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Abstract

We introduce FO-AR, an approximation-refinement approach for first-order theorem proving
based on counterexample-guided abstraction refinement. A given first-order clause set N is trans-
formed into an over-approximation N′ in a decidable first-order fragment. That means if N′ is
satisfiable so is N. However, if N′ is unsatisfiable, then the approximation provides a lifting termi-
nology for the found refutation which is step-wise transformed into a proof of unsatisfiability for
N. If this fails, the cause is analyzed to refine the original clause set such that the found refutation
is ruled out for the future and the procedure repeats.

The target fragment of the transformation is the monadic shallow linear fragment with straight
dismatching constraints, which we prove to be decidable via ordered resolution with selection.
We further discuss practical aspects of SPASS-AR, a first-order theorem prover implementing
FO-AR. We focus in particularly on effective algorithms for lifting and refinement.

1 Introduction

The Inst-Gen calculus by Ganzinger and Korovin [11] and its implementation in iProver has shown to
be very successful. The calculus is based on a under-approximation - instantiation refinement loop. A
given first-order clause set is under-approximated by finite grounding and afterwards a SAT-solver is
used to test unsatisfiability. If the ground clause set is unsatisfiable then a refutation for the original
clause set is found. If it is satisfiable, the model generated by the SAT-solver is typically not a model
for the original clause set. If it is not, it is used to instantiate the original clause such that the found
model is ruled out for the future.

In this paper, we define an approximation-based first-order theorem proving approach based on
counterexample-guided abstraction refinement that is dual to the Inst-Gen calculus. A given first-
order clause set N is step by step transformed into an over-approximation Nk in a decidable fragment
of first-order logic. That means if Nk is satisfiable so is N. However, if Nk is unsatisfiable, then
it is not known whether N in unsatisfiable, in general. In that case, the approximation provides a
lifting terminology for the found refutation. Each step of the transformation is considered separately
to attempt to transform the proof of unsatisfiability for Nk to a proof of unsatisfiability for N. If this
fails, the cause is analyzed to refine the original clause set such that the found refutation is ruled out
for the future and the procedure repeats.
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The target fragment of the transformation is the monadic shallow linear fragment with straight
dismatching constraints MSL(SDC). It is derived from the monadic shallow linear Horn (MSLH)
fragment, which was shown to be decidable in [24]. In addition to the restriction to monadic Horn
clauses, the main restriction of the fragment is positive literals of the form S( f (x1, . . . ,xn)) or S(x)
where all xi are different, i.e., all terms are shallow and linear. The fragment can be finitely saturated
by superposition (ordered resolution) where negative literals with non-variable arguments are always
selected. As a result, productive clauses with respect to the superposition model operator IN have the
form S1(x1), . . . ,Sn(xn)→ S( f (x1, . . . ,xn)). Therefore, the models of saturated MSLH clause sets can
both be represented by tree automata [7] and shallow linear sort theories [9]. The models are typically
infinite. The decidability result of MSLH clauses was rediscovered in the context of tree automata
research [8] where in addition DEXPTIME-completeness of the MSLH fragment was shown. The
fragment was further extended by inequality constraints [13, 14] still motivated by security proto-
col analysis [15]. Although from a complexity point of view, the difference between Horn clause
fragments and the respective non-Horn clause fragments is typically reflected by membership in the
deterministic vs. the non-deterministic respective complexity fragment, for monadic shallow linear
clauses so far there was no decidability result for the non-Horn case.

The results of this paper close this gap. We show the monadic shallow linear non-Horn (MSL)
clause fragment to be decidable by superposition (ordered resolution). From a security protocol ap-
plication point of view, non-Horn clauses enable a natural representation of non-determinism. Our
second extension to the fragment are unit clauses with inequations of the form s 0 t, where s and
t are not unifiable. Due to the employed superposition calculus, such inequations do not influence
saturation of an MSL clause set, but have an effect on potential models. They can rule out identifi-
cation of syntactically different ground terms as it is, e.g., desired in the security protocol context for
syntactically different messages or nonces. Our third extension to the fragment are straight dismatch-
ing constraints. These constraints are incomparable to the inequality constraints mentioned above
[13, 14]. They do not strictly increase the expressiveness of the MSL theory, but enable up to ex-
ponentially more compact saturations. Altogether, the resulting MSL(SDC) fragment is shown to be
decidable in Section 3.

The introduction of straight dismatching constraints (SDCs) enables an improved refinement step
of our approximation refinement calculus [20]. Before, several clauses were needed to rule out a spe-
cific instance of a clause in an unsatisfiable core. For example, if due to a linearity approximation
from clause S(x),T (x)→ S( f (x,x)) to S(x),T (x),S(y),T (y)→ S( f (x,y)) an instance {x 7→ f (a,x′),
y 7→ f (b,y′)} is used in the proof, before [20] several clauses were needed to replace S(x),T (x)→
S( f (x,x)) in a refinement step in order to rule out this instance. With straight dismatching con-
straints the clause S(x),T (x)→ S( f (x,x)) is replaced by the two clauses S( f (a,x)),T ( f (a,x))→
S( f ( f (a,x), f (a,x))) and (S(x),T (x)→ S( f (x,x));x , f (a,y)). For the improved approximation re-
finement approach (FO-AR) presented in this paper, any refinement step results in just two clauses,
see Section 4. The additional expressiveness of constraint clauses comes almost for free, because
necessary computations, like, e.g., checking emptiness of SDCs, can all be done in linear-logarithmic
time, see Section 2.

In addition to the extension of the known MSLH decidability result and the improved approxima-
tion refinement calculus FO-AR, we discuss in Sections 5 and 6 the implementation and potential of
the MSL(SDC) fragment in the context of FO-AR, Lemma 26, and its prototypical implementation in
SPASS-AR (http://www.mpi-inf.mpg.de/fileadmin/inf/rg1/spass-ar.tgz). A particular
focus lies in the efficient implementation of lifting and the selection of the refinement.

The theoretical description of lifting based on conflicting cores, i.e., an abstraction of unsatisfi-
ability cores, is intractable in practice because conflicting cores can be exponentially larger than the
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resolution proofs they are generated from. Therefore, we present a lifting algorithm that avoids the
exponential blow-up by directly lifting the resolution refutation represented as a directed acyclic graph
(DAG).

For the refinement it is important to note that there can be multiple causes for lifting to fail and
certain types of conflicts can be refined more effectively than others. So we introduce a modification
of the standard unification algorithm that extracts the specific causes from a given lift-failure and a
heuristic to choose which conflict is used for the refinement.

It turns out that for clause sets containing certain structures, FO-AR is superior to ordered reso-
lution/superposition [1] and instance generating methods [11]. The paper ends with a discussion on
challenges and future research directions, Section 7.

2 First-Order Clauses with Straight Dismatching Constraints: MSL(SDC)

We consider a standard first-order language where letters v,w,x, y,z denote variables, f ,g,h func-
tions, a,b,c constants, s, t terms, p,q,r positions and Greek letters σ ,τ,ρ,δ are used for substitutions.
S,P,Q,R denote predicates, ≈ denotes equality, A,B atoms, E,L literals, C,D clauses, N clause sets
and V sets of variables. L is the complement of L. The signature Σ = (F ,P) consists of two dis-
joint, non-empty, in general infinite sets of function and predicate symbols F and P , respectively.
The set of all terms over variables V is T (F ,V ). If there are no variables, then terms, literals and
clauses are called ground, respectively. The depth of a term t is recursively defined by depth(x) = 0,
depth(c) = 0, and depth( f (t1, . . . , tn)) = 1+ max

1≤i≤n
(depth(ti)).

A substitution σ is denoted by pairs {x 7→ t} and its update at x by σ [x 7→ t]. A substitution σ is
a grounding substitution for V if xσ is ground for every variable x ∈ V . A substitution σ is called a
unifier of the terms s and t if sσ = tσ . σ is called a most general unifier (mgu) if for every unifier δ

there exists a substitution σ ′ such that σσ ′ = δ .
The set of free variables of an atom A (term t) is denoted by vars(A) (vars(t)). A position is

a sequence of positive integers, where ε denotes the empty position. As usual t|p = s denotes the
subterm s of t at position p, which we also write as t[s]p, and t[p/s′] then denotes the replacement of
s with s′ in t at position p. These notions are extended to literals and multiple positions.

A predicate with exactly one argument is called monadic. A term is complex if it is not a variable
and shallow if it has at most depth one. It is called linear if there are no duplicate variable occurrences.
A literal, where every argument term is shallow, is also called shallow. A variable and a constant are
called straight. A term f (s1, . . . ,sn) is called straight, if s1, . . . ,sn are different variables except for at
most one straight term si.

A clause is a multiset of literals which we write as an implication Γ→ ∆ where the atoms in the
multiset ∆ (the succedent) denote the positive literals and the atoms in the multiset Γ (the antecedent)
the negative literals. We write � for the empty clause. If Γ is empty we omit→, e.g., we can write
P(x) as an alternative of→ P(x). We abbreviate disjoint set union with sequencing, for example, we
write Γ,Γ′→ ∆,L instead of Γ∪Γ′→ ∆∪{L}. A clause E,E,Γ→ ∆ is equivalent to E,Γ→ ∆ and we
call them equal modulo duplicate literal elimination. If every term in ∆ is shallow, the clause is called
positive shallow. If all atoms in ∆ are linear and variable disjoint, the clause is called positive linear. A
clause Γ→ ∆ is called an MSL clause, if it is (i) positive shallow and positive linear, (ii) all occurring
predicates are monadic, (iii) no equations occur in ∆, and (iv) no equations occur in Γ or Γ = {s≈ t}
and ∆ is empty where s and t are not unifiable. MSL is the first-order clause fragment consisting of
MSL clauses. Clauses Γ,s≈ t→ ∆ where Γ, ∆ are non-empty and s, t are not unifiable could be added
to the MSL fragment without changing any of our results. Considering the superposition calculus, it
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will select s ≈ t. Since the two terms are not unifiable, no inference will take place on such a clause
and the clause will not contribute to the model operator. In this sense such clauses do not increase the
expressiveness of the fragment.

An atom ordering ≺ is an irreflexive, well-founded, total ordering on ground atoms. It is lifted to
literals by representing A and ¬A as multisets {A} and {A,A}, respectively. The multiset extension
of the literal ordering induces an ordering on ground clauses. This clause ordering is compatible with
the atom ordering: if the maximal atom in C is greater than the maximal atom in D then D ≺C. We
use ≺ simultaneously to denote an atom ordering and its multiset, literal, and clause extensions. For
a ground clause set N and clause C, the set N≺C = {D ∈ N | D≺C} denotes the clauses of N smaller
than C.

An Herbrand interpretation I is a - possibly infinite - set of ground atoms. A ground atom A is
called true in I if A ∈ I and false, otherwise. I is said to satisfy a ground clause C = Γ→ ∆, denoted
by I |=C, if ∆∩ I , /0 or Γ * I. A non-ground clause C is satisfied by I if I |=Cσ for every grounding
substitution σ . An Herbrand interpretation I is called a model of N, I |= N, if I |=C for every C ∈ N.
A model I of N is considered minimal with respect to set inclusion, if there is no model I′ with I′ ⊂ I
and I′ |= N. A set of clauses N is satisfiable, if there exists a model that satisfies N. Otherwise, the set
is unsatisfiable.

A inequation t , s is an atomic straight dismatching constraint if s and t are variable disjoint terms
and s is straight. A straight dismatching constraint π =

∧
i∈I ti , si is a conjunction of atomic straight

dismatching constraints. Given a substitution σ , πσ =
∧

i∈I tiσ , si. lvar(π) :=
⋃

i∈I vars(ti) are the
left-hand variables of π and the depth of π is the maximal term depth of the si. A solution of π is a
grounding substitution δ such that for all i ∈ I, tiδ is not an instance of si, i.e., there exists no σ such
that tiδ = siσ . A dismatching constraint is solvable if it has a solution and unsolvable, otherwise.
Whether a straight dismatching constraint is solvable, is decidable in linear-logarithmic time [21]. >
and ⊥ represent the true and false dismatching constraint, respectively.

We define constraint normalization π↓ as the normal form of the following rewriting rules over
straight dismatching constraints.

