
HAL Id: hal-02971434
https://hal.inria.fr/hal-02971434

Submitted on 19 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rec2Poly: Converting Recursions to Polyhedral
Optimized Loops Using an Inspector-Executor Strategy

Salwa Kobeissi, Alain Ketterlin, Philippe Clauss

To cite this version:
Salwa Kobeissi, Alain Ketterlin, Philippe Clauss. Rec2Poly: Converting Recursions to Polyhedral
Optimized Loops Using an Inspector-Executor Strategy. SAMOS 2020: Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation, pp.96-109, 2020, �10.1007/978-3-030-60939-9_7�. �hal-
02971434�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362230482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02971434
https://hal.archives-ouvertes.fr

Rec2Poly: Converting Recursions to Polyhedral
Optimized Loops Using an Inspector-Executor

Strategy

Salwa Kobeissi, Alain Ketterlin and Philippe Clauss

Inria Camus, ICube lab., CNRS,
University of Strasbourg

Strasbourg, France

Abstract. In this paper, we propose Rec2Poly, a framework which de-
tects automatically if recursive programs may be transformed into affine
loops that are compliant with the polyhedral model. If successful, the re-
placing loops can then take advantage of advanced loop optimizing and
parallelizing transformations as tiling or skewing.
Rec2Poly is made of two main phases: an offline profiling phase and an
inspector-executor phase. In the profiling phase, the original recursive
program, which has been instrumented, is run. Whenever possible, the
trace of collected information is used to build equivalent affine loops from
the runtime behavior. Then, an inspector-executor program is automat-
ically generated, where the inspector is made of a light version of the
original recursive program, whose aim is reduced to the generation and
verification of the information which is essential to ensure the correctness
of the equivalent affine loop program. The collected information is mainly
related to the touched memory addresses and the control flow of the so-
called “impacting” basic blocks of instructions. Moreover, in order to
exhibit the lowest possible time-overhead, the inspector is implemented
as a parallel process where several memory buffers of information are
verified simultaneously. Finally, the executor is made of the equivalent
affine loops that have been optimized and parallelized.

Keywords: Polyhedral model · Recursive functions · Automatic pro-
gram parallelization and optimization.

1 Introduction

From code development to final execution on a hardware platform, a software
goes through many transformation phases, making the final executable code
significantly different from the initial source code. The final goal is obviously
to generate an executable which is semantically equivalent to the input source
code, but whose runtime behavior is satisfactory regarding execution time, code
size, energy consumption, or security. Compilers apply many optimization passes
on the input source code that often modify or even remove instructions, control
structures, or data structures. Such code transformations may apply from the

2 S. Kobeissi, A. Ketterlin and Ph. Clauss

instruction level until the global code structure. A clear example of the latter
kind of transformations, performed by mainstream compilers, is the transfor-
mation of tail-recursive calls into loops. Indeed, recursive programs generally
suffer from not being as easily handled as other code structures like loops, for
automatic optimization and parallelization. In the literature dealing with recur-
sion optimization, either recursive functions are handled directly «as they are»
[5, 10], or are firstly transformed into loops [1]. Although such approaches may
provide significant performance improvements, they do not capture cases where
recursive codes can be rewritten as affine loops, which are the most convenient
loops for efficient data locality and parallelization optimizations. Affine loops are
compliant with the polyhedral model [3, 4], which is a well-known mathematical
framework unifying all the most important loop optimizing transformations as
loop interchange, skewing or tiling.

Being a static (source-level) framework, the polyhedral model places stringent
conditions on the programs that it can handle. Many programs do not directly
fit the model, either because of superficial languages idiosyncrasies, or because
of radical language differences (as in the case of recursive functions). It often
turns out that source programs that seem not to fit the model actually have a
matching behavior at runtime, at least for significant portions of their execution.
The APOLLO speculative optimizer [13, 9] aims at capturing these transient
polyhedral behaviors and leverage polyhedral tools to optimize them at runtime.

