound
is allowed, but there is no overload: trying to exceed the upper bound simply
maintains the energy level at this maximal level. Following [BFL+08], we name
these objectives LW-energy objectives. They could be used e.g. as a (simplified)
model for batteries. When considered alone, LW-energy objectives are not much
different from L-energy objectives, in the sense that the aim is to find a reachable
positive loop. LW-energy games (with no other objectives besides maintaining
the energy above L) are in PTIME for one-player games, and in NP ∩ coNP for
two players [BFL+08]. When combining LW-energy and reachability objectives,
we prove in this paper that the situation changes: different loops may have
different effects on the energy level, and we have to keep track of the final energy
level reached when iterating those loops.

We introduce and study a second way of relaxing upper bounds, which we
call soft upper bound : it consists in allowing a limited number (or amount) of
violations of the soft upper bound (possibly within an additional strong upper-
bound): when modeling a pressure tank, the lower-bound constraint is strict
(pressure should always be available) but the upper bound is soft (excessive
pressure may be temporarily allowed if needed). We consider different kinds of
restrictions (on the number or amount of violations), and prove that deciding
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whether Player 1 has a strategy to keep violations below a given bound is
PSPACE-complete for one-player arenas, and EXPTIME-complete for two-player
ones. Then we consider the apparently simpler existence problem, which aim
is to decide whether an upper bound allows to win an energy game. We give
complexities of this problem for reachability and infinite games. Surprisingly,
depending on the nature of the game, existence can be easier or harder than the
corresponding game with a given upper bound.
Related Work: Quantitative games have been considered in many articles
since the 1970s, with various kinds of objectives, such as ultimately optimizing
the total payoff, mean-payoff [EM79, ZP96], or discounted sum [ZP96, And06].
Energy objectives, which are a kind of safety objectives on the total payoff,
were introduced in [CdAHS03] and rediscovered in [BFL+08]. Several works
have extended those works by combining quantitative conditions together, e.g.
multi-dimensional energy conditions [FJLS11, JLS15] or conjunctions of energy-
and mean-payoff objectives [CDHR10]. Combinations with qualitative objectives
(e.g. reachability [CDH17] or parity objectives [CD12, CRR14, DM18]) were
also considered. Similar objectives have been considered in slightly different
settings e.g. Vector Addition Systems with States [Rei16] and one-counter
machines [HKOW09, GHOW10, Hun15]. This work is an extended version
of [HMR19] containing full proofs of our results. The part of the paper addressing
the existence problem (Sec. 6) contains new material w.r.t the conference paper.

2. Preliminaries

Definition 1. A two-player turn-based arena is a 3-tuple G = (Q1, Q2, E) where
Q = Q1]Q2 is a set of states, E ⊆ Q×Z×Q is a set of weighted edges. For q ∈ Q,
we let qE = {(q, w, q′) ∈ E | w ∈ Z, q′ ∈ Q}, which we assume is non-empty for
any q ∈ Q. A one-player arena is a two-player arena where Q2 = ∅.

Consider a state q0 ∈ Q. A finite path in an arena G from an initial state q0

is an finite sequence of edges π = (ei)0≤i<n such that for every 0 ≤ i < n,
writing ei = (qi, wi, q

′
i), it holds q′i = qi+1. Fix a path π = (ei)0≤i<n. Using

the notations above, we write |π| for the size n of π, π̂i for the i-th state qi
of π (with the convention that qn = q′n−1), and first(π) = π̂0 for its first state
and last(π) = π̂n for its last state. The empty path is a special finite path
from q0; its length is zero, and q0 is both its first and last state. Given two
finite paths π = (ei)0≤i<n and π′ = (e′j)0≤j<n′ such that last(π) = first(π′), the
concatenation π ·π′ is the finite path (fk)0≤k<n+n′ such that fk = ek if 0 ≤ k < n
and fk = e′k−n if n ≤ k < n+n′. For 0 ≤ k ≤ n, the k-th prefix of π is the finite
path π<k = (ei)0≤i<k. We write FPaths(G, q0) for the set of finite paths in G
issued from q0 (we may omit G when it is clear from the context). We define
analogously Paths(G, q0) for the set of infinite paths from q0.

A strategy for Player 1 (resp. Player 2) from q0 is a function σ : FPaths(q0)→ E
associating with any finite path π with last(π) ∈ Q1 (resp. last(π) ∈ Q2) an edge
originating from last(π). A strategy is said memoryless when σ(π) = σ(π′) when-
ever last(π) = last(π′). A finite path π = (ei)0≤i<n conforms to a strategy σ of
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Player 1 (resp. of Player 2) from q0 if first(π) = q0 and for every 0 ≤ k < n, either
ek = σ(π<k), or last(π<k) ∈ Q2 (resp. last(π<k) ∈ Q1). This is extended to
infinite paths in the natural way. Given a strategy σ of Player 1 (resp. of Player 2)
from q0, the outcomes of σ is the set of all (finite or infinite) paths π issued
from q0 that conform to σ.

A game is a triple (G, q0, O) where G is a two-player arena, q0 is an initial
state in Q, and O ⊆ Paths(G, q0) is a set of infinite paths, also called objective
(for Player 1). A strategy for Player 1 from q0 is winning in (G, q0, O) if its
infinite outcomes all belong to O.

Given a set R ⊆ Q of states, the reachability objective defined by R is the
set of all paths containing some state in R, while the safety objective defined
by R is the set of all infinite paths never visiting any state in R. In this paper,
we also focus on energy objectives [CdAHS03, BFL+08], which we now define.

Definition 2. Fix a finite-state two-player arena G = (Q1, Q2, E), and an extra
state qerr /∈ Q1 ∪Q2. Let L ∈ Z. The L-energy arena associated with G is the
infinite-state arena GL = (C1, C2, T ) where C1 = {qerr} ∪ Q1 × [L; +∞) and
C2 = Q2× [L; +∞) are sets of configurations, and T ⊆ C1×Z×C2 is such that

� for any (q, l) and (q′, l′) in Q × [L; +∞) and any w ∈ Z, we have
((q, l), w, (q′, l′)) ∈ T if, and only if, (q, w, q′) ∈ E and l′ = l + w ≥ L;
we also impose a loop (qerr, 0, qerr) ∈ T .

� for any (q, l) ∈ Q × [L; +∞), we have ((q, l), w, qerr) ∈ T if, and only if,
there is a transition (q, w, q′) ∈ E such that l + w < L

Similarly, given L ∈ Z and U ∈ Z, the LU-energy arena associated with G is
the finite-state arena GLU = (C1, C2, T ) where C1 = (Q1 × [L;U ]) ∪ {qerr} and
C2 = Q2 × [L;U ], and T ⊆ C1 ×Z× C2 is such that

� for any (q, l) and (q′, l′) in Q×[L;U ] and any w ∈ Z, we have ((q, l), w, (q′, l′)) ∈
T if, and only if, (q, w, q′) ∈ E and l′ = l + w ∈ [L;U ]; we also impose a
loop (qerr, 0, qerr) ∈ T .

� for any (q, l) ∈ Q× [L;U ], we have ((q, l), w, qerr) ∈ T if, and only if, there
is a transition (q, w, q′) ∈ E such that l + w < L or l + w > U ;

Finally, given L ∈ Z and W ∈ Z, the LW-energy arena associated with G is
the finite-state arena GLW = (C1, C2, T ) where C1 = {qerr} ∪ Q1 × [L;W ] and
C2 = Q2 × [L;W ], and T ⊆ C1 ×Z× C2 is such that

� for any (q, l) and (q′, l′) in Q×[L;W ] and any w ∈ Z, we have ((q, l), w, (q′, l′)) ∈
T if, and only if, (q, w, q′) ∈ E and l′ = min(W, l+w) ≥ L; we also impose
a loop (qerr, 0, qerr) ∈ T .

� for any (q, l) ∈ Q × [L;W ], we have ((q, l), w, qerr) ∈ T if, and only if,
there is a transition (q, w, q′) ∈ E such that l + w < L;
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An L-run (resp. LU-run, LW-run) ρ in G from q with initial energy level l is
a path in GL (resp GLU, GLW) from (q, l) never visiting qerr. With such a run ρ =
(ti)i in G, writing ti = ((qi, li), wi, (q

′
i, l
′
i)), we associate the path π = (ei)i such

that ei = (qi, wi, q
′
i). We define ρ̂i = (qi, li), corresponding to the i-th configura-

tion along ρ, and ρ̃i = li, which we name the energy level in that configuration.
Similarly, a path π is said L-feasible (resp. LU-feasible, LW-feasible) from ini-

tial energy level L if there exists an L-run (resp. LU-run, LW-run) from (first(π), L)
whose associated path is π. Notice that if such a run exists, it is unique (because
paths are defined as sequences of transitions).

The L-energy (resp. LU-energy, LW-energy) objective is the set of infinite
paths that are L-feasible (resp. LU-feasible, LW-feasible) (from initial energy
level L). Similarly, given a target set R ⊆ Q, the L-energy- (resp. LU-energy-,
LW-energy-) reachability objective is the set of L-feasible (resp. LU-feasible,
LW-feasible) paths visiting R.

Remark 3. Taking L as the initial energy level results in no loss of generality,
since any energy level can be obtained by adding an initial transition from (q0, L).