π ∧ f (t1, . . . , tn) , y ⇒ ⊥
π ∧ f (t1, . . . , tn) , f (y1, . . . ,yn) ⇒ ⊥
π ∧ f (t1, . . . , tn) , f (s1, . . . ,sn) ⇒ π ∧ ti , si, if si is complex
π ∧ f (t1, . . . , tn) , g(s1, . . . ,sm) ⇒ π

π ∧ x , s∧ x , sσ ⇒ π ∧ x , s.
Note that f (t1, . . . , tn) , f (s1, . . . ,sn) normalizes to ti , si for some i, where si is the one straight
complex argument of f (s1, . . . ,sn). Furthermore, the depth of π↓ is less or equal to the depth of π and
both have the same solutions.

A pair of a clause and a constraint (C;π) is called a constrained clause. Given a substitution
σ , (C;π)σ = (Cσ ;πσ). A solution δ of π is a solution of (C;π) if it is grounding for C and Cδ

is then called a ground instance of (C;π). G((C;π)) is the set of ground instances of (C;π). If
G((C;π))⊆ G((C′;π ′)), then (C;π) is an instance of (C′;π ′). If G((C;π)) = G((C′;π ′)), then (C;π)
and (C′;π ′) are called variants. An Herbrand interpretation I satisfies (C;π), if I |= G((C;π)). A
constrained clause (C;π) is called redundant in N if for every D ∈ G((C;π)), there exist D1, . . . ,Dn

in G(N)≺D such that D1, . . . ,Dn |= D. A constrained clause (C′;π ′) is called a condensation of (C;π)
if C′ ⊂ C and there exists a substitution σ such that, πσ = π ′, π ′ ⊆ π , and for all L ∈ C there is an
L′ ∈C′ with Lσ = L′. A finite unsatisfiable subset of G(N) is called an unsatisfiable core of N. We
don’t require unsatisfiable cores to be minimal.

An MSL clause with straight dismatching constraints is called an MSL(SDC) clause with MSL(SDC)
being the respective first-order fragment. Note that any clause set N can be transformed into an equiv-

4



alent constrained clause set by changing each C ∈ N to (C;>).

3 Decidability of the MSL(SDC) fragment

In the following we will show that the satisfiability of the MSL(SDC) fragment is decidable. For this
purpose we will define ordered resolution with selection on constrained clauses [21] and show that
with an appropriate ordering and selection function, saturation of an MSL(SDC) clause set terminates.

For the rest of this section we assume an atom ordering ≺ such that a literal ¬Q(s) is not greater
than a literal P(t[s]p), where p , ε . For example, a KBO where all symbols have weight one has this
property.

Definition 1 (sel). Let (C;π) = (S1(t1), . . . ,Sn(tn)→ P1(s1), . . . ,Pm(sm);π) be an MSL(SDC) clause.
The Selection function sel is defined by Si(ti) ∈ sel(C) if (1) ti is not a variable or (2) t1, . . . , tn are
variables and ti < vars(s1, . . . ,sm) or (3) {t1, . . . , tn} ⊆ vars(s1, . . . ,sm) and for some 1≤ j ≤m, s j = ti.

The selection function sel (Definition 1) ensures that a clause Γ→ ∆ can only be resolved on a
positive literal if Γ contains only variables, which also appear in ∆ at a non-top position. For example:

sel(P( f (x)),P(x),Q(z)→ Q(x),R( f (y)) = {P( f (x))}
sel(P(x),Q(z)→ Q(x),R( f (y))) = {Q(z)}
sel(P(x),Q(y)→ Q(x),R( f (y))) = {P(x)}

sel(P(x),Q(y)→ Q( f (x)),R( f (y))) = /0.
Note that given an MSL(SDC) clause (C;π) = (S1(t1), . . . ,Sn(tn) → P1(s1), . . .Pm(sm);π), if some
Si(ti) is maximal in C, then at least one literal is selected.

Definition 2. A literal A is called [strictly] maximal in a constrained clause (C∨A;π) if and only if
there exists a solution δ of π such that for all literals B in C, Bδ � Aδ [Bδ ≺ Aδ ].

Definition 3 (Ordered SDC-Resolution with Selection).

(Γ1→ ∆1,A ; π1) (Γ2,B→ ∆2 ; π2)

((Γ1,Γ2→ ∆1,∆2)σ ; (π1∧π2)σ↓)
, if

1. σ = mgu(A,B) 2. (π1∧π2)σ↓ is solvable
3. Aσ is strictly maximal in (Γ1→ ∆1,A;π1)σ and sel(Γ1→ ∆1,A) = /0
4. B ∈ sel(Γ2,B→ ∆2) or sel(Γ2,B→ ∆2) = /0 and ¬Bσ maximal in (Γ2,B→ ∆2;π2)σ

Definition 4 (Ordered SDC-Factoring with Selection).

(Γ→ ∆,A,B ; π)

((Γ→ ∆,A)σ ;πσ↓)
, if

1. σ = mgu(A,B) 2. sel(Γ→ ∆,A,B) = /0
3. Aσ is maximal in (Γ→ ∆,A,B;π)σ 4. πσ↓ is solvable

Note that while the above rules do not operate on equations, we can actually allow unit clauses
that consist of non-unifiable inequations, i.e., clauses s ≈ t → where s and t are not unifiable. There
are no potential superposition inferences on such clauses as long as there are no positive equations.
So, resolution and factoring suffice for completeness. Nevertheless, clauses such as s≈ t→ affect the
models of satisfiable problems.
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Lemma 5 (Soundness). Ordered SDC-Resolution and ordered SDC-Factoring with selection are
sound.

Proof. Let the clause (Γ1,Γ2→∆1,∆2)σδ be a ground instance of the resolvent clause ((Γ1,Γ2→ ∆1,∆2)σ ;(π1∧π2)σ).
Then, δ is a solution of (π1 ∧π2)σ and σδ is a solution of π1 and π2. Hence, (Γ1→ ∆1,A)σδ and
(Γ2,B→ ∆2)σδ are ground instances of (Γ1→ ∆1,A;π1) and (Γ2,B→ ∆2;π2), respectively. Because
Aσδ = Bσδ , if (Γ1→ ∆1,A)σδ and (Γ2,B→ ∆2)σδ are satisfied, then (Γ1,Γ2→ ∆1,∆2)σδ is also
satisfied. Therefore, ordered SDC-Resolution with selection is sound.

The proof is analogous for ordered SDC-Factoring with selection. � �

Definition 6 (Saturation). A constrained clause set N is called saturated up to redundancy, if for every
inference between clauses in N the result (R;π) is either redundant in N or G((R;π))⊆ G(N).

Note that our redundancy notion includes condensation and the condition G((R;π)) ⊆ G(N) al-
lows ignoring variants of clauses.

Definition 7 (Partial Minimal Model Construction). Given a constrained clause set N, an ordering
≺ and the selection function sel, we construct an Herbrand interpretation IN for N, called a partial
model, inductively as follows:

IC :=
D∈G(N)⋃

D≺C

δD, where C ∈ G(N)

δD :=


{A} if D = Γ→ ∆,A

A strictly maximal, sel(D) = /0 and ID 6|= D
/0 otherwise

IN :=
⋃

C∈G(N)

δC

Clauses D with δD , /0 are called productive.

Lemma 8 (Ordered SDC-Resolution Completeness). Let N be a constrained clause set saturated up to
redundancy by ordered SDC-Resolution and SDC-Factoring with selection. Then N is unsatisfiable,
if and only if � ∈ G(N). If � < G(N) then IN |= N.

Proof. Since IN is defined on the ground clauses of N, the proof is analogous to the standard proof of
resolution completeness. � �

Lemma 9. Let N be a set of MSL(SDC) clauses without variants or uncondensed clauses over a finite
signature Σ. N is finite if there exists an integer d such that for every (C;π) ∈ N, depth(π)≤ d and
(1) C = S1(x1), . . . ,Sn(xn),S′1(t), . . . ,S

′
m(t)→ ∆ or

(2) C = S1(x1), . . . ,Sn(xn),S′1(t), . . . ,S
′
m(t)→ S(t),∆

with t shallow and linear, and vars(t)∩vars(∆) = /0.

Proof. Let (C;π) ∈ N. (C;π) can be separated into variable disjoint components (Γ1, . . . ,Γn →
∆1, . . . ,∆n;π1∧ . . .∧πn), where |∆i| ≤ 1 and lvar(πi)⊆ vars(Γi→∆i). For each positive literal P(s)∈∆

there is a fragment
(A) (S1(x1), . . . ,Sk(xk)→ P(s);π

′)
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with {x1, . . . ,xk} ⊆ vars(s). If m > 0, there is another fragment

(B) (S1(x1), . . . ,Sk(xk),S′1(t), . . . ,S
′
m(t)→;π

′) or

(C) (S1(x1), . . . ,Sk(xk),S′1(t), . . . ,S
′
m(t)→ S(t);π

′)

with {x1, . . . ,xk}⊆ vars(t), respectively. Lastly, for each variable x∈ vars(C) with x < vars(t)∪vars(∆)
there is a fragment

(D) (S1(x), . . . ,Sk(x)→;π
′).

Since there are only finitely many terms s with depth(s)≤ d modulo renaming, there are only finitely
many atomic constraints x , s for a given variable x different up to renaming s. Thus, a normal
constraint can only contain finitely many combinations of sub-constraints

∧
i∈I x , si without some

si being an instance of another s j. Therefore, for a fixed set of variables x1, . . . ,xk, there are only
finitely many constraints π =

∧
i∈I zi , si with lvar(π)⊆ {x1, . . . ,xk} up to variants.

Since the number of predicates, function symbols, and their ranks is finite, the number of possible
shallow and linear atoms S(t) different up to variants is finite. For a given shallow and linear t, there
exist only finitely many clauses of the form (S1(t), . . . ,Sn(t)→ S(t);π) or (S1(t), . . . ,Sn(t)→;π) with
lvar(π)⊆ vars(t) modulo condensation and variants. For a fixed set of variables x1, . . . ,xk, there exist
only finitely many clauses of the form (S1(y1), . . . ,Sk(yl)→;π) modulo condensation and variants
where lvar(π)⊆ {y1, . . . ,yl} ⊆ {x1, . . . ,xk}. Therefore, there are only finitely many distinct clauses of
each form (A)-(D) without variants or condensations.

If in the clause (C;π) = (Γ1, . . . ,Γn→ ∆1, . . . ,∆n;π1∧ . . .∧πn) for some i , j, (Γi→ ∆i;πi) is a
variant of (Γ j→∆ j;π j), then (C;π) has a condensation and is therefore not part of N. Hence, there can
be only finitely many different (C;π) without variants or condensations and thus N is finite. � �

Lemma 10 (Finite Saturation). Let N be an MSL(SDC) clause set. Then N can be finitely saturated
up to redundancy by ordered SDC-Resolution with selection function sel.

Proof. The general idea is that given the way sel is defined the clauses involved in ordered SDC-
Resolution and SDC-Factoring can only fall into certain patterns. Any result of such inferences then
is either strictly smaller than one of its parents by some terminating measure or falls into a set of
clauses that is bounded by Lemma 9. Thus, there can be only finitely many inferences before N is
saturated.

Let d be an upper bound on the depth of constraints found in N and Σ be the finite signa-
ture consisting of the function and predicate symbols occurring in N. Let (Γ1 → ∆1,S(t);π1) and
(Γ2,S(t ′)→ ∆2;π2) be clauses in N where ordered SDC-Resolution applies with the most general
unifier σ of S(t) and S(t ′) and resolvent R = ((Γ1,Γ2→ ∆1,∆2)σ ;(π1∧π2)σ↓).

Because no literal is selected by sel, Γ1→ ∆1,S(t) can match only one of two patterns:
(A) S1(x1), . . . ,Sn(xn)→ S( f (y1, . . . ,yk)),∆

where t = f (y1, . . . ,yk) and {x1, . . . ,xn} ⊆ {y1, . . . ,yk}∪vars(∆) and
(B) S1(x1), . . . ,Sn(xn)→ S(y),∆

where t = y and x1, . . . ,xn are variables in vars(∆), i.e., y occurs only once.