We present Rec2Poly, a framework devoted to the transformation of recursive
codes into affine loops. Rec2Poly detects a polyhedral-compliant behavior of a
target recursive code at runtime, using an offline profiling phase. When success-
ful, it builds a semantically equivalent code where all the execution flow related
to recursive functions is replaced with affine loops. Moreover, the so-generated
loops are parallelized and optimized thanks to polyhedral transformations. Since
this transformation is based on a runtime profiling, its validity is not ensured
whatever the input data. Thus, it is speculative and a fast runtime verification
mechanism is also generated, which follows an inspector-executor scheme [12,
11]. At runtime, the inspector verifies that the affine loops are valid regarding
the current execution context. If the inspector does not detect an unpredicted
behavior, the executor launches the optimized parallel loops. Note that the orig-
inal recursive code is launched in parallel with the inspector, in order to save the
time-overhead of Rec2Poly if the affine loops are not valid in the current context.
We firstly presented our proof of concept of Rec2Poly’s analysis, profiling and
recursion to optimized loops transformation phases in a previous work [8]. In
this paper, we extend these phases in addition to introducing the new embedded
verification feature based on an inspector-executor strategy.

The originality of our approach is twofold: (1) Seeking a polyhedral-compliant
runtime behavior in recursions; and (2) using an inspector-executor scheme not
only verifying memory access patterns, as it is usually done when using this
scheme, but also verifying the control flow as being compatible with affine loops.
Note that our approach can also be seen as dynamic code rewriting.

Rec2Poly 3

The paper is organized as follows. Next Section presents an overview of the
Rec2Poly framework, while the following sections provide more details on its
phases. Section 3 explains how important functions involved in the recursions are
automatically identified, as well as the important instructions of these functions.
It also presents essential aspects regarding memory instructions. In Section 4, it
is explained how variables which are local to functions are globalized for code
instrumentation, in order to promote memory accesses following affine functions
of loop indices. Rec2Poly mostly relies on a software tool called NLR (Nested
Loop Recognition) whose main features are recalled in Section 5. Generation
of the inspector program is presented in Section 6, while the generation of the
optimized affine loops is presented in Section 7. Experiments are presented in
Section 8 and related work in Section 9. Conclusions are given in Section 10.

2 Overview of the Rec2Poly Framework

The main phases of Rec2Poly are depicted in Figure 1. Every analysis, trans-
formation and code generation phase has been implemented as passes of the
mainstream compiler Clang-LLVM1.

A target recursive code is first deeply analyzed in order to identify the re-
cursive functions as well as the functions that may be invoked by, or that may
invoke, the recursive ones. We call these identified functions as impacting func-
tions. Then, the Backward Static Slice (BSS) of every memory store instruction
in these functions is built, by collecting the identifiers of every Basic Block (BB)
that contains at least one instruction involved in the computation of the target
memory address or in the computation of the stored value. We characterize such
basic blocks as impacting basic blocks.

Recursive
Code

Code
Analysis

Analysis
Information

Variable Globalization
& Instrumentation

Instrumented
Recursive Code Run Trace

Generation of the
Inspector

Affine Loop
Model

Nested Loop
Recognition

Generation of
Affine Loops Affine Loops

Inspector
Code

Polyhedral
Optimization

Optimized
Affine LoopsFinal Code

Generation Executable Code

Fig. 1: Rec2Poly

1 http://www.llvm.org

4 S. Kobeissi, A. Ketterlin and Ph. Clauss

An instrumented version of the target recursive code is then generated by
using the so-collected information. In this code, an invocation counter is added
to each impacting function, and each data structure which is local to an im-
pacting function is transformed into a global data structure indexed using this
counter (this is called Variable Globalization). Moreover, every impacting func-
tion is augmented with instructions for generating the output trace, which is
composed of impacting basic block identifiers, invocation counter values and
memory addresses referenced in the impacting basic blocks, through load and
store instructions.

After having run the instrumented code, the generated code is given as input
to the Nested Loop Recognition software tool NLR [7]. NLR generates a repre-
sentation of the whole trace made of affine loops computing affine expressions.
Then, the so-generated affine loop model is used to build a fast parallel inspector
code and a code made of optimized and parallelized loops, which is dedicated
to replace the impacting functions in the original recursive code. Since the re-
placing loops are based on the modeling of one execution of the target recursive
code, their validity for further executions must be ensured at runtime. This is
achieved by the inspector code whose role is to verify that the original recursive
code still behaves in compliance with the replacing loops.

Since the replacing loops are made of affine loops, they can benefit from
polyhedral optimization and parallelization transformations. For this purpose,
we use the state-of-the-art polyhedral compiler Pluto [3]. Finally, the executable
code is made of the inspector code and the transformed code made of optimized
loops. More details on the main phases of Rec2Poly are given in the following
subsections.

3 Code Analysis

First of all, Rec2Poly, our LLVM-Clang based tool, takes as an input a target
recursive source code and transforms it into its intermediate representation (IR)
that will be analyzed and transformed in the following steps. We do not activate
the tail call elimination LLVM pass which transforms tail recursive calls into
loops for two reasons: (1) the way the target recursive function is transformed
may not result in an affine loop and (2) if there are several nested recursive calls
in the target code, only one tail call may be eliminated.