In many cases, strong upper bounds are too strict, as many system do not
break as soon as their maximal energy level is reached. Imposing a weak upper
bound is a way to relax these constraints. We introduce another way to relax
energy constraints, by allowing for (limited) violations of the upper bound: given
two strict bounds L and U in Z, a soft upper bound S ∈ Z with L ≤ S ≤ U , and
an LU-run ρ, the set of violations along ρ is the set V(ρ) = {i ∈ [0; |ρ|] | ρ̃i > S}
of positions along ρ where the energy level exceeds the soft upper bound S. There
are many ways to quantify violations along a run. We consider three of them
in this paper, namely the total number of violations, the maximal number of
consecutive violations, and the sum of the violations. We thus define the following
three quantities: #V(ρ) = |V(ρ)|, #V(ρ) = max{i− j + 1 | ∀k ∈ [i, j]. k ∈ V(ρ)},
and ΣV(ρ) =

∑
i∈V(ρ)(ρ̃i − S).

Figure 1 is an arena for an LSU#-energy game, and Figure 2 shows the
evolution of #V along a winning run in this arena. One can notice that with a
strong upper bound of 3, state qt would not be reachable. On the other hand,
if the strong upper bound is set to U = 6, and the soft upper bound is set to
S = 3, then there exists a run from q0 to qt, but that requires 3 violations of S,
and a total amount of violations of 6.

Given three values L ≤ S ≤ U , and a threshold V ∈ N, the LSU#-energy

(resp. LSU#-energy, LSUΣ-energy) objective is the set of LU-feasible infinite
paths π such that, along their associated runs ρ from (q0, L), the number #V(ρ)
of violations (resp. maximal number of consecutive violations #V(ρ), sum ΣV(ρ)
of violations) of the soft upper bound S is at most V . Similarly, for a set of

states R, the LSU#-energy-reachability (resp. LSU#-energy-reachability, LSUΣ-
energy-reachability) objective is the set of LU-feasible paths π reaching R such
that along their associated run from (q0, L), the number #V(ρ) of violations
(resp. maximal number of consecutive violations #V(ρ), sum ΣV(ρ) of violations)
of the soft upper bound S is at most V .
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Figure 1: An arena for a LSU#-energy reachability game.
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Figure 2: Energy level and #V along a winning run in a LSU#-energy reachability game.

We study the complexity of deciding the existence of a winning strategy for
the objectives defined above, in both the one- and two-player settings. In addition,
given L, we address the bound-existence problem, which asks to decide if there
exists an upper bound U ∈ Z (resp, a weak upper bound W ∈ Z) for which
Player 1 wins the LU-energy (resp. LW-energy, LSU?-energy) game. Tables 1
and 2 summarize known results, and the results obtained in this paper (where
LSU?-energy gathers all three energy constraints with violations).

1 player 2 players

L-energy in PTIME (Thm. 4, [CDH17]) in NP ∩ coNP (Thm. 4, [CDH17])

LU-energy PSPACE-c. (Thm. 7) EXPTIME-c. (Thm. 7)

LW-energy in PTIME (Thm. 23) in coNP (Coro. 27)

LSU?-energy PSPACE-c. (Thm. 28) EXPTIME-c. (Thm. 28)

Table 1: Summary of our results : Reachability

Reachability Infinite runs

1 player 2 players 1 player 2 players

LU-energy in PTIME in NP ∩ coNP in NP in 2 -EXPTIME

(Given L, ∃U?) (Prop. 30) (Prop. 30) (Thm. 31) ( [JLR13])

LW-energy in PTIME in NP ∩ coNP in PTIME in 2 -EXPTIME

(Given L, ∃W?) (Prop. 30) (Prop. 30) (Thm 32) ( [JLR13])

LSU?-energy PSPACE-c EXPTIME-c PSPACE-c EXPTIME-c

(Given L, S, V ,∃U) (remark 29) (remark 29) (remark 29) (remark 29)

Table 2: Summary of our results: (weak) upper bound existence
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3. Energy reachability games with strict bounds

In this section, we focus on the L-energy-reachability and LU-energy-reachability
problems. We first prove that L-energy-reachability problems are inter-reducible
with L-energy problems, which entails:

Theorem 4. Two-player L-energy-reachability games are decidable in NP∩coNP.
The one-player version is in PTIME.

Remark 5. Notice that these results are not a direct consequence of the results
of [CD12] about energy parity games: that paper focuses on the existence of an
initial energy level for which Player 1 has a winning strategy with energy-parity
objectives (which encompass our energy-reachability objectives). When the answer
is positive, one can compute the minimal initial energy level for which a winning
strategy exists, but the (deterministic) algorithm runs in exponential time.

Remark 6. These results were already proven in [CDH17]: for one-player
arenas, the authors develop a PTIME algorithm, while they prove LOGSPACE-
equivalence with L-energy games for the two-player setting (the result then follow
from [BFL+08]). Our proof uses similar arguments as in the latter proof, but
with a uniform, full and direct reduction back and forth both for the one and
two-player cases.

Proof. We prove that L-energy-reachability and L-energy games are interreducible.
The theorem then follows from the results of [BFL+08].

First consider a two-player arena G = (Q1, Q2, E), an initial state q0, and
an L-energy objective. We define a new arena G′ = (Q1 ∪ Qc ∪ {qt}, Q2, E

′)
(assuming qt /∈ Q) where Qc = {qc | q ∈ Q} is a copy of all the vertices of G.
Note that, qc is always a Player 1 vertex; intuitively, states in Qc are used to
allow Player 1 to stop the game and reach the target state qt, if enough energy
has been stored. The set of transitions E′ is obtained from E as follows (where
the (positive) rational1 value of ε will be fixed later):

� for each (q, w, q′)∈E, there is a transition (q, w+ε, q′c) and (q′c, 0, q
′) in E′;

� for each qc∈Qc, there is a transition (qc,−δ, qt) in E′, where
δ= 1 +

∑
(q,w,q′)∈E |w|;

� finally, E′ contains an edge (qt, 0, qt).

We claim that Player 1 has a winning strategy from q0 for the L-energy-
reachability objective in G′ if, and only if, she has a winning strategy from q0

for the L-energy objective in G.

1Our definition of arenas do not allow for rational weights, but by scaling up all con-
stants(including the energy bounds) we get an equivalent instance of our problem with only
integer bounds.

7



G
q1

q2

weights w

G′

q1

q2
qt 0

qc1

qc2

weights
w + ε

0

0

−δ

0

Figure 3: Schema of the reduction from L-energy to L-energy-reachability objectives

First assume that Player 1 has a winning strategy σ in G for the L-energy
objective; then we can assume that this strategy is memoryless [BFL+08];
we define the strategy σ′ as follows: for any state q of G, letting q′ = σ(q),
we define σ′(π · q) = q′c, and

σ′(π · q · q′c) =

{
q′ if |π| ≤ δ

2ε − 1
qt otherwise.

Obviously, any outcome µ′ of σ′ from q0 reaches qt. First note that, by construc-
tion of σ′, the prefix ν′ of µ′ just before reaching qt has odd length, say 2n− 1.
Also note that it corresponds to an outcome ν of σ in G of length n. Since σ is
assumed winning, ν must be L-feasible; moreover, we have ν̃′2i = ν̃′2i−1 = ν̃i + i · ε
for all 0 ≤ i < n. Now, ν̃i ≥ L for all i, since ν is an outcome of σ, so that
also ν̃′i ≥ L for all i. Moreover, |ν′| = δ/2ε − 1 implies that, |ν| = δ/ε, so
that ν̃′2n−1 ≥ L + δ, and µ̃′2n ≥ L. It follows that σ′ is winning in G′ for the
L-energy-reachability objective.

Conversely, assume that Player 1 wins the L-energy-reachability game G′,
and write σ′ for a winning strategy in G′ from q0. We may assume that no
negative cycle occurs along any outcome of σ′: indeed, consider the (finite)
execution tree of σ′, and assume that it involves a negative cycle starting and
ending at some state q; then there must exists a subtree rooted at q which
contains no other occurrences of q; by redefining σ′ so as to play as in this
subtree after any occurrence of q, we remove all occurrences of our negative
cycle, while preserving reachability of qt and still satisfying the energy constraint
(since removing negative cycles may only increase the energy level).

Now, take any outcome ρ′ of σ′ from q0, it must eventually reach qt. First
note that, any prefix of ρ′ is of the form q0q1

cq1 . . . qt. Hence, if we take any prefix
π′ of ρ′ before reaching qt and drop the alternate vertices, we get a corresponding
path in G. Now, as ρ′ eventually reaches qt and since the edge leading to qt
has weight −δ, a positive cycle must have been visited along ρ′ in G′. From σ′,
we can then build a strategy σ that repeats the first positive cycle visited (after
dropping the alternate vertices). Formally, σ(π.q) = q′ if σ′(π′.q) = q′c where π
is obtained dropping alternate vertices from π′ and π′ contains no positive cycle.
When π is a run of the form π = ρ1.β1 . . . βk−1.ρk, where each βi is a positive
cycle, we take σ(ρ1.β1) = σ(ρ1). The resulting strategy σ then never takes the
edge to qt, since it only plays moves returned by σ′ along outcomes that do not
contain positive cycles. Moreover, all simple cycles generated by σ in G′ are
positive cycles; by taking ε < 1

|Q|+1 , these cycles still are positive cycles in G, so

that σ is winning in G for the L-energy objective.
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We now prove the converse reduction, which relies on similar ideas: we con-
sider a two-player arena G = (Q1, Q2, E), an initial state q0, and an L-energy-
reachability objective; we assume without loss of generality that there is a unique
target state qt, and write Attr1(qt) for the Player 1-attractor of qt in G. We build
(in polynomial time) a two-player arena G′ = (Q′1, Q

′
2, E

′) from G as follows:

� Q′1 = (Q1 ∩ Attr1(qt)) ∪ {q′0, qs} and Q′2 = Q2. State q0 will serve as the
new initial state, and qs is a sink state that guarantees existence of an
infinite run;

� letting E0 = {(q, w − ε, q′) | (q, w, q′) ∈ E and q ∈ Q′1 ∪ Q′2 \ {qt}} ∪
{(qt, 0, qt), (qs,−1, qs)} ∪ {(q′0, q) | q ∈ {q0} ∩ Attr1(qt)}, we define E′ =
E0 ∪ {(q, 0, qs) | qE0 = ∅}. This way, all states have an outgoing edge,
possibly to the sink state qs if no other transition exists. As for the first
reduction, the exact value of ε will be fixed later.