The literal S(t ′) is selected by sel in Γ2,S(t ′)→ ∆2, and therefore Γ2,S(t ′)→ ∆2 can match only one
of the following three patterns:

(1) S( f (t1, . . . , tk)),Γ′→ ∆
′

(2) S(y′),Γ′→ ∆
′ where Γ

′ has no function terms and y < vars(∆′).

(3) S(y′),Γ′→ S′(y′),∆′ where Γ
′ has no function terms.
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This means that the clausal part (Γ1,Γ2→ ∆1,∆2)σ of R has one of six forms:
(A1) S1(x1)σ , . . . ,Sn(xn)σ ,Γ′→ ∆,∆′ with σ = {y1 7→ t1, . . .}.

∆σ = ∆ because S( f (y1, . . . ,yk)) and ∆ do not share variables.
(B1) S1(x1), . . . ,Sn(xn),Γ

′→ ∆,∆′.
The substitution {y 7→ f (t1, . . . , tk)} is irrelevant since S(y) is the only literal with variable y.

(A2) S1(x1), . . . ,Sn(xn),Γ
′
τ → ∆,∆′ with τ = {y′ 7→ f (y1, . . . ,yk)}.

∆′τ = ∆′ because y′ < vars(∆′).
(B2) S1(x1), . . . ,Sn(xn),Γ

′→ ∆,∆′.

(A3) S1(x1), . . . ,Sn(xn),Γ
′
τ → S′( f (y1, . . . ,yk)),∆,∆

′ with τ = {y 7→ f (y1, . . . ,yk)}.
∆′τ = ∆′ because y′ < vars(∆′).

(B3) S1(x1), . . . ,Sn(xn),Γ
′→ S′(y′),∆,∆′.

In the constraint (π1∧π2)σ ↓ the maximal depth of the sub-constraints is less or equal to the
maximal depth of π1 or π2. Hence, d is also an upper bound on the constraint of the resolvent. In each
case, the resolvent is again an MSL(SDC) clause.

In the first and second case, the multiset of term depths of the negative literals in R is strictly
smaller than for the right parent. In both, the Γ is the same between the right parent and the resolvent.
Only the f (t1, . . . , tk) term is replaced by x1σ , . . . ,xnσ and x1, . . . ,xn respectively. In the first case, the
depth of the xiσ is either zero if xi < {y1, . . . ,yk} or at least one less than f (t1, . . . , tk) since xiσ = ti. In
the second case, the xi have depth zero which is strictly smaller than the depth of f (t1, . . . , tk). Since
the multiset ordering on natural numbers is terminating, the first and second case can only be applied
finitely many times by ordered SDC-Resolution.

In the third to sixth cases R is either (S1(x1), . . . ,Sl(xl),S′1(t), . . . ,S
′
m(t)→ ∆;π) or

(S1(x1), . . . ,Sl(xl),S′1(t), . . . ,S
′
m(t)→ S(t)),∆;π) with t = f (y1, . . . ,yk). By Lemma 8, there are only

finitely many such clauses after condensation and removal of variants. Therefore, these four cases can
apply only finitely many times during saturation.

The proof is analogous for ordered SDC-Factoring. � �

Theorem 11. Satisfiability of the MSL(SDC) first-order fragment is decidable.

Proof. Follows from Lemma 10 and 8. � �

4 Approximation and Refinement

In the following, we show how decidability of the MSL(SDC) fragment can be used to improve the
approximation refinement calculus presented in [20].

Our approach is based on a counter-example guided abstraction refinement (CEGAR) idea. The
procedure loops trough four steps: approximation, testing (un)satisfiability, lifting, and refinement.
The approximation step transforms any first-order logic clause set into the decidable MSL(SDC) frag-
ment while preserving unsatisfiability. The second step employs the decidability result for MSL(SDC),
Section 3, to test satisfiability of the approximated clause set. If the approximation is satisfiable, the
original problem is satisfiable as well and we are done. Otherwise, the third step, lifting, tests whether
the proof of unsatisfiability found for the approximated clause set can be lifted to a proof of the origi-
nal clause set. If so, the original clause set is unsatisfiable and we are again done. If not, we extract a
cause for the lifting failure that always amounts to two different instantiations of the same variable in
a clause from the original clause set. This is resolved by the fourth step, the refinement. The crucial
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clause in the original problem is replaced and instantiated in a satisfiability preserving way such that
the different instantiations do not reoccur any more in subsequent iterations of the loop.

As mentioned before, our motivation to use dismatching constraints is that for an unconstrained
clause the refinement adds quadratically many new clauses to the clause set. In contrast, with con-
strained clauses the same can be accomplished with adding just a single new clause. This extension is
rather simple as constraints are treated the same as the antecedent literals in the clause. Furthermore
we present refinement as a separate transformation rule.

The second change compared to the previous version is the removal of the Horn approximation
rule, where we have now shown in Section 3 that a restriction to Horn clauses is not required for
decidability any more. Instead, the linear and shallow approximations are extended to apply to non-
Horn clauses instead.

The approximation consists of individual transformation rules N⇒N′ that are non-deterministically
applied. They transform a clause that is not in the MSL(SDC) fragment in finite steps into MSL(SDC)
clauses. Each specific property of MSL(SDC) clauses, i.e, monadic predicates, shallow and linear pos-
itive literals, is generated by a corresponding rule: the Monadic transformation encodes non-Monadic
predicates as functions, the shallow transformation extracts non-shallow subterms by introducing fresh
predicates and the linear transformation renames non-linear variable occurrences.

Starting from a constrained clause set N the transformation is parameterized by a single monadic
projection predicate T , fresh to N and for each non-monadic predicate P a separate projection func-
tion fP fresh to N. The clauses in N are called the original clauses while the clauses in N′ are the
approximated clauses. We assume all clauses in N to be variable disjoint.

Definition 12. Given a predicate P, projection predicate T , and projection function fP, define the
injective function µT

P (P(t)) := T ( fp(t)) and µT
P (Q(s)) := Q(s) for P ,Q. The function is extended to

[constrained] clauses, clause sets and Herbrand interpretations. Given a signature Σ with non-monadic
predicates P1, . . . ,Pn, define µT

Σ
(N) := µT

P1
(. . .(µT

Pn
(N)) . . .) and µT

Σ
(I) := µT

P1
(. . .(µT

Pn
(I)) . . .).

Monadic N ⇒MO µT
P (N)

provided P is a non-monadic predicate in the signature of N.

Shallow N ∪̇ {(Γ→ E[s]p,∆;π)} ⇒SH
N∪{(S(x),Γl → E[p/x],∆l;π); (Γr→ S(s),∆r;π)}

provided s is complex, |p|= 2, x and S fresh, Γl{x 7→ s}∪Γr = Γ, ∆l∪∆r = ∆,
{Q(y) ∈ Γ | y ∈ vars(E[p/x],∆l)} ⊆ Γl , {Q(y) ∈ Γ | y ∈ vars(s,∆r)} ⊆ Γr.

Linear 1 N ∪̇ {(Γ→ ∆,E ′[x]p,E[x]q;π)} ⇒LI
N∪{(Γσ ,Γ→ ∆,E ′[x]p,E[q/x′];π ∧πσ)}

provided x′ is fresh and σ = {x 7→ x′}.
Linear 2 N ∪̇ {(Γ→ ∆,E[x]p,q;π)} ⇒LI

N∪{(Γσ ,Γ→ ∆,E[q/x′];π ∧πσ)}
provided x′ is fresh, p , q and σ = {x 7→ x′}.
Refinement N ∪̇ {(C,π)} ⇒Ref N∪{(C;π ∧ x , t),(C;π){x 7→ t}}
provided x ∈ vars(C), t straight and vars(t)∩vars((C,π)) = /0.

Note that variables are not renamed unless explicitly stated in the rule. This means that original
clauses and their approximated counterparts share variable names. We use this to trace the origin of
variables in the approximation.

The refinement transformation⇒Ref is not needed to eventually generate MSL(SDC) clauses, but
can be used to achieve a more fine-grained approximation of N, see below.
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In the shallow transformation, Γ and ∆ are separated into Γl , Γr, ∆l , and ∆r, respectively. The
separation can be almost arbitrarily chosen as long as no atom from Γ, ∆ is skipped. However, the goal
is to minimize the set of shared variables, i.e., the variables of (Γ→ E[s]p,∆;π) that are inherited by
both approximation clauses, vars(Γr,s,∆r)∩vars(Γl,E[p/x],∆l). If there are no shared variables, the
shallow transformation is satisfiability equivalent. The conditions on Γl and Γr ensure that S(x) atoms
are not separated from the respective positive occurrence of x in subsequent shallow transformation
applications.

Consider the clause Q( f (x),y)→ P(g( f (x),y)). The shallow transformation S(x′),Q( f (x),y)→
P(g(x′,y));S( f (x)) is not satisfiability equivalent – nor with any alternative partitioning of Γ. How-
ever, by replacing the occurrence of the extraction term f (x) in Q( f (x),y) with the fresh variable
x′, the approximation S(x′),Q(x′,y)→ P(g(x′,y));S( f (x)) is satisfiability equivalent. Therefore, we
allow the extraction of s from the terms in Γl and require Γl{x 7→ s}∪Γr = Γ.

While in theory, a literal from ∆ can be added to both ∆l and ∆r, in the implementation, ∆l and
∆r are a partition of ∆. Otherwise, we run the risk of producing an exponential number of approxi-
mation clauses because the duplicated literal might trigger further Shallow transformations for both
approximation clauses instead of just one of them.

We consider Linear 1 and Linear 2 as two cases of the same linear transformation rule. Their
only difference is whether the two occurrences of x are in the same literal or not. The duplication of
literals and constraints in Γ and π is not needed if x does not occur in Γ or π . The Linear transfor-
mation also carries the risk of exponentially increasing the size of clauses. For example, the clause
P(x,y)→Q(x, . . . ,x,y, . . . ,y) where x and y appear n and m times respectively has a linear approxima-
tion with n ·m negative literals. In these extreme cases, we pre-process such clauses via a renaming.
For the example, that means replacing the clause with T ( f (x1, . . . ,xn,y))→ Q(x1, . . . ,xn,y, . . . ,y) and
P(x,y)→ T ( f (x, . . . ,x,y)) where f is a fresh function symbol.

Further, consider a linear transformation N ∪{(C;π)}⇒LI N ∪{(Ca;πa)}, where a fresh variable
x′ replaces an occurrence of a non-linear variable x in (C;π). Then, (Ca;πa){x′ 7→ x} is equal to (C;π)
modulo duplicate literal elimination. A similar property can be observed of a resolvent of (Cl;π) and
(Cr;π) resulting from a shallow transformation N∪{(C;π)}⇒SH N∪{(Cl;π),(Cr;π)}. Note that by
construction, (Cl;π) and (Cr;π) are not necessarily variable disjoint. To simulate standard resolution,
we need to rename at least the shared variables in one of them.

Definition 13 (⇒AP). We define ⇒AP as the priority rewrite system [3] consisting of ⇒Ref, ⇒MO,
⇒SH and ⇒LI with priority ⇒Ref>⇒MO>⇒SH>⇒LI, where ⇒Ref is only applied finitely many
times.

Lemma 14 (⇒AP is a Terminating Over-Approximation). (i)⇒∗AP terminates, (ii) if N ⇒AP N′ and
N′ is satisfiable, then N is also satisfiable.

Proof. (i) The transformations can be considered sequentially, because of the imposed rule priority.
There are, by definition, only finitely many refinements at the beginning of an approximation ⇒∗AP.
The Monadic transformation strictly reduces the number of non-monadic atoms. The Shallow trans-
formation strictly reduces the multiset of term depths of the newly introduced clauses compared to
the removed approximated clause. The Linear transformation strictly reduces the number of duplicate
variable occurrences in positive literals. Hence⇒AP terminates.