Rec2Poly checks if the program involves any recursions, and, if so, it identifies
these recursions and the functions participating in them. In order to detect
recursions, it uses the call graph extracted from the LLVM IR of the program.
Figure 2 shows an example of a call graph of a program made up of nine functions:
main, A, B, C, D, E, F , G and H where: function main calls A which calls B
which calls C; C invokes itself, E and D; E calls back C, and calls F and G; G
calls H. In this example, note that function C exhibits a direct recursion with
itself and an indirect recursion through function E.

From the call graph, Rec2Poly seeks strongly connected components (SCC),
which are sub-graphs where every node is reachable from every other node. In

Rec2Poly 5

main A

...
FOR I IN LB TO UB

DO Call B();
ENDFOR;
...

B C E

D

G H

F

Fig. 2: Example of a Call Graph of an Arbitrary Recursive Program

this context, a cycle in a SCC means that a recursion occurs among the functions
associated to the nodes involved in this cycle. If the cycle is made up of only
one node, i.e. a loop, then it is a direct recursion. Otherwise, it is indirect.
For the example in Figure 2, there are two SCC’s: one loop over C showing a
direct recursion, and a cycle from C to E and E back to C, showing an indirect
recursion between C and E.

Recursion Reachability Recognition: We are interested in tracking impact-
ing basic blocks, whether they are executed directly or indirectly by the recursive
functions. For this reason, in addition to the recursive functions themselves, our
framework also determines their reachability in the program. Reachability means
all the functions that can be reached by a sequence of calls initiated by the recur-
sive functions themselves. In Figure 2, the reachability of the recursive functions
C and E includes: D (directly called by C), F and G (directly called by E) and
H (indirectly called by E through G).

Recursion Source Recognition: Not only do we track functions constituting
a recursion and their reachabilities in a program, but also the source of recur-
sions. The initial source function may be a function invoking, from within a
loop, a recursive function, either directly or indirectly, through a chain of in-
voked functions. In addition, in case of indirect invocation of the recursion from
a loop, all other functions participating in the sequence of calls from the initial
source function to the recursion are considered as taking part of this source.

Analyzing source functions is necessary since otherwise, the profiling phase
would be incomplete. A looping behavior detected afterwards and associated
to the recursion itself would be incorrect when the recursion is invoked from
within a loop. Furthermore, it helps in understanding how a recursion behaves
relatively to its iterative invocations, and obviously to build affine loops which
are equivalent to this whole part of the original program.

For instance, the set of source functions of the recursion in Figure 2 includes
A and B because A calls B from the body of a for-loop, and B, in turn, calls the
recursive function C. The loop in A cannot benefit from efficient loop polyhedral
optimizations, due to the existence of the embedded recursive call. If it is possible

6 S. Kobeissi, A. Ketterlin and Ph. Clauss

to replace it with equivalent affine loops, the loop may eventually be able to take
advantage of sophisticated optimizations.

Impacting Basic Blocks: Such basic blocks are identified in the following
way. In the LLVM intermediate representation of the program, our framework
marks the stores to the main data structure. The main data structure is defined
as being the final output data structure of the recursion and its corresponding
reachable functions. Then, for every store instruction of this kind, it also marks
every instruction leading and contributing to it, i.e., its backward static slice
(BSS). A backward static slice is the set of instructions existing in the code of a
program that may affect a certain value, i.e., in our case, a value stored in the
data structure which is the final output of the recursion.

Intra-Function and Inter-Function Memory Behavior Analysis: Addi-
tionally to the identification of a looping behavior of the targeted recursion, the
sequence of memory addresses touched by each memory instruction, inside the
impacting basic blocks, must be successfully modeled by affine functions of the
surrounding loop indices.

However, among different execution instances of the same target recursive
code, with exactly the same input data and the same hardware platform, the
touched memory addresses are obviously not the same, since data structures are
not always allocated at the same memory addresses. Nevertheless, the memory
behavior relatively to the base addresses of the data structures may still be iden-
tical among the execution instances. Moreover, we are interested in cases where
the relative memory behavior can be modeled by affine functions of surrounding
loop indices. Thus, the memory offsets that are relative to the base addresses
are collected from instrumentation.

When handling data structures which are local to functions, the analysis
phase requires two steps:
– Intra-Function Analysis: Each memory access is associated to its correspond-

ing base address visible in the scope of the current function i.e., the param-
eters of the function are the farthest analysis point.