We prove that Player 1 wins the L-energy-reachability game in G from q0 if,
and only if, she wins the L-energy game in G′ from q′0.

G

weights w

qi

qt

G′

weights
w′ = w − ε

qi
qs

qtq′i

−1

0

1

Figure 4: Schema of the reduction from L-energy-reachability to L-energy objectives

For the first direction, if Player 1 has a winning strategy to reach qt from q0

in G while maintaining the energy level above L, then she has such a strategy σ
along whose outcomes the energy level is bounded above by L+ 2δ (where δ =
1 +

∑
(q,w,q′)∈E |w|): indeed, if energy level L+ δ is reached along some outcome,

then Player 1 can achieve the reachability objective by playing her memoryless
attractor strategy. Choosing the attractor strategy ensures reaching qt, and will
decrease the energy level by at most δ along any outcome. Similarly, following
the attractor strategy can increase the energy level by no more than δ. Strategy σ
can be chosen to contain no negative cycles, so we can bound the length of the
outcomes by (δ+ 1) · |Q|. Now, by taking ε < 1

(δ+1)·|Q| , we can mimic strategy σ

in G′: all outcomes only visits states in the attractor of qt, and reach qt in at
most (δ + 1) · |Q|+ 1 steps (the extra step is the transition from q′0 to q0). The
ε difference in the weights is compensated by the initial credit 1 harvested when
moving from q′0 to q0, so that all outcomes satisfy the L-energy constraint.

Conversely, if Player 1 has a winning strategy σ′ from q′0 in G′, then we can
assume that this strategy is memoryless [BFL+08]. Some of the outcomes may
reach qt, some may not. Since σ′ is memoryless, it cannot take any negative
cycle, as this would yield an outcome whose energy level tends to −∞. Hence it
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may only take nonnegative cycles in G′, which correspond to positive cycles in G
(since ε > 0). As a consequence, when mimicking σ′ in G, for those outcomes
that do not reach qt, the energy level will grow arbitrarily high; when it exceeds δ,
Player 1 can play her attractor-strategy to reach qt. This concludes our proof
for two-player games. �

Similarly, for LU-energy-reachability objectives, we prove the same complexi-
ties as with classical LU-energy objectives:

Theorem 7. One-player LU-energy-reachability games are PSPACE-complete.
Two-player LU-energy-reachability games are EXPTIME-complete.

Proof. Membership in PSPACE and EXPTIME is proved by considering the
expanded game GLU, in which energy is represented explicitly in states: it can
be used to check reachability of a target state for both the one- and the two-
player cases. Recall that GLU is of exponential size, and that reachability in a
graph is in NLOGSPACE. Hence, for the one-player case, a strategy for an LU-
energy-reachability game can be found on-the-fly in PSPACE, without explicitly
building the expanded arena. For the two-player case, recall that reachability
in two-player games is in PTIME w.r.t the size of the arena (by building an
attractor for the target states). We solve reachability in the exponential-size
arena GLU, which results in an EXPTIME algorithm.

For both the one- and the two-player settings, the hardness proofs for LU-
energy objectives are readily adapted to LU-energy-reachability objectives, since
they are based on reachability-like problems (reachability in bounded one-counter
automata [FJ13] and countdown games [JLS07], respectively).

Let us first show PSPACE-hardness of the LU-energy-reachability games
for the one-player setting. We reduce the question of reachability in bounded
one-counter automata to existence of a winning strategy in one-player LU-
energy-reachability games. A bounded one-counter automaton is a machine
M = (Q, q0, qf , δM ) with one counter c that stores values between 0 and an
integer upper bound b. The elements of the machine are its set of states Q,
an initial state q0, and a target state qf . Transitions in δ are tuples of the form
(q, p, g1, g2, q

′) where q and q′ are states in Q, p ∈ [−b, b] is an increment or
decrement of the counter, and g1, g2 ∈ [0, b] are lower- and upper bounds on the
value of c. The semantics of bounded one-counter automata is as follows: the ex-
ecution starts from configuration (q0, 0). A transition (q, p, g1, g2, q

′) can be fired
from some configuration (q, c) if g1 ≤ c ≤ g2; it leads to configuration (q′, c+ p).
The reachability question asks whether, starting from configuration (q0, 0), the
one-counter automaton can reach state qf .

We build a one-player LU-energy-reachability game with arena GM with set of
states Q′ = Q∪{qt,1, qt,2, qt,3, qt,4 | ∃t = (q, p, g1, g2, q

′) ∈ δM} and bounds [0, U ]
with U = b. The energy level in this game will simulate the value of the counter.
For every transition t = (q, p, g1, g2, q

′) ∈ δM , we create five transitions:

� two transitions (q,−g1, q
t,1) and (qt,1, g1, q

t,2) to test that c ≥ g1;

� two transitions (qt,2, U−g2, q
t,3) and (qt,3, g2−U, qt,4) to test that c ≤ g2;
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� one transition (qt,4, p, q′) to move to the next state q′ with an update of
the energy level.

Notice that the intermediate states have only one incoming- and one outgoing

transitions; we write (q, v)
[g1,g2],p
=====⇒ (q′, v + p) for the sequence

(q, v)
−g1−−→ (qt,1, v−g1)

g1−→ (qt,2, v)
U−g2−−−→ (qt,3, v+U−g2)

g2−U−−−→ (qt,4, v)
p−→ (q′, v+p),

provided that all intermediary configurations fulfill the LU-energy constraint.
We start the LU-energy-reachability game on GM with energy level 0. Assume

that there exists a winning run ρ from q0 to qf of the form

ρ = (q0, 0)
[g1,g2],p
=====⇒ (q′, p) . . . (qi, vi)

[gi,1,gi,2],pi
=======⇒ (qi+1, vi + pi) . . .

(qn−1, vn−1)
[gn−1,1,gn−1,2],pn−1
=============⇒ (qf , vn).

As ρ is a winning run for the LU-energy-reachability game with bounds
[0, U = b], we have that for every i, vi − gi,1 ≥ 0, so vi ≥ gi,1 ≥ 0 . Similarly,
we have vi + b − gi,2 ≤ b, so vi ≤ gi,2 ≤ b. The bounded character of LU-
energy-reachability game guarantees that qf is reached with a final energy level
vn ∈ [0, U ]. Now, if an energy level is such that vi ≤ gi,1 but vi ≥ gi,2, then

one can play moves (qi, vi)
−gi,1−→ (qq

′,1, vi − gi,1)
g1−→ (qq

′,2, vi), but the system

will get stuck in configuration (qq
′,2, vi). So there exists a winning run of M

starting from (q0, 0) and reaching qf iff there exists a winning run for the LU
game. Notice that GM has a size linear in the size of M . As one-counter
games are PSPACE-complete [FJ13], this shows PSPACE-hardness of one-player
LU-energy-reachability games.

We can now show EXPTIME-hardness of two-player LU-energy-reachability
games. We can show that existence of a winning strategy in countdown games
can be brought back to a LU-energy-reachability game. A countdown game is
a pair (S,E) where S is a set of states, and E ⊆ S ×N × S is a set of edges.
The game starts from a configuration (s0, c0), where s0 is an initial state and c0
the value of the unique counter in the game. Then, for every turn of the game,
from configuration (s, c), Player 1 chooses a value d such that 0 < d ≤ c, and such
that there exists at least one transition of the form (s, d, s′) ∈ E. This choice
is immediately followed by a choice of Player 2 to move to a state s′′ such that
(s, d, s′′) ∈ E. The configuration reached after this decision becomes (s′′, c− d).
A play is winning for Player 1 if it reaches a configuration of the form (s, 0).
On the other hand, Player 2 wins a play if it ends in a configuration (s, c) that
is deadlocked, i.e. such that c < d for every (s, d, s′) ∈ E . The problem whether
Player 1 has a winning strategy in a countdown game is EXPTIME-complete, as
shown in [JLS07].

We recast the winning strategy question in LU-energy-reachability games the
following way. We build an arena G = (Q1 ∪Q2, ELU). For every state s ∈ S,
we create a state qs ∈ Q1. Further, we add two particular states qt̂ and qt
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to Q1. Then, for every edge of the form (s, d, s′), we create a state qs,d in Q2.
For every edge (s, d, s′), we create an edge (qs,−d, qs,d) and an edge (qs,d, 0, q

′
s)

in ELU. Further, we create an edge (qs, 0, qt̂) from every state qs ∈ Q1, and
an edge (qt̂,+U, qt). We set as initial value of the arena c0, we take as lower
bound L = 0 and as upper bound U = c0. A winning play in arena G is a play ρ
of the form

(qs0 , c0)
−d1−→ (qs0,d1 , c0)

0−→ (qs1 , c1)
−d2−→ . . . (qsk , ck)

0−→ (qt̂, ck)
U−→ (qt, ck+U).

This play is winning if, and only if, all weights c0, c1, ..., ck and ck + U belong
to [0, U ], hence if, and only if, ck = 0. Then, ρ is winning if, and only if,

(s0, c0)
−d1−→ (s1, c1) . . . (sk, ck = 0) is winning. So, if Player 1 has a strategy to

win the LU-energy-reachability game starting from energy level c0, then the
countdown game is winning for Player 1 starting from configuration (s0, c0).