(ii) Let N∪{(C;π)}⇒LI N∪{(Ca;πa)} where an occurrence of a variable x in (C;π) is replaced
by a fresh x′. As (Ca;πa){x′ 7→ x} is equal to (C;π) modulo duplicate literal elimination, I |= (C;π)
if I |= (Ca;πa). Therefore, the Linear transformation is an over-approximation.
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Let N∪{(C;π)}⇒SH N∪{(Cl;πl),(Cr;πr)} and (Ca;πa) be the shallow ρ-resolvent. As (Ca;πa)ρ
−1

equals (C;π) modulo duplicate literal elimination, I |= (C;π) if I |= (Cl;πl),(Cr;πr). Therefore, the
Shallow transformation is an over-approximation.

Let N ⇒MO µP(N) = N′. Then, N = µ
−1
P (N′). Let I be a model of N′ and (C;π) ∈ N. Since

µP((C;π)) ∈ N′ , I |= µP((C;π)) and thus, µ
−1
P (I) |= (C;π). Hence, µ

−1
P (I) is a model of N. There-

fore, the Monadic transformation is an (non-strict) over-approximation. Actually, it is even a satisfia-
bility equivalent transformation.

Let N ∪{(C;π)} ⇒Ref N ∪{(C;π ∧ x , t),(C;π){x 7→ t}}. Let Cδ ∈ G((C;π)). If xδ is not an
instance of t, then δ is a solution of π ∧ x , t and Cδ ∈ G((C;π ∧ x , t)). Otherwise, δ = {x 7→ t}δ ′
for some substitution δ ′. Then, δ is a solution of π{x 7→ t} and thus, Cδ =C{x 7→ t}δ ′ ∈ G((C{x 7→
t};π{x 7→ t})). Hence, G((C;π)) ⊆ G((C;π ∧ x , t))∪G((C;π){x 7→ t}). Therefore, if I is a model
of N∪{(C;π ∧ x , t),(C;π){x 7→ t}}, then I is also a model of N∪{(C;π)}. � �

Note that⇒Ref and⇒MO are also satisfiability preserving transformations.

Corollary 15. If N⇒∗AP N′ and N′ is satisfied by a model I, then µ
−1
Σ

(I) is a model of N.

On the basis of⇒AP we define an ancestor relation⇒A that relates clauses, literal occurrences,
and variables with respect to approximation. For example, for a Shallow transformation of the clause
C = P( f ( f (x))) in a clause set N into Cl = S(x′)→ P( f (x′)) and Cr = S( f (x)) in the approxima-
tion N′, ⇒A relates [C,N]⇒∗A [Cl,N′] and [C,N]⇒∗A [Cr,N′]. This is further extended to variables,
positions and literals; e.g., [x,C,N]⇒∗A [x,Cr,N′], [x,C,N]⇒∗A [x′,Cl,N′], [1,P( f ( f (x))),C,N]⇒∗A
[1,P( f (x′)),Cl,N′], [1.1,P( f ( f (x))),C,N]⇒∗A [1,S( f (x)),Cr,N′], and [1.1,P( f ( f (x))),C,N]⇒∗A [ε,S( f (x)),Cr,N′].
In essence, the ancestor relation tracks the origin of clauses, variables, and symbols in the approxima-
tion. The full definition of⇒A itself is found in [22], the definition of a parent clause below shows
the relation in the case of clauses.

Definition 16 (Parent Clause). For an approximation step N⇒AP N′ and two clauses (C;π) ∈ N and
(C′;π ′) ∈ N′, define [(C;π),N]⇒A [(C′;π ′),N′] expressing that (C;π) in N is the parent clause of
(C′;π ′) in N′:
If N⇒MO µT

P (N), then [(C;π),N]⇒A [µT
P ((C;π)),µT

P (N)] for all (C;π) ∈ N.
If N = N′′ ∪ {(C;π)} ⇒SH N′′ ∪ {(Cl;πl),(Cr;πr)} = N′, then [(D,π ′),N] ⇒A [(D,π ′),N′] for all
(D,π ′)∈N′′ and [(C,π),N]⇒A [(Cl;πl),N′], [(C,π),N]⇒A [(Cr;πr),N′] and [(C,π),N]⇒A [(Ca;πa),N′]
for any shallow resolvent (Ca;πa).
If N = N′′∪{(C;π)}⇒LI N′′∪{(Ca;πa)}= N′, then [(D,π ′),N]⇒A [(D,π ′),N′] for all (D,π ′) ∈ N′′

and [(C,π),N]⇒A [(Ca,πa),N′].
If N = N′′∪{(C;π)}⇒Ref N′′∪{(C;π∧x , t),(C;π){x 7→ t}}= N′, then [(D,π ′),N]⇒A [(D,π ′),N′]
for all (D,π ′) ∈ N′′, [(C,π),N]⇒A [(C;π ∧ x , t),N′] and [(C,π),N]⇒A [(C;π){x 7→ t},N′].

Lifting The over-approximation of a clause set N can introduce resolution refutations that have
no corresponding equivalent in N which we consider a lifting failure. Compared to our previous
calculus [20], the lifting process is identical with the exception that there is no case for the removed
Horn transformation. Since the conflicting cores are being superseded in the implementation by an
algorithm on DAGs, we can simplify their definition.

Definition 17 (Conflicting Core). A finite set of ground clauses N⊥ are a conflicting core of N if N⊥

is unsatisfiable and for every C ∈ N⊥ there is a clause (C′,π ′) ∈ N such that C ∈ G((C′;π ′)) modulo
duplicate literal elimination. We call C a conflict-instance of (C′;π ′) in N⊥. A conflicting core N⊥ of
N is minimal if for any subset M ( N⊥, M is not a conflicting core of N.
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We discuss the lifting and the corresponding refinements only for the linear and shallow case
because lifting the satisfiability equivalent monadic and refinement transformations always succeeds.

Lemma 18 (Linear Lifting). Let N ∪{(C;π)} ⇒LI N ∪{(Ca;πa)} and N⊥ be a conflicting core of
N ∪{(Ca;πa)}. Let C1, . . . ,Cm be all conflict-instances of (Ca;πa) in N⊥. If each Ci is an instance of
(C;π) modulo duplicate literal elimination, then N⊥ is a conflicting core of N∪{(C;π)}.

Proof. Follows trivially from the definition of conflicting cores, i.e., N⊥ is already a conflicting core
and for any clause C⊥ ∈ N⊥ that is not among C1, . . . ,Cm, there is a clause (D,π ′) ∈ N such that C⊥ is
a ground instance of (D,π ′) modulo duplicate literal elimination. � �

Lemma 19 (Shallow Lifting). Let N ∪{(C;π)} ⇒SH N ∪{(Cl;πl),(Cr;πr)} with the fresh predicate
S and N⊥ be a conflicting core of N∪{(Cl;πl),(Cr;πr)}. Let NS be the set of all resolvents of clauses
in N⊥ on S-atoms. If each clause Ca ∈NS is an instance of (C;π) modulo duplicate literal elimination,
then {D ∈ N⊥ | no S-atom in D}∪NS is a conflicting core of N∪{(C;π)}.

Proof. Let N′⊥ = {D ∈ N⊥ | no S-atom in D} ∪NS and I an Herbrand interpretation. Then, there
exists a C⊥ ∈ N⊥ such that I 6|=C⊥. If C⊥ does not contain an S-atom, then C⊥ ∈ N′⊥. Thus, I 6|= N′⊥.
Otherwise, at least one clause with an S-atom is false under I in N⊥. By construction, any such clause
is an conflict-instance of either Cl or Cr. Let Clτ1, . . . ,Clτm and Crρ1, . . . ,Crρn be all clauses in N⊥

that are false under I. Let

I′ B I \{S(x)τ1, . . . ,S(x)τm}∪{S(s)ρ1, . . . ,S(s)ρn},

i.e., change the truth value for S-atoms such that the clauses unsatisfied under I are satisfied under
I′. Because I and I′ only differ on S-atoms, there exists a clause D ∈ N⊥ that is false under I′ and
contains an S-atom. Let D = Clσ . Since I |= D, S(x)σ was added to I′ by some clause Crρ j, where
S(s)ρ j = S(x)σ . Let R be the resolvent of Crρ j and C1σ on S(s)ρ j and S(x)σ . Then, I 6|= R because
I 6|=Crρ j and I∪{S(s)ρ j} 6|=C′l . Thus, I 6|= N′⊥. For D =Crσ , the proof is analogous. Therefore, N′⊥

is a conflicting core of N∪{(C;π)}. � �

In the case of a refinement N∪{(C;π)}⇒Ref N∪{(C;π ∧ x , t),(C;π){x 7→ t}}, the clauses (C;π∧
x , t) and (C;π){x 7→ t} are both instances of (C;π). Therefore, any conflict-instance of either clause
in a conflicting core of N∪{(C;π ∧ x , t),(C;π){x 7→ t}} is also an instance of (C;π). Hence, N⊥ is
also a conflicting core of N∪{(C;π)}.

Lemma 20 (Refinement Lifting). Let N⇒Ref N′. If (N⊥;π) is a conflicting core of N′, then (N⊥;π)
is a conflicting core of N.

Approximation-Refinement Thanks to the addition of straight dismatching constraints, the refine-
ment is now quite different from the one in [20]. As a result of the changed refinement, we can adopt
a new approach to the approximation-refinement. Whereas previously the refinement was defined
separately for the linear and shallow cases, now both are generalized and treated as the same type of
lift-conflict. Intuitively, a lift-conflict occurs whenever non-linear variable occurrences in the original
clause set are approximated with linear variable occurrences that are then instantiated by non-unifiable
terms.

Consider the two cases where a lift-conflict can occur. In the linear case, there exists a clause in
the conflicting core that is not an instance of the original clauses. In the shallow case, there exists a
pair of clauses whose resolvent is not an instance of the original clauses. Since lifting monadic and
refinement transformations always succeeds, there are no lift-conflicts in those cases.
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Whenever lifting fails, there is a clause of some form, the so-called lift-conflict, that is not an
instance of an approximated clause. In the following this clause is defined as a general lift-conflict
which is then used to determine the refinement independently of the rule that caused it.

Definition 21 (The Lift-Conflict). Let N∪{(C,π)}⇒LI N∪{(Ca,πa)} and N⊥ be a minimal conflict-
ing core of N ∪{(Ca,πa)}. A conflict-instance Cc ∈ N⊥ of (Ca,πa) is called a lift-conflict if Cc is not
an instance of (C,π) modulo duplicate literal elimination.

Let N∪{(C,π)}⇒SH N∪{(Cl,πl),(Cr,πr)}, (Ca;πa) be the shallow resolvent and N⊥ be a mini-
mal conflicting core of N∪{(Cl,πl),(Cr,πr)}. The resolvent Cc of Clδl ∈ N⊥ and Crδr ∈ N⊥ is called
a lift-conflict if Cc is not an instance of (C,π) modulo duplicate literal elimination. We also consider
Cc as a conflict-instance of (Ca;πa).

The goal of refinement is then to change the parent clause in such a way that is both satisfia-
bility equivalent and prevents the lift-conflict from again appearing during the lifting of the refined
approximations. Solving the refined approximation will then necessarily produce a new proof because
its conflicting core has to be different. For this purpose, the refinement transformation segments the
original clause (C;π) into two parts (C;π ∧ x , t) and (C;π){x 7→ t}.

For example, consider N and its Linear transformation N′.
→ P(x,x) ⇒LI → P(x,x′)

P(a,b) → P(a,b) →
The ground conflicting core of N′ is

→ P(a,b)
P(a,b) →

Because P(a,b) is not an instance of P(x,x), lifting fails. P(a,b) is the lift-conflict. Specifically
{x 7→ a} and {x 7→ b} are conflicting substitutions for the parent variable x. Pick {x 7→ a} to segment
P(x,x) into (P(x,x);x , a) and P(x,x){x 7→ a}. Now, any descendant of (P(x,x);x , a) cannot have a
at the position of the first x, and any descendant of P(x,x){x 7→ a} must have an a at the position of
the second x. Thus, P(a,b) is excluded in both cases and no longer appears as a lift-conflict.

To show that the lift-conflict will not reappear in the general case, I use that the conflict clause and
its ancestors have strong ties between their term structures and constraints.

Definition 22 (Constrained Term Skeleton). The constrained term skeleton of a term t under constraint
π , skt(t,π), is defined as the normal form of the following transformation:

(t[x]p,q;π)⇒skt (t[q/x′];π ∧π{x 7→ x′}), where p , q and x′ is fresh.

The constrained term skeleton of a term t is essentially a linear version of t where the restrictions
on each variable position imposed by π are preserved. For (t,π), a solution δ of π is over lvar(π)∪
vars(t) and tδ is called a ground instance of (t,π).

Lemma 23. Let N0⇒∗AP Nk, (Ck;πk) in N with the ancestor clause (C0;π0) ∈ N0 and N⊥k be a minimal
conflicting core of Nk. Let δ be a solution of πk such that Ckδ is in N⊥k . If (L′,q′) is a literal position
in (Ck;πk) with the ancestor (L,q) in (C0,π0), then (i) L′δ |q′ is an instance of skt(L|q,π0), (ii) q = q′

if L and L′ have the same predicate, and (iii) if L′|q′ = x and there exists an ancestor variable y of x in
(C0,π0), then L|q = y.

Proof. By induction on the length of the approximation N0⇒∗AP Nk.
The base case Nk = N0, is trivial.

Let N0 = N∪{(C;π)}⇒SH N∪{(Cl;πl),(Cr;πr)}= Nk, (Ck;πk) be the shallow ρ-resolvent and Ckδ
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be the resolvent of two instances of (Cl;πl) and (Cr;πr) in N⊥k . Then, (Ck;πk)ρ
−1 is equal to (C;π)

modulo duplicate literal elimination. Thus, by definition (L,q) = (L′,q′)ρ−1. Therefore, (i) L′δ |q′ is
an instance of skt(L|q,π0), (ii) q = q′ if L and L′ have the same predicate, and (iii) if L′|q′ = x and there
exists an ancestor variable y of x in (C0,π0), then L|q = y.

Now, let N0⇒AP N1⇒∗AP Nk. Since (L′, p) has an ancestor literal position in (C0,π0), the ancestor
clause of (Ck;πk) in N1, (C1,π1), contains the the ancestor literal position (L1,q1), which has (L,q)
as its parent literal position. By the induction hypothesis on N1 ⇒∗AP Nk, (i) L′δ |q′ is an instance of
skt(L1|q1 ,π1), (ii) q1 = q′ if L1 and L′ have the same predicate, and (iii) if L′|q′ = x and there is an
ancestor variable y1 of x in (C1,π1), then L1|q1 = y1.

The proof follows by a case distinction on N0⇒AP N1, however, it is trivial except for the⇒SH
case. Let N0 = N ∪ {(C;π)} ⇒SH N ∪ {(Cl;πl),(Cr;πr)} = N1 where a term s is extracted from a
positive literal Q(s′[s]p) via introduction of the fresh predicate S and variable x. The core insight in
this case is that since N⊥k is minimal and the predicate S only occurs in (Cl;πl) and (Cr;πr), there
exists for every clause (Cl;πl)δ in N⊥k with the literals S(x)δ and Q(s′[p/x])δ a clause (Cr;πr)σ in
N⊥k with the literal S(s)σ such that S(s)σ = S(x)δ . Otherwise, (Cl;πl)δ could never be fully resolved
in a resolution proof and would therefore be superfluous. As a consequence, xδ is always an instance
of s. � �

Next, we define the notion of descendants and descendant relations to connect lift-conflicts in
ground conflicting cores with their corresponding ancestor clauses. For an approximation N⇒∗AP N′

and a conflicting core N′⊥ of N′, any conflict clause in N′⊥ is a descendant of a clause in N. Inversely,
if a clause C is not a descendant of a clause in N, then C is not a conflict clause for any approximation
of N.

Definition 24 (Descendants). Let N ⇒∗AP N′, [(C;π),N] ⇒∗A [(C′;π ′),N′] and D be a ground in-
stance of (C′;π ′). Then, D is called a descendant of (C;π). Define the [(C;π),N]⇒∗A [(C′;π ′),N′]-
descendant relation⇒D that maps literals in D to literal positions in (C;π) using the following rule:

L′δ ⇒D (L,r) if L′δ ∈ D and [r,L,(C;π),N]⇒∗A [ε,L′,(C′;π
′),N′]

For the descendant relations it is of importance to note that while there are potentially infinite ways
that a lift-conflict Cc can be a descendant of an original clause (C;π), there are only finitely many
distinct descendant relations over Cc and (C;π). This means, if a refinement transformation can pre-
vent one distinct descendant relation without allowing new distinct descendant relations (Lemma 25),
a finite number of refinement steps can remove the lift-conflict Cc from the descendants of (C;π)
(Lemma 26). Thereby, preventing any conflicting cores containing Cc from being found again.

A clause (C;π) can have two descendants that are the same except for the names of the S-
predicates introduced by Shallow transformations. Because the used approximation N ⇒∗AP N′ is
arbitrary and therefore also the choice of fresh S-predicates, if D is a descendant of (C;π), then any
clause D′ equal to D up to a renaming of S-predicates is also a descendant of (C;π). On the other
hand, the actual important information about an S-predicate is which term it extracts. Two descen-
dants of (C;π) might be the exactly the same but their S-predicate extract different terms in (C;π).
For example, P(a)→ S( f (a)) is a descendant of P(x),P(y)→ Q( f (x),g( f (x))) but might extract ei-
ther occurrence of f (x). These cases are distinguished by their respective descendant relations. In the
example, they are either S( f (a))⇒D (Q( f (x),g( f (x))),1) or S( f (a))⇒D (Q( f (x),g( f (x))),2.1).

Lemma 25. Let N0 =N∪{(C;π)}⇒Ref N∪{(C;π ∧ x , t),(C;π){x 7→ t}}=N1 be a refinement and
D be a ground clause. If there exists a [(C;π ∧ x , t),N1]⇒∗A [(C′;π ′),N2]- or [(C;π){x 7→ t},N1]⇒∗A
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[(C′;π ′),N2]-descendant relation⇒1
D, then there is an equal [(C;π),N0]⇒∗A [(C′;π ′),N2]-descendant

relation⇒0
D.

Proof. Let LD be a literal of D and L′⇒1
D (L,r). If D is a descendant of (C;π ∧ x , t), then [r,L,(C;π∧

x , t),N1]⇒∗A [ε,L′,(C′;π ′),N2]. Because [r,L,(C;π),N0]⇒A [r,L,(C;π ∧ x , t),N1], L′⇒0
D (L,r).

If D is a descendant of (C;π){x 7→ t}, the proof is analogous. � �

Lemma 26 (Refinement). Let N ⇒AP N′ and N⊥ be a minimal conflicting core of N′. If Cc ∈ N⊥

is a lift-conflict, then there exists a finite refinement N ⇒∗Ref NR such that for any approximation
NR ⇒∗AP N′R and ground conflicting core N⊥R of N′R, Cc is not a lift-conflict in N⊥R modulo duplicate
literal elimination.

Proof. Let (Ca,πa) be the conflict clause of Cc and (C;π) ∈ N be the parent clause of (Ca,πa). Cc is
a descendant of (C;π) with the corresponding [(C;π),N]⇒A [(Ca;πa),N′]-descendant relation⇒0

Cc
.

Apply induction on the set of distinct [(C;π),N]⇒∗A [(C′;π ′),N′′]-descendant relations⇒Cc
for arbi-

trary approximations N⇒∗AP N′′.
Since only the Shallow and Linear transformations can produce lift-conflicts, the clause (C;π) is

replaced by either a linearized clause (C′;π ′) or two shallow clauses (Cl;π) and (Cr;π). Then, the
conflict clause (Ca;πa) of Cc is either the linearized (C′;π ′) or the resolvent of (Cl;π) and (Cr;π).
In either case, Cc = Caδ for some solution δ of πa. Furthermore, there exists a substitution τ =
{x′1 7→ x1, . . . ,x′n 7→ xn} such that (C;π) and (Ca;πa)τ are equal modulo duplicate literal elimination.
That is, τ = {x′ 7→ x} for a Linear transformation and τ = ρ−1 for Shallow transformation.

Assume Cc =Caτσ for some grounding substitution σ , where τσ is a solution of πa. Thus, σ is a
solution of πaτ , which is equivalent to π . Then, Cc is equal to Cσ modulo duplicate literal elimination
an instance of (C;π), which contradicts with Cc being a lift-conflict. Hence, Cc = Caδ is not an
instance of Caτ and thus, xiδ , x′iδ for some xi in the domain of τ .

Because xiδ and x′iδ are ground, there is a position p where xiδ |p and x′iδ |p have different function
symbols. Construct the straight term t using the path from the root to p on xiδ with variables that are
fresh in (C,π). Then, use xi and t to segment (C;π) into (C;π ∧ xi , t) and (C;π){xi 7→ t} for the
refinement N⇒Ref NR. Note, that xiδ is a ground instance of t, while x′iδ is not.

Let (L′1,r
′
1) and (L′2,r

′
2) in (Ca,πa) be literal positions of the variables xi and x′i in Ca, and (L1,r1)

and (L2,r2) in (C,π) be the parent literal positions of (L′1,r
′
1) and (L′2,r

′
2), respectively. Because

(Ca,πa)τ is equal to (C;π) modulo duplicate literal elimination, L1|r1 = L2|r2 = xi. Let N⇒Ref N1 be
the refinement where (C;π) is segmented into (C;π ∧ xi , t) and (C;π){xi 7→ t}.

By Lemma 25, for every [(C;π∧xi , t),N1]⇒∗A [(C′a;π ′a),N2]- or [(C;π){xi 7→ t},N1]⇒∗A [(C′a;π ′a),N2]-
descendant relation there exists a corresponding equal [(C;π),N]⇒A [(C′a;π ′a),N2]-descendant rela-
tion. Assume there is a [(C;π ∧ xi , t),N1]⇒∗A [(C′a;π ′a),N2]-descendant relation⇒1

Cc
that is not dis-

tinct from⇒0
Cc

. Because L′1δ ⇒0
Cc
(L1,r) for some literal position (L1,r) in (C;π), which is the parent

literal position of (L1,r) in (C;π ∧ xi , t), L′1δ ⇒1
Cc

(L1,r). However, this contradicts Lemma 23
because xiδ is not an instance of skt(L1|r1 ,π ∧ xi , t) = skt(xi,π ∧ xi , t). The case that there is a
[(C;π){xi 7→ t},N1]⇒∗A [(C′a;π ′a),N2]-descendant relation that is not distinct from⇒0

Cc
is analogous

using the argument that x′iδ is not an instance of skt(L2{xi 7→ t}|r2 ,π) = skt(t,π). Hence, there are
strictly less distinct descendant relations over Cc and (C;π ∧ x , t) or (C;π){x 7→ t} than there are
distinct descendant relations over Cc and (C,π).

If there are no descendant relations, then Cc can no longer appear as a lift conflict. Otherwise,
by the inductive hypothesis, there exists a finite refinement N ⇒Ref N1 ⇒∗Ref NR such that for any
approximation NR ⇒AP N′R and ground conflicting core N⊥R of N′R, Cc is not a lift-conflict in N⊥R
modulo duplicate literal elimination. � �
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Theorem 27 (Soundness and Completeness of FO-AR). Let N be a clause set and N′ its MSL(SDC)
approximation: (i) if N is unsatisfiable then there exists a conflicting core of N′ that can be lifted to a
refutation in N, (ii) if N′ is satisfiable, then N is satisfiable too.

Proof. (Idea) By Lemma 14 and Lemma 26, where the latter can be used to show that a core of N′

that cannot be lifted also excludes the respective instance for unsatisfiability of N. �

Actually, Lemma 26 can be used to define a fair strategy on refutations in N′ in order to receive
also a dynamically complete FO-AR calculus, following the ideas presented in [20].

5 Implementation

We have implemented the first-order approximation-refinement calculus (FO-AR) as an extension of
SPASS v.3.8 called SPASS-AR. As shown, the MSL(SDC) fragment can be decided using ordered
resolution with the specific selection function sel. Therefore, by just using sel as the default selection
function, SPASS already provides the decision procedure for MSL.