�

4. Energy reachability games with weak upper bound

Finding a strategy that satisfies an LW-energy constraint along an infinite
run is conceptually easy: it suffices to find a cycle that can be iterated once
with a positive effect. It follows that memoryless strategies are enough, and the
LW-energy problem was shown to be in PTIME for one-player arenas, and in
NP ∩ coNP for two-player arenas [BFL+08].

The situation is different when we have a reachability condition: players
may have to keep track of the exact energy level in order to find their way to
the target state. Obviously, considering the expanded arena GLW, we easily get
exponential-time algorithms for LW-energy-reachability objectives. However, as
proved below, in the one-player case, a PTIME algorithm exists.

Example 8. Consider the one-player arena of Fig. 5, where the lower bound
is L = 0, the weak-upper bound is W = 5, and the target state is qt. Starting
from q0 with initial credit 0, we first have to move to q1, and then iterate the
positive cycle β1 = (q1,+2, q2) · (q2,−2, q3) · (q3,+1, q1) three times, ending up
in q1 with energy level 3. We then take the cycle β2 = (q1,+2, q2) · (q2,−5, q4) ·
(q4,+5, q1), which raises the energy level to 5 when we come back to q1, so that we

q0 q1

q2q3 q4

qt
0

+2

−2

+1

−5

+5

−5

Figure 5: A one-player arena with LW-energy-reachability objective
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can reach qt. Notice that β1 has to be repeated three times before taking cycle β2,
and that repeating β1 more than three times maintains the energy level at 4,
which is not sufficient to reach qt. This suggests that Player 1 needs memory
and cannot rely on a single cycle to win LW-energy-reachability games.

This example shows that winning strategies for Player 1 may have to monitor
the exact energy level all along the computation, thereby requiring exponential
memory (assuming that all constants are encoded in binary; with unary encod-
ing, the expanded game GLW would have polynomial size and directly give a
polynomial-time algorithm).

Proposition 9. In LW-energy-reachability games, exponential memory may be
necessary for Player 1 (assuming binary-encoded constants).

Notice that this does not prevent from having PTIME algorithms: the strategy
in Example 8 is not very involved, but it depends on the energy level (up to W ).

4.1. One-player case

In this section, we focus on the one-player case. In order to get a polynomial-
time algorithm, we begin with analyzing cycles in the graph, and prove that
a path witnessing LW-energy reachability can have a special form, which can
be represented compactly in polynomial size. We then characterize interesting
cycles to iterate in order to efficiently search for interesting cycles to iterate.

4.1.1. Reshaping winning paths

In this section, we prove the following result:

Proposition 10. Let π be a finite path in a one-player arena G. There exists a
path π′ of the form α1 · ϕn1

1 · α2 · ϕn2
2 · · ·ϕ

nk

k · αk+1, where ϕj are distinct cycles
of length less than |Q|, αj are acyclic paths, and nj are integers, such that if

(q, u)
π−→LW (q′, u′), then also (q, u)

π′−→LW (q′, u′′) with u′′ ≥ u′.

We begin with a series of simple lemmas. Our first lemma states that starting
with higher energy level can only be beneficial:

Lemma 11. Let π be a finite path in a one-player arena G. If (q, u)
π−→LW (q′, u′),

then for any v ≥ u, (q, v)
π−→LW (q′, v′) for some v′ ≥ u′.

Proof. Write π = (ei)0≤i<n, with ei = (qi, pi, q
′
i) for each i. The sequence defined

as
u0 = u ui+1 = min(W,ui + pi)

is the sequence of energy levels along the run (q, u)
π−→LW (q′, u′), so that un = u′.

For v ≥ u, letting

v0 = v vi+1 = min(W, vi + pi),

we easily prove by induction that for all i, ui ≤ vi ≤ W , which entails that
(q, v)

π−→LW (q′, v′) with v′ = vn ≥ un = u′. �
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Notice that, even if we add condition u′ > u in the hypotheses of Lemma 11,
it need not be the case that v′ > v. In other terms, a sequence of transitions
may have a positive effect on the energy level from some configuration, and a
negative effect from some other configuration, due to the weak upper bound.
Below, we prove a series of results related to this issue, and that will be useful
for the rest of the proof. First, the effect of a given path (i.e., the net amount of
energy that is harvested) decreases when the initial energy level increases:

Lemma 12. Let π be a finite path in a one-player arena G, and consider two LW-
runs (q, u)

π−→LW (q′, u′) and (q, v)
π−→LW (q′, v′) with u ≤ v. Then u′ − u ≥ v′ − v,

and if the inequality is strict, then the energy level along the run (q, v)
π−→LW (q′, v′)

must have hit W .

Proof. The first statement is proven by induction: we again write π = (ei)0≤i<n,
with ei = (qi, pi, q

′
i) for each i, and

u0 = u ui+1 = min(W,ui + pi)

v0 = v vi+1 = min(W, vi + pi).

Then ui+1−ui = min(W −ui, pi) and vi+1−vi = min(W −vi, pi). Since ui ≤ vi
for all i, we also have W − ui ≥W − vi, and ui+1− ui ≥ vi+1− vi. By summing
up these inequalities, we get ui+1− u0 ≥ vi+1− v0. Now, as long as W − vi ≥ pi
(then also W − ui ≥ pi), the inequalities above are equalities. It follows that if

the inequality is strict, then the run (q, v)
π−→LW (q′, v′) must have hit W . �

The next lemma is more precise about the effect of following a path when
starting from the maximal energy level W :

Lemma 13. Let π be a finite path in a one-player arena G, for which there is
an LW-run (q, u)

π−→LW (q′, u′). If u′ is the maximal energy level along that run,

then (q,W )
π−→LW (q′,W ); if u is the maximal energy level along the run above,

then (q,W )
π−→LW (q′,W + u′ − u).

Proof. Write π = (ei)0≤i<n, with ei = (qi, pi, q
′
i) for each i. If u′ is the maximal

energy level, then for all i, we have
∑n−1
j=i pj ≥ 0. Now, define

v0 = W vi+1 = min(W, vi + pi).

If vn < W , then by induction we also have vi < W for all i, contradicting the
fact that v0 = W . This proves our first result.

Similarly, if u is the maximal energy level, then for all i, we have
∑i
j=0 pj ≤ 0.

Then for all i, vi+1 = vi + pi ≤W , so that vn − v0 = u′ − u. Our second result
follows. �

From Lemma 11, it follows that any run witnessing LW-energy reachability
can be assumed to contain no cycles with nonpositive effect. Formally:

Lemma 14. Let π be a finite path in a one-player arena G. If (q, u)
π−→LW (q′, u′)

and π can be decomposed as π1 ·π2 ·π3 in such a way that (q, u)
π1−→LW (s, v)

π2−→LW

(s, v′)
π3−→LW (q′, u′) with v′ ≤ v, then (q, u)

π1·π3−−−→LW (q′, u′′) with u′′ ≥ u′.
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Proof. Since (s, v′)
π3−→LW (q′, u′) and v′ ≤ v, by Lemma 11 we also have

(s, v)
π3−→LW (q′, u′′) for some u′′ ≥ u′. The result follows. �

The following lemmas show that several occurrences of a cycle having positive
effect along a path can be gathered together. This will be useful to prove the
existence of a short path witnessing LW-energy reachability.

Lemma 15. Let π be a finite path in a one-player arena G. If (q, u)
π−→LW (q′, u′)

with u′ > u and (q, w)
π−→LW (q′, w′) with w′ > w, then for any u ≤ v ≤ w, it holds

that (q, v)
π−→LW (q′, v′) with v′ > v.

Proof. Using Lemma 11, we immediately have (q, v)
π−→LW (q′, v′). As in the

previous proof, we define sequences

u0 = u ui+1 = min(W,ui + pi)

v0 = v vi+1 = min(W, vi + pi)

w0 = w wi+1 = min(W,wi + pi).

We still have ui ≤ vi ≤ wi for all i. Moreover, if vj < W for all j ≤ i, then
vi − ui = v − u. As a consequence, if v′ ≤ v, then it must be the case that
vj = W for some j; but then wj = vj , since vj ≤ wj ≤ W . It follows that
wk = vk for all k ≥ j, so at the end of π we have w′ = v′. Assuming v′ ≤ v
raises a contradiction since we have v′ = w′ > w ≥ v. Hence v′ > v. �

Lemma 16. Let π be a cycle on q such that (q, u)
π−→LW (q, v) for some u ≤ v.

Then (q, u)
πW−L

−−−−→LW (q, v′) for some v′ ≥ v, and (q, v′)
π−→LW (q, v′).

Proof. The case where u = v is trivial. We assume u < v. Applying Lemma 11
inductively, we get that the cycle can be iterated arbitrarily many times; this also
proves that the sequence of energy levels reached at the end of each iteration is
non-decreasing.

Now, assume that (q, v′)
π−→LW (q, v′′) for some v′′ 6= v′. Then v′′ > v′.