The addition of the straight dismatching constraints to the signature of clauses follows in a straight-
forward way from their description in [21]. In relation to the main saturation loop of SPASS, the
constraints are treated as a black-box that given constraints checks solvability or subsumption. In-
ternally, the constraint of a new derived clause is constructed by concatenating the constraints of the
parent clauses and applying the mgu then normalizing and checking for solvability. If the constraint
is unsolvable, it is deleted as the clause is redundant. The solvability check also sorts and shortens
the constraint if possible, e.g., with signature {a, f}, the constraints x , f (a) and x , f ( f (v)) are
combined into x , f (v).

The remaining steps of FO-AR, approximation, lifting, and refinement, are build around the core
routine of SPASS. A given clause set is first approximated. To allow extracting the ancestor relation
later, each transformation step is documented in the same way as inferences by adding the information
of rule, parent clauses and affected literals to the approximation clause. The resulting approximation
is given as input to the modified solver.

Once finished, the result is analyzed. If satisfiable, the result is reported and the routine finished.
Otherwise, the empty clause returned by SPASS is given as input to the lifting. For the sake of the
lifting, each inferred clause had its parents documented and even if it was redundant was not deleted.
This information is then used to extract a DAG of the refutation.

In a first version of SPASS-AR, the conflicting core was then recursively constructed and step-
wise lifted. However, the exponential size of the conflicting core compared to the refutation DAG
made this approach impractical in many examples. We, therefore, replaced it by a lifting that, while
more complex, works directly on the DAG (see Section 5.1).

If the lifting succeeds, the conflicting core or the refutation DAG lifted to the original clause set
can be reported as a proof of unsatisfiability. Otherwise, all relevant information of the failed lifting
step is returned as the lift-conflict and given to the refinement function.

First, the refinement uses a modified unification algorithm on the conflict clause and its parent
to identify the positions of the two subterms in the conflict clause that caused the unification to fail
(see Section 5.2). One of those positions is then traced upwards to the point were in the parent clause
a variable is found. As the conflict clause is by construction an instance of the parent clause’s term
skeleton, this tracing necessarily leads to the same variable for both positions. Next, we climb the
ancestry tree of the conflict clause to its corresponding original clause while keeping track of the
incorrectly instantiated variable. The original clause (C;π), its variable x and one of the instantiations
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t are used to replace (C;π) with the refinements (C;π){x 7→ t} and (C;π∧x , t). Lastly after resetting
the solvers data-structures, the refined clause set is again fed to the approximation.

5.1 DAG Lifting

As mentioned before, theory and implementation differ in that we actually lift the resolution proof
directly instead of creating and lifting a conflicting core. The simple reason is that a conflicting core
can be exponentially larger than its corresponding resolution proof which is stored compactly as a
directed acyclic graph (DAG). Note for the following that in a resolution refutation tree, the leaves are
at the top while the root is at the bottom.

The general idea is to recursively traverse the proof DAG down from the approximation clauses
in the leaves to the root and replace each node with a corresponding clause derived from the original
problem. If this fails at some node, we can either immediately identify the conflict or check which
parent node contains the conflict. In the latter case, we move back up the DAG towards the leaves
looking for the conflict.

The lifting is done at each node in two steps: first the linear lifting, then the shallow lifting on top.
For clarity however, we will explain each lifting separately.

Linear DAG Lifting Assume the original clause set N is already monadic and shallow such that its
approximation N′ is created using only Linear transformations. Furthermore, for simplicity, we will
ignore constraints.

Each leaf in the resolution proof contains an approximation clause C in N′ which has an ancestor
clause CA in N. We revert each Linear transformation that was applied to CA to create C by substituting
any fresh variables with their original variable. Specifically, if x is replaced with x′ at some position,
then one lifting step of C is C{x′ 7→ x}. We repeat this for each Linear transformation step. The end
result C{x′1 7→ x1; . . . ;x′n 7→ xn} is called the linear lifting clause CL of C. CL is then both an instance
of C and can be derived from clauses in N, specifically, CL is satisfiability equivalent to CA.

For the internal nodes of the proof DAG, we will here assume that there are only resolution infer-
ences in the proof. The method is analogous for factorization inferences and clause reductions, e.g.
condensation.

Let R be the clause at the current node with C and D as the clauses at its parent nodes. First,
we recursively compute their respective linear lifting clauses CL and DL. By construction, R is the
resolvent of C and D. Next, we try to recreate this exact resolution inference using CL and DL instead.
If this succeeds, their resolvent RL is the linear lifting clause of R. As before, RL is an instance of R
and can be derived from N. If R is the empty clause, then RL is also empty and we have therefore
shown that N is unsatisfiable.

Otherwise, if CL and DL have no resolvent, lifting failed and we climb back up the DAG to find the
leaf containing the linear conflict. The recursive climbing algorithm receives as input a refutation node
with clause R and the so-called conflicting substitution ρ . In particular, Rρ is called the conflicting
clause and has the property that it can be derived from N′ but, using the given refutation, none of its
ground instances can be derived from N. We begin climbing at the node where lifting failed with the
identity as the conflicting substitution.

Let R be the clause at the current node with left and right parent clauses C and D and their respec-
tive linear lifting clauses CL and DL. Again, R is the result of a resolution inference between C and D
using their mgu σ . We check whether CL has common ground instances with Cσρ . If this is not the
case, then Cσρ is a conflicting clause and the lift-conflict is on the left parent branch. The algorithm
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continues on the left parent node with σρ as the conflicting substitution. Otherwise, do the same with
DL and Dσρ .

If both have common ground instances, let δ be the mgu of CL and Cσρ . The algorithm then
continues with the right parent node and the conflicting substitution σρδ . Note that Dσρδ is a
conflicting clause because otherwise Rρδ contains ground instances that are derivable from N which
contradicts Rρ being a conflicting clause itself.

Once a leaf with clause C is reached, we have a conflicting clause Cρ which has no common
instances with the linear lifting clause CL. We again revert the Linear transformations on C step by
step while unifying the instantiations xρ and x′ρ until we reach the transformation step where this
fails. The variable x and the two instantiations xρ and x′ρ constitute the lift-conflict and are used to
refine the original ancestor clause CA.

To extend this method to constraints, unification-checks are also failed if the mgu σ exists but πσ

is unsolvable in the given context.
Consider as an example the clause set consisting of C1 =→ P(x,x); C2 = P(a,y)→ Q(y,b); and

C3 = Q(b,x)→ where the first clause has the linear approximation C′1 =→ P(x,x′). A possible reso-
lution refutation tree of the approximation is

C′1 :→ P(x,x′) C2 : P(a,y)→ Q(y,b)

C4 :→ Q(x′,b) C3 : Q(b,x)→
C5 : �

The linear lifting clauses C′L1 , CL
2 and CL

3 of C′1, C2 and C3 are C1, C2 and C3 respectively. The resolvent
C4 =→Q(x′,b) has the linear lifting clause CL

4 =→Q(a,b). However, there is no linear lifting clause
of the empty clause C5 because CL

4 and CL
3 have no resolvent.

C′L1 :→ P(x,x) CL
2 : P(a,y)→ Q(y,b)

CL
4 :→ Q(a,b) CL

3 : Q(b,x)→
CL

5 :−
Thus, � is the initial conflicting clause. Since the mgu of C4 and C3 is ρ = {x 7→ b,x′ 7→ b}, C4ρ =→
Q(b,b) and CL

4 =→ Q(a,b) have no common instances and thus C4ρ is the next conflicting clause.
After applying the mgu σ = {x 7→ a,y 7→ x′} of C′1 and C2, C′1σρ =→P(a,b) has no common instances
with C′L1 =→ P(x,x) and is therefore the last conflicting clause. Arriving at a leaf, we see that xσρ = a
and x′σρ = b are the conflicting instantiations.

C′1σρ :→ P(a,b) C2σρ : P(a,b)→ Q(b,b)
C4ρ :→ Q(b,b) C3ρ : Q(b,b)→

C5 id : �

Shallow DAG Lifting The shallow lifting follows the same idea as the linear lifting. This time,
assume the original clause set N is already monadic and linear such that its approximation N′ is
created using only Shallow transformations.

Unlike the Linear transformation, lifting a Shallow transformation cannot be done locally on each
leaf. Reverting a Shallow transformation would require combining an approximation clause (C;π)
with its left or right counterpart and thereby drastically changing the shape of the resolution proof
DAG. Instead, we replace the Shallow transformation steps with so-called generalized Shallow trans-
formation by adding the shared variables as new arguments to the shallow predicate S. Specifically,
when Γ→ E[s]p,∆ is approximated by S(x),Γl → E[p/x],∆l and Γr → S(s),∆r, we store the shared
variables {y1, . . . ,yn} defined by the intersection vars(Γl,∆l,E[p/x])∩vars(Γr,∆r,S[s]) such that they
can be retrieved using the fresh predicate S as a key. During shallow lifting, we replace any literal
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S(t) in a leaf node’s clause C with S(t,y1, . . . ,yn) to create the shallow lifting clause CL. Because this
general Shallow transformation is actually satisfiability equivalent, the original clause set N is proven
unsatisfiable if the lifted clauses create a valid resolution refutation, i.e., whenever two S-literals S(t)
and S(s) are unified in the refutation, the lifted S(t, t1, . . . , tn) and S(s,s1, . . . ,sn) are unifiable as well.

For the internal nodes of the proof DAG, we again only describe the case for resolution inferences
where the lifting is analogous to the linear case. The difference lies in how the climbing algorithm
finds the lift-conflict.

In most cases, when shallow lifting fails at an internal node with clause R, two shallow literals
¬S(t, t1, . . . , tn) and S(s,s1, . . . ,sn) in CL and DL are not unifiable. Since each shallow predicate S is
unique to its respective Shallow transformation, this reveals the responsible ancestor clause that needs
to be refined. Then, we sequentially unify each ti and si until we find the first pair that does not allow
unification. Those t j and s j and their shared variable constitute the lift-conflict.

However, in the general case, this may not be the first node at which shallow lifting fails. The
correct conflicting node can be found by climbing up the refutation tree until there is no conflict in
either parent node. Checking which parent node contains a conflict works with the same idea as in the
linear case with the exception that when comparing instances of an atom S(t) with those of a lifted
atom S(s,s1, . . . ,sn) we ignore the added terms.

Consider as an example the clause set consisting of C1 =→ P(x, f (x)) and C2 = P(x,x)→ where
the fist clause has the shallow approximations Cl = S(x′)→ P(x,x′) and Cr =→ S( f (x)). A possible
resolution refutation tree is

Cr :→ S( f (x))

Cl : S(x′)→ P(x,x′) C2 : P(x,x)→
C3 : S(x′)→

C4 : �
For the shallow lifting, we add the shared variable x to each S-atom in the leaves and then repeat the
refutation steps.

CL
r :→ S( f (x),x)

CL
l : S(x′,x)→ P(x,x′) CL

2 : P(x,x)→
CL

3 : S(x′,x′)→
CL

4 :−
Again, the empty clause C4 has no shallow lifting clause because CL

3 = S(x′,x′) → and CL
r =→

S( f (x),x) can not be resolved. Next, we check whether a lift-conflict also exists at one of the parents
nodes. However this is not the case because for the mgu ρ = {x′ 7→ f (x)} in the resolution of Cr and
C3, Crρ =→ S( f (x)) and C3ρ = S( f (x))→ each have instances in common with CL

r =→ S( f (x),x)
and CL

3 = S(x′,x′)→ when ignoring the added arguments.
Then, after unifying the first arguments of the shallow atoms S( f (x),x) and S(x′,x′), we get

S( f (x),x) and S( f (x), f (x))→ which reveals that the shared variable x has the conflicting instan-
tiation terms x and f (x).

5.2 The Lift-Conflict Selection

The main work in the refinement is the extraction of the straight term used to generate the refined
clauses. A lift-conflict, when found during lifting, entails a corresponding original clause (C;π), a
variable x in C and two terms t and t ′ that are not unifiable under a constraint π ′. However, the
refinement requires an appropriate straight term s to create the refinements (C;π){x 7→ s} and (C;π ∧
x , s).