Lemma 15 then entails that the sequence of energy levels reached at the end
of each iteration is increasing. Since the loop has been iterated W − L times,
the energy level in v′′ would exceed W , which is impossible. This proves our
result. �

We now prove Prop. 10. Fix a path π in G, and assume that some cycle ϕ
appears (at least) twice along π (if not, then π is already in the desired form):
the first time from some configuration (q, v) to some configuration (q, v′), and
the second time from (q, w) to (q, w′). First, we may assume that ϕ has length
at most |Q|, since otherwise we can take an inner subcycle. We may also
assume that w > v′, as otherwise we can apply Lemma 14 to get rid of the
resulting nonpositive cycle between (q, v′) and (q, w). For the same reason we
may assume v′ > v and w′ > w. As a consequence, by Lemmas 15 and 11, by
repeatedly iterating ϕ from (q, v), we eventually reach some configuration (q, x)
with x ≥ w′, from which we can follow the suffix of π after the second occurrence
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of ϕ. It follows that all occurrences of ϕ along π can be grouped together, and
we can restrict our attention to runs of the form α1 · ϕn1

1 · α2 · ϕn2
2 · · ·ϕ

nk

k · αk+1

where the cycles ϕj are distinct, and have size at most |Q|, and the finite runs αj
are acyclic. Notice that each occurrence of any cycle ϕj can be assumed to have
positive effect, and by Lemma 16, we may assume nj = W − L for all j.

4.1.2. Characterizing interesting cycles

While Prop. 10 allows us to only consider paths of a special form, it does not
provide short witnesses, since there may be exponentially many cycles of length
less than or equal to |Q|, and the witnessing run may need to iterate several
cycles looping on the same state (see Example 8). In order to circumvent this
problem, we have to show that all cycles need not be considered, and that one can
compute the ”useful” cycles efficiently. For this, we introduce universal cycles,
which are cycles that can be iterated from any initial energy level (above L).

Definition 17. Let G be a one-player arena, and q be a state of G. Let W be a
weak-upper bound and L ≤W be a lower bound. A universal cycle on q in G is a

cycle ϕ with first(ϕ) = last(ϕ) = q such that (q, L)
ϕ−→LW (q, vϕ,L) for some vϕ,L

(i.e., the energy level never drops below the lower bound L when following ϕ with
initial energy level L). A universal cycle is positive if vϕ,L > L.

When a cycle ϕ is iterated W−L times in a row, then some universal cycle σ is
also iterated W −L−1 times (by considering the state with minimal energy level
along ϕ). As a consequence, iterating only universal cycles is enough: we may
now only look for runs of the form β1 · σn1

1 · β2 · σn2
2 · · ·σ

nk

k · βk+1 where σj ’s are
universal cycles of length at most |Q|. Now, assume that some state q admits
two universal cycles σ and σ′, and that both cycles appear along a given run π.
Write h (resp. h′) for the energy levels reached after iterating σ (resp. σ′) W −L
times. We define a preorder on universal cycles of q by letting σ . σ′ when h ≥ h′.
Then if σ . σ′, each occurrence of σ′ along π can be replaced with σ, yielding a
run π′ that still satisfies the LW-energy condition (and has the same first and
last states). Generalizing this argument, each state that admits universal cycles
has an optimal universal cycle of length at most |Q|, and it is enough to iterate
only this universal cycle to find a path witnessing reachability. This provides us
with a small witness, of the form γ1 · τW−L1 · γ2 · τW−L2 · · · τW−Lk · γk+1 where τj
are optimal universal cycles of length at most |Q| and γj are acyclic paths. Since
it suffices to consider at most one universal cycle per state, we have k ≤ |Q|. From
this, we immediately derive an NP algorithm for solving LW-energy reachability
for one-player arenas: it suffices to non-deterministically select each portion of
the path, and compute that each portion is LW-feasible (notice that there is no
need for checking universality nor optimality of cycles; those properties were
only used to prove that small witnesses exist). Checking LW-feasibility requires
computing the final energy level reached after iterating a cycle W − L times;
this can be performed by detecting the highest energy level along that cycle, and
computing how much the energy level decreases from that point on until the end
of the cycle. This provides us with a way of accelerating the computation of the
effect of iterating cycles.

16



We now prove that optimal universal cycles of length at most |Q| can be
computed for a given state q0. For this we unwind the graph from q0 as a DAG
of depth |Q|, so that it includes all cycles of length at most |Q|. We name the
states of this DAG [q′, d], where q′ is the name of a state of the arena and d is
the depth of this state in the DAG (using square brackets to avoid confusion
with configurations (q, l) where l is the energy level); hence there are transitions
([q′, d], w, [q′′, d+ 1]) in the DAG as soon as there is a transition (q′, w, q′′) in the
arena.

We then explore this DAG from its initial state [q0, 0], looking for (paths
corresponding to) universal cycles. Our aim is to keep track of all runs from [q0, 0]
to [q′, d] that are prefixes of universal cycles starting from q0. Actually, we do
not need to keep track of those runs explicitly, and it suffices for each such run
to remember the following two values:

� the maximal energy level M that has been observed along the run so far
(starting from energy level L, with weak upper bound W );

� the difference m between the maximal energy level M and the final energy
level in [q′, d]. Notice that m ≥ 0, and that the final energy level in [q′, d]
is M −m.

Example 18. Figure 6 shows two universal cycles from q0 in an LW-energy
game with L = 0 and W = 5. The first cycle, going via q2, ends with M1 = 5
(reached in q2) and m1 = 4, thus with a final energy level of 1 (when starting
from energy level 0); actually, iterating this cycle will not improve this final
energy level. The second cycle, via q4 and q5, has a maximal energy level M2 = 4
(reached in q3) and ends with m2 = 1. Hence, after one iteration of this cycle,
one can end in state q0 with energy level W −m2 = 4.

q0 q1

q2q3

q4

q5

+2

+3

−3

−1

−1

+2

+1

1 2 3 4 5

1

2

3

4

5W =

0
q0

q1

q2

q3

q0q4

q5

q3

q0

depth

energy

Figure 6: Two cycles with upper bound W = 5

If we know the values (M,m) of some path from [q0, 0]) to [q′, d], we can
decide if a given transition with weight w from [q′, d] to [q′′, d+ 1] can be taken
(the resulting path can still be a prefix of a universal cycle if M −m+ w ≥ L ),
and how the values of M and m have to be updated: if w > m, the run will reach
a new maximal energy level, and the new pair of values is (min(W ;M−m+w), 0);
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if m + L −M ≤ w ≤ m, then the transition can be taken: the new energy
level M −m+w will remain between L and M , and we update the pair of values
to (M,m− w); finally, if w < m+ L−M , the energy level would go below L,
and the resulting run would not be a prefix of a universal cycle.

Following these ideas, we inductively attach labels to the states of the DAG:
initially, [q0, 0] is labelled with (M = L,m = 0); then if a state [q′, d] is labelled
with (M,m), and if there is a transition from [q′, d] to [q′′, d+ 1] with weight w:

� if w > m, then we label [q′′, d+ 1] with the pair (min(W ;M −m+ w), 0);

� if m+ L−M ≤ w ≤ m, we label [q′′, d+ 1] with (M,m− w).

The following lemma makes a link between runs in the DAG and labels
computed by our algorithm:

Lemma 19. Let [q, d] be a state of the DAG, and M and m be two integers
such that 0 ≤ m ≤ M − L. Upon termination of this algorithm, state [q, d] of
the DAG is labelled with (M,m) if, and only if, there is an LW-run of length d
from (q0, L) to (q,M −m) along which the energy level always remains in the
interval [L,M ] and equals M at some point.

Proof. The proof is by induction on d. The result is trivial for d = 0. Now,
assume it holds for some depth d − 1, and pick a state [q, d]. For the first
direction, if [q, d] is labelled with (M,m), then this label was added using some
transition ([q′, d−1], w, [q, d]) and some label (M ′,m′) of [q′, d−1]. By induction,
there is an LW-run ρ of length d − 1 from (q0, L) to (q′,M ′ −m′) in G along
which the energy level remains in the interval [L,M ′]. We consider two cases,
corresponding to the two ways of updating the pair of values:

� if w > m′, then we have M = min(W,M ′ −m′ + w) and m = 0. Now,
the transition ([q′, d − 1], w, [q, d]) in the DAG originates from a transi-
tion (q′, w, q) in G; taking this transition after ρ provides us with the run
of length d from (q0, L) to (q,M −m) along which the energy level remains
in [L,M ], as required;

� if m′ + L−M ′ ≤ w ≤ m′, then M = M ′ and m = m′ − w. Again, taking
transition (q′, w, q) after ρ provides us with the LW-run we are looking for.

Conversely, if there is an LW-run ρ of length d from (q0, L) to (q,M −m)
along which the energy level always remains in the interval [L,M ], then we write
ρ = ρ′ · ((q′, l′), w, (q,M −m)), distinguishing its last transition. By induction,
[q′, d− 1] must have been labelled with a pair (M ′,m′) such that l′ = M ′ −m′
and the energy level along ρ′ remained within [L,M ′]. Now, from the existence
of a transition ((q′, l′), w, (q,M −m)), we know that there is a transition ([q′, d−
1], w, [q, d]) in the DAG, which will generate the required label of [q, d]. �

Lemma 20. Let [q0, d] be a state of the DAG, with d > 0. Let m be a nonnegative
integer such that L+m < W . Upon termination of this algorithm, state [q0, d]
is labelled with (M,m) for some M > L+m if, and only if, there is a universal

cycle ϕ on q0 of length d such that (q0, L)
ϕW−L

−−−−→LW (q0,W −m).
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Proof. First assume that [q0, d] is labelled with (M,m) for some M such that
M −m > L. From Lemma 19, there is a cycle ϕ on q0 of length d generating

a run (q0, L)
ϕ−→LW (q0,M −m) along which the energy level is within [L,M ].

Then M−m ≥ L, so that Lemma 16 applies: we then get (q0, L)
ϕW−L

−−−−→LW (q0, E)

with (q0, E)
ϕ−→LW (q0, E) and E ≥ L. Write (pi)0≤i<|ϕ| for the sequence of

weights along ϕ. Also write ρ for the run (q0, L)
ϕ−→LW (q0,M −m), and σ for

the run (q0, E)
ϕ−→LW (q0, E).

As L < M −m, then by Lemma 12, it must be the case that energy level W
is reached along σ. Write i0 for the first position along ρ for which the energy
level is M . Assume σ̃i0 6= W : by Lemma 11, we must have M = ρ̃i0 ≤ σ̃i0 < W .

Then for all k ≥ i0,
∑k
l=i0

pl ≤ 0. Since σ̃i0 < W , then also σ̃k < W for
all k ≥ i0. According to Lemma 12, energy level W is reached in σ, so there
exists some k0 < i0 such that σ̃k0 = W . However, as i0 is the index of the first
maximal value in ρ, we have ρ̃k0 < M , and the energy level increases in run ρ
between k0 and i0. So according to Lemma 13, we should have σ̃i0 = W , which
raises a contradiction. Hence we proved σ̃i0 = W ; applying the second result of
Lemma 13, we get E = W −m.

Conversely, if there is a universal cycle ϕ satisfying the conditions of the
lemma, then it must have positive effect when run from energy level L. Let F be

such that (q0, L)
ϕ−→LW (q0, F ), and M be the maximal energy level encountered

along the run (q0, L)
ϕ−→LW (q0, F ). By Lemma 19, state [q0, d] is labelled

with (M,m′) for some m′ ≥ 0 such that F = M −m′. By Lemma 16, we must

have (q0, L)
ϕW−L

−−−−→LW (q0,W −m′). �

The algorithm above computes optimal universal cycles, but it still runs in
exponential time (in the worst case) since it may generate exponentially many
different labels in each state [q, d] (one per path from [q0, 0] to [q, d]). We now
explain how to only generate polynomially-many pairs (M,m). This is based
on the following partial order on labels: we let (M,m) � (M ′,m′) whenever
M −m ≤M ′ −m′ and m′ ≤ m. Notice in particular that

� if M = M ′, then (M,m) � (M ′,m′) if, and only if, m′ ≤ m;

� if m = m′, then (M,m) � (M ′,m′) if, and only if, M ≤M ′.

The following lemma entails that it suffices to store maximal labels w.r.t. �:

Lemma 21. Consider two paths π and π′ such that first(π) = first(π′) and
last(π) = last(π′), and with respective values (M,m) and (M ′,m′) such that
(M,m) � (M ′,m′). If π is a prefix of a universal cycle ϕ, then π′ is a prefix of
a universal cycle ϕ′ with ϕ′ . ϕ.

Proof. Let q = first(π) and q′ = last(π). We write ψ for the path such that

ϕ = π ·ψ (i.e., ψ is a path from q′ to q). Then (q, L)
π−→LW (q′,M−m)

ψ−→LW (q, F )

for some F ≥ L. Also, (q, L)
π′−→LW (q′,M ′ −m′). Since M −m ≤ M ′ −m′,
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we have (q′,M ′ −m′) ψ−→LW (q, F ′), and F ≤ F ′. We can thus let ϕ′ = π′ · ψ:
by Lemma 11, the final energy level reached after iterating ϕ′ is higher than or
equal to the energy level reached after iterating ϕ, since m′ ≤ m. Hence ϕ′ . ϕ.

�

It remains to prove that by keeping only maximal labels, we only store a
polynomial number of labels:

Lemma 22. If the algorithm labelling the DAG only keeps maximal labels
(for �), then it runs in polynomial time.

Proof. We prove that, when attaching to each node [q, d] of the DAG only the
maximal labels (w.r.t �) reached for a path of length d ending in state q, the
number of values for the first component of the different labels that appear at
depth d > 0 in the DAG is at most d · |Q|. Since it only stores optimal labels,
our algorithm will never associate to a state [q, d] two labels having the same
value on their first component. So, any state at depth d will have at most d · |Q|
labels.

So we prove, by induction on d, that the number of different values for the
first component among the labels appearing at depth d > 0 is at most d · |Q|.
This is true for d = 1 since the initial state (q, 0) only contains (M = 0,m = 0),
and each transition with nonnegative weight w will create one new label (w, 0)
(transitions with negative weight are not prefixes of universal cycles). Now, since
all those labels have value 0 as their second component, each state [q, 1] in the
DAG will be attached at most one label. Hence, the total number of labels (and
the total number of different values for their first component) is at most |Q| at
depth 1 in the DAG.

Now, assume that labels appearing at depth d > 1 are all drawn from a set
of labels {(Mi,mi) | 1 ≤ i ≤ n} in which the number of different values of Mi is
at most d · |Q|. Consider a state [q′, d], labelled with {(Mi,mi) | 1 ≤ i ≤ nq′,d}
(even if it means reindexing the labels). Pick a transition from [q′, d] to [q′′, d+1],
with weight w. For each pair (Mi,mi) associated with [q′, d], it creates a new
label in [q′′, d+ 1], which is

� either (min(W ;Mi−mi+w), 0) if mi < w (maximal energy level increases);

� or (Mi,mi − w) if mi + L − Mi ≤ w ≤ mi (maximal energy level in
unchanged).

Now, for a state (q′′, d+ 1), the set of labels created by all incoming transitions
can be grouped as follows:

� labels having zero as their second component; among those, our algorithm
only stores the one with maximal first component, as (Mi, 0) � (Mj , 0) as
soon as Mi ≤Mj ;

� for each Mi appearing at depth d, labels having Mi as their first component;
again, we only keep the one with minimal second component, as (M,mi) �
(M,mj) when mj ≤ mi.
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Last, for this state [q′′, d+ 1], we keep at most one label for each distinct value
among the first components Mi of labels appearing at depth d, and possibly one
extra label with second value 0. In other terms, at depth d+ 1 the values that
appear as first component of labels are obtained from values at depth d, plus
possibly one per state; Hence, at depth d+ 1, there exists at most (d+ 1) · |Q|
labels, which completes the proof of the induction step. �

Using the algorithm above, we can compute, for each state q of the original
arena, the smallest value mq for which there exists a universal cycle on q that,
when iterated sufficiently many times, leads to configuration (q,W −mq). Since
universal cycles can be iterated from any energy level, if q is reachable, then it
is reachable with energy level W −mq. We make this explicit by adding to our
arena a special self-loop on q, labelled with set(W −mq), which sets the energy
level to W −mq (in the same way as recharge transitions of [EF13]).

In the resulting arena, we can restrict to paths of the form γ1 · ν1 · γ2 ·
ν2 · · · νk · γk+1, where νi are newly added transitions labelled with set(W −m),
and γi are acyclic paths. Such paths have length at most (|Q|+ 1)2. We can
then inductively compute the maximal energy level that can be reached (under
our LW-energy constraint) in any state after paths of length less than or equal
to (|Q|+ 1)2. This can be performed by unwinding (as a DAG) the modified
arena from the source state q0 up to depth (|Q|+ 1)2, and labelling the states of
this DAG (and in particular target states if they are reachable) by the maximal
energy level with which that state can be reached from (q0, L); this is achieved
in a way similar to our algorithm for computing the effect of universal cycles,
but this time only keeping the maximal energy level that can be reached (under
LW-energy constraint). As there are at most |Q| states per level in this DAG of
depth at most (|Q|+ 1)2, we get:

Theorem 23. The existence of a winning path in one-player LW-energy-reachability
games can be decided in PTIME.

Example 24. Consider the one-player arena of Fig. 7. We assume L = 0, and
fix an even weak upper bound W . The state s has W/2 disjoint cycles: for each
odd integer i in [0;W − 1], the cycle ci is made of three consecutive edges with
weights −i, +W and −W + i+ 1. Similarly, the state s′ has W/2 disjoint cycles:
for even integers i in [0;W −1], the cycle c′i has weights −i, +W and −W + i+1.
Finally, there are: two sequences of k edges of weight 0 from s to s′ and from s′

to s; an edge from the initial state to s of weight 1, and from s′ to target state
qt of weight −W . The total number of states then is 2W + 2k + 2.

In order to go from the initial state q0, with energy level 0, to the final state qt,
we have to first take the cycle c1 (with weights −1, +W , −W + 2) on s (no other
cycles ci can be taken). We then reach configuration (s, 2). Iterating c1 has no
effect, and the only next interesting cycle is c2, for which we have to go to s′.
After running c2, we end up in (s′, 3). Again, iterating c2 has no effect, and we
go back to s, take c3, and so on. We have to take each cycle ci (at least) once,
and take the sequences of k edges between s and s′ W/2 times each. In the end,
we have a run of length 3W +Wk + 2.
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q0 qt

s s′

1 −W
k edges

weight=0

k edges

weight=0

−i; +W ;−W + i+ 1

(i odd)

−i; +W ;−W + i+ 1

(i even)

Figure 7: An example showing that more than one cycle per state can be needed.

Let us look at the universal cycles that we have in this arena: besides the
cycles made of the 2k edges with weight zero between s and s′, the only possible
universal cycles have to depart from the first state of each cycle ci (as they are
the only states having a positive outgoing edge). Following Lemma 16, such
cycles can be iterated arbitrarily many times, and set the energy level to some
value in [L;W ]. Since the only edge available at the end of a universal cycle
has weight +W , the exact value of the universal cycles is irrelevant: the energy
level will be W anyway when reaching the second state of each cycle ci. As a
consequence, using set-edges in this example does not shorten the witnessing run,
which then cannot be shorter than 3W +Wk + 2.

4.2. Two-player case

We now move to the two-player setting. We begin with proving a result
similar to Lemma 11:

Lemma 25. Let G be a two-player arena, equipped with an LW-energy-reachability
objective. Let q be a state of G, and u ≤ u′ in [L;W ]. If Player 1 wins the game
from (q, u), then she also wins from (q, u′).