The most reliable method is to first find the minimal solution δ of π ′ under the term ordering ≺
also used by the MSL(SDC) solver, i.e. where xδ � xδ ′ for every variable x and solution δ ′ of π ′.
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The resulting ground terms tδ and t ′δ are by construction not equal and therefore, there is a position
p where the top-symbol of t|p and t ′|p differ while they are the same for every position above p. The
function symbols on the path from the root of tδ up to and including p describe the required straight
term s that differentiates tδ and t ′δ , i.e., tδ is an instance of s while s and t ′δ have no common ground
instances. In the worst case, however, this refinement only prevents one unliftable ground resolution
proof from reoccurring in the following loops.

However, there are cases where a better straight term can be chosen. The simplest case is when
unifying the conflict clause with the original clause fails because their instantiations differ at some
equivalent positions. For example, consider N = {P(x,x);P( f (x,a), f (y,b))→}. N is satisfiable but
the linear transformation is unsatisfiable with conflict clause P( f (x,a), f (y,b)) which is not unifiable
with P(x,x), because the two terms f (x,a) and f (y,b) have different constants at the second argument.
A refinement of P(x,x) is

(P(x,x) ;x , f (v,a))
(P( f (x,a), f (x,a)) ;>)

P( f (x,a), f (y,b)) shares no ground instances with the approximations of the refined clauses.
Next, assume that again unification fails due to structural difference, but this time the differences

lie at different positions. For example, consider N = {P(x,x);P( f (a,b), f (x,x))→}. N is satisfiable
but the linear transformation of N is unsatisfiable with conflict clause P( f (a,b), f (x,x)) which is not
unifiable with P(x,x) because in f (a,b) the first and second argument are different but the same in
f (x,x). A refinement of P(x,x) is

(P(x,x) ;x , f (a,v))
(P( f (a,x), f (a,x))) ;x , a)
(P( f (a,a), f (a,a))) ;>)

P( f (a,b), f (x,x)) shares no ground instances with the approximations of the refined clauses. It is
also possible that the conflict clause and original clause are unifiable by themselves, but the resulting
constraint has no solutions.

For example, consider N = {P(x,x);(P(x,y)→;x , a∧ x , b∧ y , c∧ y , d)} with signature Σ =
{a,b,c,d}. N is satisfiable but the linear transformation of N is unsatisfiable with conflict clause
(→P(x,y);x, a∧x, b∧y, c∧y, d). While P(x,x) and P(x,y) are unifiable, the resulting constraint
x , a∧ x , b∧ x , c∧ x , d has no solutions. A refinement of P(x,x) is

(P(x,x) ;x , a∧ x , b)
(P(a,a) ;>)
(P(b,b) ;>)

(P(x,y);x, a∧x, b∧y, c∧y, d) shares no ground instances with the approximations of the refined
clauses.

Furthermore, there can be several straight terms s that distinguish the same t and t ′. For example,
for g( f (a),a) and g( f (b),b), both g( f (a),v) and g(v,a) are feasible for refinement but we prefer the
shorter second term. Further, for g( f ( f (a)),x) and g( f ( f (b)), f (x)), we use g( f ( f (a)),v) rather than
g(v, f (w)) because the latter is derived from the occurrence conflict when trying to unify x with f (x)
in the second argument. For this purpose, we use a modified unification algorithm that searches for an
’optimal’ straight refinement term.

The rules are applied on triples (G,S,π) where S is the result set containing straight terms and G
is the set of unifications (t � t ′,s, p) which track previous decompositions with the straight term s and
position p. Given two terms t and t ′ that are not unifiable under the constraint π , the algorithm starts
with the triple ({(t � t ′,x,ε)},{},π).
Delete (G ∪̇ {(t � t,s, p)},S,π) ⇒ (G,S,π)
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Decompose (G ∪̇ {( f (t1, . . . , tn) � f (t ′1, . . . , t
′
n),s, p)},S,π) ⇒

(G ∪̇ {(ti � t ′i ,(s[p/ f (v1, . . . ,vn)]), p.i) | 1≤ i≤ n},S,π)
where v1, . . . ,vn are fresh variables in s.

Conflict (G ∪̇ {( f (t) � g(s),s, p)},S,π) ⇒ (G,S ∪ {s[p/ f (v)],s[p/g(w)]},π)
where v and w are fresh variables in s.

Swap (G ∪̇ {( f (t) � x,s, p)},S,π) ⇒ (G ∪̇ {(x � f (t),s, p)},S,π)

Constraint (G ∪̇ {(x � t,s, p)},S,π) ⇒
(G,S ∪ {s[p/s′ρ] | x , s′ ∈ π and t , s′↓=⊥},π)

where s and s′ρ are variable disjoint and π{x 7→ t}↓=⊥.

Eliminate (G ∪̇ {(x � t,s, p)},S,π) ⇒ (G{x 7→ t},S,π{x 7→ t})
where x < vars(t), π{x 7→ t} is solvable, and (t � t ′,s, p)σ = (tσ � t ′σ ,s, p).

The generalized unification terminates. This can be shown by a measure (n,M) where n is the
number of different variables in G and M is the multiset of term depths of the left-hand sides of the
equations t � t ′ in G. The well-defined ordering is a lexicographic combination of > on the naturals
and the extension of > on the naturals to multisets. The rules Delete, Decompose, Conflict, Swap,
and Constraint rules each strictly lower M but leave the number n of different variables unchanged.
The Eliminate rule strictly lowers n.

Each rule preserves the invariant that if σ is the total substitution applied on G by the Eliminate
rule and t and t ′ are the starting terms, then for any (u � u′,s, p)∈G, tσ and t ′σ are instances of either
s[p/u] or s[p/u′], respectively, and any term s ∈ S is a straight term that differentiates tσ and t ′σ .

While standard unification tracks the substitutions and fails upon reaching a conflict, this version
instead stores for each found conflict the corresponding straight term. These straight terms are gen-
erated by extending a term with hole with each application of the decompose rule and completing
them upon reaching a conflict. The added constraint rule catches a new case of conflict that can occur
under the presence of constraints. For example, f (x) and f ( f (a)) are not unifiable under the con-
straint x , f (v) and we generate f ( f (x)) as the distinguishing straight term using the constraint rule.
Additionally, each rule is given a priority defined by the order they are listed here, i.e., they are only
applied if all previous rules are exhausted.

Once exhausted, one straight term is chosen from S depending on criteria such as depth, size, and
the number of eliminate steps used. However, note that the rules are not complete. If the algorithm
stops without result, we fall back on generating the straight term from a minimal ground core instead.
This is because there are no cases for when x occurs in t or when π{x 7→ t} is unsolvable. The latter
case could be refined but has proven too rare in experiments to be worth implementing. The former
case is impossible to refine completely and therefore, we try to avoid it whenever possible (see also
the next section).

5.3 Preprocessing Reflexive Predicates

The approximation-refinement cannot show satisfiability of the simple clause set with the two clauses
→ P(x,x) and P(y,g(y))→. The problem is that → P(x,x) cannot be refined in such a way that all
instances of the lift-conflict → P(y,g(y)) are excluded. The refinement loop instead ends up enu-
merating all (→ P(gi(x),gi(x));x , g(v)) but→ P(gi+1(y),gi+2(y)) will always remain as a conflict
clause.

We have not found a proper solution to this problem that works in all cases, but as a partial
solution to this problem, if the input clause set contains reflexivity axioms such as→ P(x,x), we tag
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each occurrence of P as reflexive or irreflexive, i.e, whether an atom P(s, t) is unifiable with P(x,x) or
not, by creating two new predicates Pref and Pirr. We essentially separate the predicate P into reflexive
and irreflexive parts. For the example, this looks like→ Pref(x,x) and Pirr(y,g(y))→.

Since the two literals were not resolvable anyway, this replacement is satisfiability equivalent.
Now, the approximation is also satisfiable.

In general, for each predicate P with a reflexivity axiom, We replace all occurrences of atoms
P(s, t) with Pref(s, t) and/or Pirr(s, t). If s and t are not unifiable, we replace P(s, t) with Pirr(s, t).
Otherwise, there is a most general unifier σ of s and t. In that case, we replace the clause C∨ [¬]P(s, t)
with Cirr =C∨ [¬]Pirr(s, t) and Cref =Cσ ∨ [¬]Pref(sσ , tσ). If now Cref contains an atom Pirr(s,s), we
remove Cref again. We repeat this as long as Cirr and Cref still contain the predicate P.

To give the idea why this is satisfiability equivalent, let N′ be the transformation of a clause set N
which has P as its only predicate and contains the reflexivity axiom {→ P(x,x)}. If I is a Herbrand
model of N then {Pref(s, t),Pirr(s, t) | P(s, t) ∈ I} is a model of N′ and if I is a Herbrand model of N′

then we can construct as the model of N the set {P(s,s) | Pref(s,s) ∈ I}∪{P(s, t) | s , t and Pirr(s, t) ∈ I}
.

For example, consider the satisfiable clause set N
{ → P(x,x); P( f (x), f (y))→ P(x,y); P( f (x),c)→ }

which has only infinite models [6]. As with the first example, its approximation is unsatisfiable no
matter the refinement. However, after tagging the reflexive predicate P and deleting subsumed clauses,
the resulting tagged set N′

{ → Pref(x,x); Pirr( f (x), f (y))→ Pirr(x,y); Pirr( f (x),c)→ }
and its approximation are both immediately saturated. With this the approximation-refinement can
show the satisfiability of N′ and thereby also the satisfiability of the satisfiability equivalent N. How-
ever, note that while N has only infinite models, N′ does have finite models. Hence, this does not show
that the MSL fragment does not have the finite model property.

Lastly this method is not restricted to just binary predicates, but can be applied to any functions
and predicates with arity larger than one [19].

6 Experiments

In the following we discuss several first-order clause classes for which FO-AR implemented in SPASS-
AR immediately decides satisfiability but superposition and instantiation-based methods fail. We ar-
gue both according to the respective calculi and state-of-the-art implementations, in particular SPASS 3.9 [25],
Vampire 4.1 [12, 23], for ordered-resolution/superposition, iProver 2.5 [10] an implementation of
Inst-Gen [11], and Darwin v1.4.5 [4] an implementation of the model evolution calculus [5]. All ex-
periments were run on a 64-Bit Linux computer (Xeon(R) E5-2680, 2.70GHz, 256GB main memory).
For Vampire and Darwin we chose the CASC-sat and CASC settings, respectively. For iProver we set
the schedule to “sat” and SPASS, SPASS-AR were used in default mode. Please note that Vampire
and iProver are portfolio solvers including implementations of several different calculi including su-
perposition (ordered resolution), instance generation, and finite model finding. SPASS, SPASS-AR,
and Darwin only implement superposition, FO-AR, and model evolution, respectively.

For the first example
P(x,y)→ P(x,z),P(z,y); P(a,a)

and second example,
Q(x,x); Q(v,w),P(x,y)→ P(x,v),P(w,y); P(a,a)

the superposition calculus produces independently of the selection strategy and ordering an infinite
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number of clauses of form
→P(a,z1), P(z1,z2), . . . , P(zn,a).

Using linear approximation, however, FO-AR replaces P(x,y)→ P(x,z),P(z,y) and → Q(x,x)
with P(x,y)→ P(x,z),P(z′,y) and → Q(x,x′), respectively. Consequently, ordered resolution de-
rives→ P(a,z1),P(z2,a) which subsumes any further inference clauses→ P(a,z1),P(z2,z3),P(z4,a).
Hence, saturation of the approximation terminates immediately. Both examples belong to the Bernays-
Schönfinkel fragment, so model evolution (Darwin) and Inst-Gen (iProver) can decide them as well.
Note that the concrete behavior of superposition is not limited to the above examples but potentially
occurs whenever there are variable chains in clauses.

On the third problem
P(x,y)→ P(g(x),z); P(a,a)

superposition derives all clauses of the form→ P(g(. . .g(a) . . .),z). With a shallow approximation of
P(x,y)→ P(g(x),z) into S(v)→ P(v,z) and P(x,y)→ S(g(x)), FO-AR (SPASS-AR) terminates after
deriving→ S(g(a)) and S(x)→ S(g(x)). Again, model evolution (Darwin) and Inst-Gen (iProver) can
also solve this example.

The next example
P(a); P( f (a))→; P( f ( f (x)))→ P(x); P(x)→ P( f ( f (x)))

is already saturated under superposition. For FO-AR, the clause P(x)→ P( f ( f (x))) is replaced by
S(x)→ P( f (x)) and P(x)→ S( f (x)). Then ordered resolution terminates after inferring S(a)→ and
S( f (x))→ P(x).