Proof. Let σ be a winning strategy for Player 1 from (q, u). If she plays the same
strategy from (q, u′), then for any strategy of Player 2, the resulting outcome
from (q, u′) follows the same transitions as the outcome of the same strategies
from u, with higher energy level. Since σ is winning from (q, u), it is also winning
from (q, u′). �

By Martin’s theorem [Mar75], our games are determined. It follows that
if Player 2 wins from some configuration (q, v), she also wins from (q, v′) for
all L ≤ v′ ≤ v (assuming the contrary, i.e. (q, v′) winning for Player 1, would
lead to the contradictory statement that (q, v) is both winning for Player 1 and
Player 2). Using classical techniques [CD12], we prove that Player 2 can be
restricted to play memoryless strategies:

Proposition 26. For two-player LW-energy-reachability games, memoryless
strategies are sufficient for Player 2.
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Proof. According to Lemma 25, for each state q, there is an integer vq ∈ [L;W+1]
such that Player 1 wins the game from any configuration (q, v) satisfying vq ≤ v ≤
W , while Player 2 wins the game from any configuration (q, v) with L ≤ v < vq.

Assume that Player 2 wins the game from some state (q, v), with L ≤ v < vq.
Denote with (q, pi, qi)1≤i≤m the set of outgoing transitions from q. By definition
of vqi , Player 1 wins the game from any configuration of the form (qi, v) with
v ≥ vqi . Since Player 2 wins from (q, v), there must exist an index 1 ≤ i ≤ m such
that v+pi < vqi . This defines a winning move for Player 2 from (q, v). The same
argument applies in all states, and yields a memoryless winning strategy for
Player 2. �

A direct consequence of this result and of Theorem 23 is the following:

Corollary 27. Two-player LW-energy-reachability games are in coNP.

Whether those games can be solved in NP or are coNP-hard remains an open
question.

5. Energy reachability games with soft upper bound

We now consider games with limited violations, i.e. (reachability) games

with LSU#-energy, LSU#-energy and LSUΣ-energy objectives. We address the
problems of deciding the winner in the one-player and two-player settings, and
consider the existence and minimization questions.

Theorem 28. LSU#-energy, LSU#-energy and LSUΣ-energy (reachability) games
are PSPACE-complete for one-player arenas, and EXPTIME-complete for two-
player arenas.

Proof. Membership in PSPACE and EXPTIME can be obtained by building a
variant GLSU of the GLU arena: besides storing the energy level in each state,
we can also store the amount of violations (for any of the three measures we
consider). More precisely, given an arena G, lower and upper bounds L and U
on the energy level, a soft bound S, and a bound V on the measure of violations,
for any of our three measures of violations, the maximal energy level that can be
reached along a path with violations smaller than or equal to V is S + V ·wmax,
where wmax is the maximal weight in our arena; for this reason, we may assume
that U ≤ S + V · wmax. We then define a new arena2 GLSU with set of states
(Q× ([L;U ]∪{⊥})× ([0;V ]∪{⊥})3), and each transition (q, w, q′) of the original
arena generates a transition from state (q, l, (n, c, s)) to state (q′, l′, (n′, c′, s′))
whenever

� l′ correctly encodes the evolution of the energy level:

– l′ = l + w if l and l + w are in [L;U ];

2In order to factor our proof, we store all three measures of violations in one single arena.
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– l′ = ⊥ if either l = ⊥ or l + w < L or l + w > U ;

� n′ correctly stores the number of violations:

– n′ = ⊥ if l′ = ⊥ or n = ⊥;

– n′ = n if l′ ∈ [L;S];

– n′ = n+ 1 if l′ ∈ (S;U ] and n+ 1 ≤ V ;

– n′ = ⊥ if l′ ∈ (S;U ] and n+ 1 > V .

� c′ is updated to count the current number of consecutive violations:

– c′ = ⊥ if l′ = ⊥ or c = ⊥;

– c′ = 0 if l′ ∈ [L;S];

– c′ = c+ 1 if l′ ∈ (S;U ] and c+ 1 ≤ V ;

– c′ = ⊥ if l′ ∈ (S;U ] and c+ 1 > V .

� s′ encodes the sum of all violations:

– s′ = ⊥ if l′ = ⊥ or s = ⊥;

– s′ = s if l′ ∈ [L;S];

– s′ = s+ (l′ − S) if l′ ∈ (S;U ] and s+ (l′ − S) ≤ V ;

– s′ = ⊥ if l′ ∈ (S;U ] and s+ (l′ − S) > V .

In this arena, n, c and s keep tack of the number of violations, number of
consecutive violations, and sum of violations; their values are set of ⊥ as soon
as they exceed the violation bound V , or if the energy level has left its range of
allowed values [L;U ]. The arena GLSU is of exponential size, and our LSU?-energy-
reachability problems can be reduced to solving reachability of the relevant set
of states in that arena (e.g., Player 1 wins the LSU#-energy reachability game if,
and only if, she wins in the modified game GLSU for the objective of reaching the
target set without visiting states where n = ⊥).

Our hardness results are proved by setting the number/amount of allowed
violations to zero, thereby recovering the classical LU-energy-reachability games,
which were proved PSPACE-complete and EXPTIME-complete for one-player and
two-player arenas, respectively.

Solving LSU#-energy, LSU#-energy, LSUΣ-energy infinite-duration games can
be performed with arena GLSU built above. Now, the objective in LSU#-energy,

LSU#-energy, LSUΣ-energy games is to enforce infinite runs, that avoid states
with l = ⊥ and with n = ⊥, c = ⊥ or s = ⊥, depending on the chosen criterion
on violation. Again, these strategies can be found in PSPACE for the one-player
case, and in EXPTIME in the two-player case. For the hardness part, reduction
from LU-energy games obtained by setting V = 0 still applies. �
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Remark 29. In our proof, the strong upper bound U is given as input. We could
also assume that no such upper bound is given: if the amount of violations is
bounded by V along a run, then the maximal energy level that can be reached in

LSU#-energy, LSU#-energy games is bounded by S + V · wmax, where wmax is
the maximal weight of transitions in G, and by S + V in LSUΣ-energy games.
As games that are winning for a strong upper bound U are also winning with
strong upper bound U+1, we can prove existence of a bound by solving a game
with this maximal energy levels as strong upper bound. We can even compute
the smallest U for which Player 1 wins a given LSU?-energy game using binary
search. LSU?-energy games and their bound existence problems hence have the
same PSPACE and EXPTIME complexities.

6. Existence of bounds for Energy Games

In this section we address the problems of existence and computation of
upper bounds U under which Player 1 has a winning strategy in energy games.

6.1. Existence of bounds for reachability games

The case of energy-reachability is trivial: as soon as there exists a winning
strategy for L-energy-reachability, the maximal energy level along any outcome
can serve as a bound for LW-energy- and LU-energy-reachability games. As a
consequence:

Proposition 30. The upper-bound- and weak-upper-bound existence problems
for energy-reachability games are decidable in PTIME for one-player arenas and
in NP ∩ coNP for two-player arenas.

Noticing that from a configuration (q, L + |Q|.wmax) where wmax is the
maximal absolute value of a weight in the arena, one can reach any state qt
connected to q, we can give a bound on the maximal value of strong and weak
upper bounds in energy-reachability games. Even if the path from q to qt is
composed only of negative transitions, an energy level of L+ |Q|.wmax allows to
reach qt without reaching an energy level below L. Similarly, if the path from q
to qt is composed only of positive transitions, the value of energy can reach a
level up to L+2 · |Q| ·wmax. Using binary search in interval [L,L+2 · |Q| ·wmax],
we can hence find minimal strong upper bounds for energy-reachability games
with one-player arenas in PSPACE, and weak upper bounds in PTIME.

A similar reasoning can be applied in the two-player setting, based on the
doubly-exponential bound given by [BHM+17, Lemma 2]. Again using binary
search, the optimal bounds can then be computed in EXPTIME.

6.2. Existence of bounds for infinite-duration games

In this section, we focus on the existence of upper bounds for infinite-duration
games.
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6.2.1. LU-energy games

We begin with LU-energy constraints, for which we prove the following result:

Theorem 31. Given an arena G and a lower bound, deciding whether there
exists an upper bound U such that the LU-energy game is winning for Player 1 is
decidable in NP for one-player arenas, and in 2 -EXPTIME for two-player arenas.

Proof. The existence of an upper-bound for two-player multiweighted LU-energy
games where energy levels and bounds are defined as a k-dimensional vector of
energy levels, has been shown decidable in 2k -EXPTIME in [JLR13]. Using this
result we immediately get that the existence of an upper-bound for two-player
LU-energy games is decidable in 2 -EXPTIME.

We now focus on the one-player case, and prove that it is decidable in NP.
As a first step, assuming that an infinite path along which the energy level
remains bounded exists, we prove that it can be detected by looking for adequate
cycles (and whether they are reachable).

Indeed, assume that such a witness path exists from some given configura-
tion (q0, l0); then there must be a configuration (q, l) occurring at least twice
along that path, so that there is a witness path of the form ρ1 · ρω2 , where ρ2 is a
zero-cycle. Then two cases may occur:

(i) either ρ2 contains a simple zero-cycle: in that case, that simple cycle can
be iterated after some initial prefix (and with some initial energy level). So
in that case, there is a witness path of the form ρ1 · ρω2 where ρ2 is a simple
zero-cycle; we can additionally assume that ρ2 is universal (see Def. 17),
i.e., that the energy level along ρ2 is always above the initial energy level.

(ii) or, if ρ2 does not contain a simple zero-cycle, it must contain at least one
simple positive cycle σ1 and at least one simple negative cycle σ2. Then
clearly enough two such cycles (and some acyclic paths α1→2 and α2→1

connecting between) suffice to get an infinite run in which energy level
remains bounded (and above L): σ1 can be iterated to gain energy, and
when the energy level is high enough the path goes through α1→2 to σ2,
possibly cycling along σ2 as long as there remains enough energy to
take α2→1 and reach σ1 again. Then again, there exists a witness path
of the form ρ1 · ρω2 where ρ2 is a universal 0-cycle starting with a positive
simple cycle σ1.

Our NP algorithm will then non-deterministically select

� a candidate state q0 to be the first state of ρ2;

� either a candidate universal simple 0-cycle starting in q0, in order to witness
Condition (i), or a candidate universal simple positive cycle starting at q0

and a candidate negative simple cycle reachable and co-reachable from q0,
in order to witness Condition (ii),

and check that those candidate indeed satisfy the requirements, including the fact
that q0 is reachable from the initial state. Those verifications can be performed
in polynomial time, so that our algorithm is indeed in NP. �
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6.2.2. LW games

In [JLR13], the authors show how to find a minimal bound for multi-
dimensional energy games with weak upper bounds. Multi-dimensional energy
games are weighted games in which transitions are labeled by k-vectors of weights.
Accordingly, configurations are pairs of the form (q,~v) where ~v is a vector of inte-
gers of dimension k. The paper first recalls that the set MinW of k-dimensional
vectors that are winning for LW-energy games and are minimal (w.r.t. compo-
nentwise vector comparison) is upward-closed, and effectively computable, using
a coverability tree.

The technique obviously applies to our LW-energy games, which are games
of dimension 1. However, with games of dimension 1, one needs not build a
coverability tree, and we propose below a more efficient technique to check
existence of a weak upper energy bound allowing a winning strategy.

Theorem 32. Existence of a bound for an LW-energy game can be decided in
PTIME for single player, and in NP ∩ coNP for two players.

Proof. We proceed in two steps. We first prove that if a weak bound exists for an

LW-energy game, then there is a bound smaller or equal to KW = w2
max.

|Q|.|Q−1|
2 .

We then show that knowing KW , one can apply relaxation techniques to find
whether a bound lower than KW exists.

Lemma 33. Let G be an arena and L be a lower bound. There, if there exists
a weak upper bound W such that an LW-energy game is winning for player 1,

then there exists a bound smaller than KW = w2
max.

|Q|.|Q−1|
2 , where wmax is the

maximal absolute value of weights in G.

Proof. We establish the bound KW by analyzing the shape of a coverability tree
of the arena, following the construction proposed by [JLR13]. A coverabilty tree
is a structure T = (N,λ,→) where N is a set of nodes, λ is a labeling (a pair
of state and vector of dimension k). The construction of a coverability tree is
performed inductively, and starts from the initial node n0 with λ(n0) = (q0, 0

k).
Each node n with λ(n) = (q,v) has a successor n with λ(n′) = (q′,v′) if there
exists a transition (q, p, q′) and v = v′+ p (where v is a k−dimensional vector of
energy levels, and p a k−dimensional vector of weights). The construction stops
as soon as one component in v′ is negative (this node is losing, and witnesses
a violation of the lower bound), or if (q′,v′) has a predecessor n′′ in its path
from n0 such that λ(n′′) = (q′,v′′) with v′′ ≤ v′ (this node is said winning).
Configurations form a well-quasi-order, so the construction of this coverability
tree eventually terminates. Then Player 1 wins the game iff it has a strategy to
guide a run to a winning configuration from n0. Indeed, if Player 1 can enforce
a run ρ from q0 to some state q and then a cycle ϕ on q, then he can repeat it
an arbitrary number of times, as the energy levels on all components increase.
Now, it remains to fix the weak upper bounds. Taking as upper bounds W [1..k]
the maximal energy levels reached along the winning path from q0 and during
the first iteration of the cycle does not prevent any transition of path ρ.ϕ, nor
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of any path of the form ρ.ϕk for any value of k. So W gives safe upper bounds
on all components. Conversely, if Player 1 cannot avoid a loosing configuration,
then he looses the game.

For the single player case, it is hence sufficient to find a path to a winning
configuration in the tree, hence find a run which size is at most the height of the
coverability tree. Similarly, in the two-player setting, Player 1 has to enforce
winning paths, that have the same maximal height.

One can notice that in dimension 1, along a run, if a configuration (q, v)
appears, then there can be at most v occurrences of configurations of the form
(q, v′) that are incomparable with their predecessors. Indeed, every configuration
of the form (q, v′) such that v′ ≥ v is greater than (q, v). The first nodes
immediately after n0 are of the form n1 with λ(n1) = (q1, v1), where v1 ≤ wmax.
Along a path n0.n1 . . . , the next occurrence of a node nk referring to a state
different from q1 occurs at latest wmax steps after n1, i.e. in a node with
label λ(Nk) = (qk, vk) with vk ≤ 2.wmax, and so on. Hence the maximal
size of path in the coverability tree is bounded by the size of a shuffle of
sequences (qi, wi)(qi, wi − 1) . . . of similar states with decreasing weight (one

sequence per state), where wi ≤ i.wmax and bounded by LTG
=
∑|Q|−1
i=1 i.wmax =

wmax.
|Q|.|Q−1|

2 . So KW = w2
max.

|Q|.|Q−1|
2 . �

Now building the coverability tree for an energy game with a single weight is
not useful. In the worst case, checking for existence of a winning path (or of a
winning strategy) may require to explore a tree of size in O(QLTG ), which can
be very inefficient. We now show how to check existence of a weak upper energy
bound smaller than KW in PTIME.

We recall that if Player 1 wins a LW-energy game with a weak bound W ,
she wins for every bound W ′ ≥W . Similarly, if Player 1 loses a LW-energy game
with a weak bound W , she loses for every bound W ′ ≤W . For a single player,
the algorithm of [BFL+08] decides whether a LW-energy game is winning for a
given bound B in PTIME (for a single player). It uses a modified version of the
Bellman-Ford algorithm, to detect lassos where the cyclic part is a positive cycle.
Interestingly, in this algorithm, the bound B is only used during relaxation :
the maximal energy E(q, q′) needed to go from q to q′ via transition (q′′, p, q′)
is min(B,E(q, q′′) + p) if E(q, q′) ≤ E(q, q′′) + p. The Bellman-Ford Algorithm
runs performs O(|Q|3) relaxations, hence runs in O(|Q|3.r) where r is the cost
of a relaxation. However, the number of relaxations does not depend on bound
B. Relaxation computes a minimal value between two integers smaller than
B, which can be done in O(logB). As in our case we run the algorithm with
B = KW , our algorithm runs in O(|Q|3. log(wmax.Q)). Hence checking existence
of a weak bound for a single player can be done in PTIME w.r.t. the size of G.
If the answer is negative, then following the results of [JLR13], no bounds exist.

For the two-player case, strategies are simple: if the energy level is too low to
reach a winning configuration, then Player 1 should play to accumulate energy,
and otherwise she should play to move to a winning configuration. Hence, finding
a strategy simply consists in deciding for each states q a pair of states ( qe for the
energy accumulation strategy, qp for the game progress) and a threshold value
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vt allowing to choose to move to qe or to qt. One can hence guess a strategy
σ : Q× [L,KW ]→ Q for Player 1 in PTIME, and then verify that its opponent
has no strategy to violate the lower bound (i.e that no configuration (q, v) with
v < L is reachable. This can be done again using the Bellman-Ford algorithm,
that in addition to computing shortest paths, detects negative cycles. Conversely,
one can guess a strategy for Player 2, and use the algorithm above for a single
player. The two-player case is hence in NP ∩ coNP.

Remark 34. Since we can derive an exponential upper bound Umax on the values
of U that allow winning outcomes in LU-energy games or LSU?-energy games,
and Wmax on the values of W in LW-energy games, we can give algorithms to
characterize optimal values for those bounds: checking that a given value B is
optimal is achieved by checking that B is indeed a valid bound, and that B − 1
is not. Computing such optimal bounds can be performed using binary search,
which requires a polynomial number of such verifications.

In the one-player LW-energy games setting, checking that a given value W is
the optimal weak-upper bound can be achieved in polynomial time. For one-player
LU-energy games, checking that a given value U is the optimal strong upper bound
is in DP. In two-player LU-energy games, checking optimality of a strong upper
bound is in EXPTIME. For weak upper bounds in two-player LW-energy games,
since checking the existence of an infinite run for a fixed weak upper bound is in
NP ∩ coNP (see [BFL+08]), we can guess and check polynomial certificates that
a given bound B is valid and that B − 1 is not, and symmetrically. So checking
whether a given bound is the optimal weak upper bound is in NP ∩ coNP.

7. Conclusion

This paper has considered several variants of energy games. The first variant
defines games with upper and lower bound constraints, combined with reachability
objectives. The second variant defines games with a strong lower bound and a
soft upper bound, which can be temporarily exceeded. In the one player case,
complexities ranges from PTIME to PSPACE-complete, and in the two-player
case from NP ∩ coNP to EXPTIME-complete. In general, the complexity is the
same for a reachability and for an infinite run objective. Interestingly, for LW-
energy games, the complexity of the single player case is PTIME, but reachability
objectives require exponential memory (in the size of the weak upper bound)
while strategies are memoryless for infinite run objectives. The associated bound
existence problems range from PTIME to PTIME to PSPACE-complete in the
one-player setting, and from PTIME to 2 -EXPTIME for two-player. However,
proving optimality of a given bound is not harder that the energy game itself.

A possible extension of this work is to consider energy games with mean-
payoff functions and discounted total payoff, both for the energy level and for
the violation constraints.
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