The Inst-Gen and model evolution calculi, however, fail. In either, a satisfying model is repre-
sented by a finite set of literals, i.e, a model of the propositional approximation for Inst-Gen and
the trail of literals in case of model evolution. Therefore, there necessarily exists a literal P( f n(x)) or
¬P( f n(x)) with a maximal n in these models. This contradicts the actual model where either P( f n(a))
or P( f n( f (a))) is true. However, iProver can solve this problem using its built-in ordered resolution
solver whereas Darwin does not terminate on this problem.

Lastly consider an example of the form
f (x)≈ x→; f ( f (x))≈ x→; . . . ; f n(x)≈ x→

which is trivially satisfiable, e.g., saturated by superposition, but any model has at least n+1 domain
elements. Therefore, adding these clauses to any satisfiable clause set containing f forces calculi that
explicitly consider finite models to consider at least n+1 elements. The performance of final model
finders [16] typically degrades in the number of different domain elements to be considered.

Combining each of these examples into one problem is then solvable by neither superposition,
Inst-Gen, or model evolution and not practically solvable with increasing n via testing finite models.
For example, we tested

P(x,y)→ P(x,z),P(z,y); P(a,a); P( f (a),y)→;
P( f ( f (x)),y)→ P(x,y); P(x,y)→ P( f ( f (x)),y);

f (x)≈ x→; , . . . , f n(x)≈ x→;
for n= 20 against SPASS, Vampire, iProver, and Darwin for more than one hour each without success.
Only SPASS-AR solved it in less than one second.

For iProver we added an artificial positive equation b≈ c. For otherwise, iProver throws away all
inequations while preprocessing. This is a satisfiability preserving operation, however, the afterwards
found (finite) models are not models of the above clause set due to the collapsing of ground terms.
Another such example is

{ → P(a,a,a); P(x,y′,z′),P(x′,y,z)→ P( f 2(x),y,z);
P(x′,y,z′),P(x,y′,z)→ P(x, f 3(y),z); P(x′,y′,z),P(x,y,z′)→ P(x,y, f 5(z));
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P( f 2(x),y,z)→ P(x,y,z); P(x, f 3(y),z)→ P(x,y,z); P(x,y, f 5(z))→ P(x,y,z);
P( f (a),y,z)→; P(x, f (a),z)→; P(x, f 2(a),z)→;

P(x,y, f (a))→; P(x,y, f 2(a))→; P(x,y, f 3(a))→; P(x,y, f 4(a))→}

SPASS-AR saturates its approximation in under one second, while SPASS, Vampire, iProver, and
Darwin each cannot solve it within a test-run of over one hour. Note that while again finite models
exist, they require at least 30 domain elements which is too many for the finite model finders build
into iProver and Vampire.

Domain All Solved % Sat Compl. % Unsat Proof %
SYN 1128 806 71% 275 166 60% 875 640 73%
LCL 564 115 20% 139 48 35% 430 67 16%
CSR 379 142 37% 4 1 25% 372 141 38%
FLD 281 58 21% 3 183 58 32%
GEO 264 172 65% 16 1 6% 249 171 69%
SWV 260 84 32% 16 16 100% 248 68 27%
NLP 206 129 63% 210 115 55% 14 14 100%
KRS 188 94 50% 85 30 35% 103 64 62%
GRP 129 69 53% 62 11 18% 77 58 75%
PUZ 95 68 72% 23 16 70% 70 52 74%

Table 1: The non-equality problems of the TPTP v.7.0.0 broken up by the ten largest domains. The
columns show total number vs. number solved and the respective percentage, additionally separate
columns for satisfiable and unsatisfiable problems.

Additionally, we have tested SPASS-AR on the non-equality problems in the TPTP version 7.0.0 [18].
The problems were run for one hour each using a cluster with 64-Bit Linux servers (Intel Xeon E5620
@ 2.40GHz, 6x 8GiB DDR3 1067 MHz ECC memory). Overall, SPASS-AR solved 2277 of the 4130
problems (55%), 1803 of the 3075 unsatisfiable problems (59%), and 484 of the 927 satisfiable prob-
lems (52%). A detailed breakdown of the result for individual problem classes is presented in Table 1.
On average SPASS-AR refines a solved problem 8.5 times, 2.9 times for satisfiable and 10.1 times for
unsatisfiable problems. 1403 problems (62%) are solved without requiring a refinement, 409 (84%)
are satisfiable and 994 (55%) unsatisfiable. For solved problems that are refined there are on average
21.3 refinements, 17.3 refinements for satisfiable and 21.6 refinements for unsatisfiable problems, and
each with a median of 10.

For comparison, under the same conditions with default schedules, SPASS v3.9 solved 2852 prob-
lems, Vampire v4.1 solved 3152, and iProver v2.7 solved 3565. SPASS-AR solved 133 problems that
SPASS did not solve, 116 problems that Vampire did not solve, and 16 problems that iProver did not
solve. When restricted to using only the Inst-Gen calculus, iProver v2.7 solved 3433 problems with
19 unsolved problems solved by SPASS-AR.

341 problems are already in the MSL fragment of which SPASS-AR solves 320 (94%). Most
of the unsolved MSL problems are actually large ground problems and therefore better suited for a
propositional satisfiability solver. Additionally, we have measured the MSL approximation distance
of each problem, i.e., the number of non-satisfiability equivalent transformation steps required to
approximate the problem into MSL. Table 2 shows that most problems are very close to the MSL
fragment with about a third at distance below ten and half below twenty. Furthermore, for problems
very close to MSL (distance 0-3) SPASS-AR has a high success-rate of 91% where 20% of the solved
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Distance Total Solved % SumT SumT % SumS SumS %
0 341 320 94% 341 9% 320 14%
1 149 146 98% 490 12% 466 21%
2 147 123 84% 637 16% 589 26%
3 81 67 83% 718 18% 656 29%
4 137 98 72% 855 22% 754 33%

5-10 692 372 54% 1547 39% 1126 50%
11-20 459 241 53% 2006 51% 1367 60%
21-30 217 88 40% 2223 56% 1455 64%
31-40 290 84 29% 2508 64% 1539 68%
41-50 187 46 25% 2689 68% 1585 70%

51-100 517 210 41% 3196 81% 1795 79%
101-200 355 76 21% 3517 89% 1871 82%
201-300 150 117 78% 3649 93% 1988 87%
301-400 239 207 87% 3860 98% 2195 97%

401+ 80 78 98% 3940 100% 2273 100%

Table 2: The MSL Approximation Distance Table. The first block of three columns shows the total
number of problems with the given distance, as well as the respective number of solved problems and
their share compared to the total. The second block lists the total number of problems with distance
less or equal than the given distance, as well as the percentage compared to the whole set of problems.
The last block shows the analogous result for solved problems.

problems are satisfiable. Surprisingly, problems with a large distance (200+) are also solved with an
86% success-rate of which 99% are unsatisfiable. Note that 190 problems are missing from the total
in Table 2 because SPASS-AR was unable to compute their MSL distance due to problem size.

As mentioned, certain lift-conflicts cannot be fully refined away. For example, when the conflict-
ing instantiations, t and t ′, cannot be unified because t occurs as a subterm in t ′. Of the 2277 solved
problems, only 198 (9%) contain such an occurrence-conflict, of which all are unsatisfiable problems.
On the other hand, 755 of the 1824 unsolved problems (41%) reach at least one occurrence-conflict
before time-out; 129 out of 442 are satisfiable (29%) and 532 out of 1265 are unsatisfiable (42%).

Problems SPASS-AR SPASS 3.9 Vampire 4.1 iProver 2.7
4130 2277 2852 3152 3565

Table 3: Overall Solved Non-Equality Problems from TPTP v.7.0.0

In summary, the abstraction refinement calculus implemented in SPASS-AR solves fewer prob-
lems from the TPTP version 7.0.0 than state-of-the-art implementations of superposition, e.g., SPASS.
Portfolio solvers are even more successful, see Vampire, iProver, Table 3. On the other hand already
the rather prototypical implementation of FO-AR in SPASS-AR can solve problems from the TPTP
the other provers cannot solve. There are problem classes where FO-AR is in principle superior to su-
perposition, model evolution, and instance generation. Of course, there are problem classes for which
the other calculi are superior to FO-AR. There is room for improvement by a more sophisticated and
dedicated implementation of FO-AR in SPASS-AR. The decision procedure for the MSL fragment is
a simple instance of SPASS not dedicated to the fragment. The FO-AR calculus has a great potential

25



of reusing inferences. However, the current prototypical implementation SPASS-AR does not explore
this potential. Table 2 shows that this may result in a significant gain in performance.

7 Conclusion

In conclusion, we have shown the decidability of the MSL fragment. The MSL fragment is instru-
mented by the approximation-refinement calculus FO-AR and implemented in SPASS-AR. SPASS-
AR is an extension of SPASS-3.9. Aside from the three practical aspects explained in Section 5, there
are further possible improvements not mentioned and yet to be implemented.

For one we can reduce repeated work by not resetting the MSL solver for each loop but instead
keep derived clauses in the proof state that are unaffected by the refinement. Another field of future
work is to further specialize the MSL solver by taking advantage of the structure of MSL clauses. For
example, any non-Horn clause without selected literals has the form Γ1, . . . ,Γn → E1, . . . ,En where
each Ei is maximal but the Γi,Ei are pairwise variable disjoint. This means that these clauses can be
split into Horn segments Γi→ Ei which can drastically reduce the search space.

Section 6 showed FO-AR is superior to superposition, instantiation-based methods on certain
classes of clause sets. Of course, there are also classes of clause sets where superposition and
instantiation-based methods are superior to FO-AR, e.g., for unsatisfiable clause sets where the struc-
ture of the clause set forces FO-AR to enumerate failing ground instances due to the approximation
in a bottom-up way. An extension to FO-AR detecting such situations and then moving to a different
type of approximation is another direction of potential future research.

Our prototypical implementation SPASS-AR cannot compete with systems such as iProver or
Vampire on the respective CASC categories of the TPTP [18]. This is already due to the fact that
they are all meanwhile portfolio solvers. For example, iProver contains an implementation of ordered
resolution and Vampire an implementation of Inst-Gen. Our results, Section 6, however, show that
these systems may benefit from FO-AR by adding it to their portfolio.

The DEXPTIME-completeness result for MSLH strongly suggest that both the MSLH and also
our MSL(SDC) fragment have the finite model property. Meanwhile this has been shown [19]. There-
fore, finite model finding approaches are complete on MSL(SDC), however a saturated MSL(SDC)
clause set constitutes an exponentially more compact representation [19]. The models generated by
FO-AR and superposition are typically infinite. It remains an open problem, even for fragments
enjoying the finite model property, e.g., the first-order monadic fragment, to design a calculus that
combines explicit finite model finding with a structural representation of infinite models. For classes
that have no finite models this problem seems to become even more difficult. To the best of our
knowledge, SPASS is currently the only prover that can show satisfiability of the clauses R(x,x)→;
R(x,y),R(y,z)→ R(x,z); R(x,g(x)) due to an implementation of chaining [2, 17]. Apart from the su-
perposition calculus, it is unknown to us how the specific inferences for transitivity can be combined
with any of the other discussed calculi, including the abstraction refinement calculus introduced in
this paper.

Finally, there are not many results on calculi that operate with respect to models containing posi-
tive equations. Even for fragments that are decidable with equality, such as the Bernays-Schoenfinkel-
Ramsey fragment or the monadic fragment with equality, there seem currently no convincing sug-
gestions compared to the great amount of techniques for these fragments without equality. Adding
positive equations to MSL(SDC) while keeping decidability is, to the best of our current knowledge,
only possible for at most linear, shallow equations f (x1, . . . ,xn)≈ h(y1, . . . ,yn) [9]. However, approx-
imation into such equations from an equational theory with nested term occurrences typically results
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in an almost trivial equational theory. So this does not seem to be a very promising research direction.

Acknowledgements: We thank the reviewers as well as Konstantin Korovin and Giles Reger for a
number of important remarks.
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