– Inter-Function Analysis: If the accessed data structures are function param-
eters, intra-function analysis is not enough. Memory analysis propagates
further outside the function to trace arguments fed to the function. Inter-
function analysis associates each access to its actual base address in the
program.

On the other hand, when handling global data structures, the accessed memory
addresses can be directly associated to their base addresses.

4 Local Variable Globalization and Code Instrumentation
The first goal of Rec2Poly is to detect an affine behavior of the impacting func-
tions, regarding their control flow, and also their memory accesses: for each mem-
ory instruction, the sequence of touched memory addresses must potentially be

Rec2Poly 7

represented as affine expressions of surrounding loop indices. However, at each
invocation of an impacting function , its local data structures are obviously allo-
cated on the call stack. Thus, accesses to these local structures can never exhibit
any affine memory accesses across all invocations of the function. Moreover, in
the affine loops that are expected to replace the impacting functions, these data
structures must obviously still be referenced. This is why in the instrumented
code, all data structures that are local to an impacting function are transformed
into global arrays, which are indexed by the function invocation counter. In this
way, references to these globalized data may exhibit affine behaviors whether the
related functions are invoked following an affine control flow.

5 Nested Loop Recognition

Rec2Poly instruments the target recursive program in order to generate an exe-
cution trace. This trace is made of tuples composed by:

– the impacting basic block ID;
– for each memory instruction in the current basic block: the relative offset of

the touched memory address.

After having been generated by running the instrumented recursive program,
the trace is analyzed by NLR. The NLR software tool, originally presented in [7],
takes as input a trace of a program execution and constructs a sequence of loop
nests that produce the same original trace when run. The applications of this
algorithm include: (1) program behavior modeling for any measured quantity
such as memory accesses, (2) execution trace compressing and (3) value predic-
tion, i.e, extrapolating loops under construction (while reading input) to predict
incoming values.

In our tool, not only do we use NLR to model memory accesses, which is
one of its original goals, but also to model sequences of basic blocks IDs, which
is more singular. Given our trace of a target recursive program, if NLR builds
affine loop nests including the interesting basic blocks IDs and memory addresses
interpolated by the constructed loop indices, then the generation of equivalent
affine loops may be performed.

Two examples of NLR outputs are shown in Figures 3a and 3b. The generated
loops exhibit the way basic blocks (BB1, BB2, BB3, BB4) inside functions (F1,
F2) are invoked by following an affine looping behavior, and how memory is
referenced through relative addresses that can be modeled as affine functions of
the loop indices.

Note that in Figure 3b, NLR uses one of its more advanced features which
detects that the affine modeling of a trace may be subject to some basic unknown
values. NLR discovers these values and exhibits a memory behavior which is
actually not fully affine: some coefficients in the affine functions may be lists
of values. In the showed example, each list contains 10 integer values which
are successively used to compute the referenced memory address. For example,

8 S. Kobeissi, A. Ketterlin and Ph. Clauss

for i0 = 0 to 99
val F1::BB1
for i1 = 0 to 49

val F2::BB1
, 0
for i2 = 0 to 24

val F2::BB2
, 1*i0
, 4*i0 + 2*i1 + 1*i2
, 4*i0 + 1*i1 + 1*i2

val F2:BB3
val F2::BB4

(a) NLR Model for Linear Control and
Memory Behavior

for i0 = 0 to 99
val F1::BB1
for i1 = 0 to 49

val F2::BB1
, 0
for i2 = 0 to 24

val F2::BB2
, 1*i0
, [10:3,5,...,1][i0] + 2*i1 + 1*i2
, [10:7,1,...,6][i0] + 1*i1 + 1*i2

val F2:BB3
val F2::BB4

(b) NLR Model for Linear Control
and Non-Linear Memory Behavior

Fig. 3: NLR models

[10:3,5,...,1][i0] means that:

[10 : 3, 5, ..., 1][i0] =

3 if i0 modulo 10 = 0
5 if i0 modulo 10 = 1
...
1 if i0 modulo 10 = 9

6 Generation of a Fast Parallel Inspector

The affine loop model generated by NLR is then used by Rec2Poly to gener-
ate the inspector. Its role will be to verify that the optimized and parallelized
affine loops, which replace the recursive program, are still correct in the current
execution context. It is made of three main kinds of components:

1. Trace generators, which are minimal versions of the original recursive pro-
gram, devoted to producing the same kind of execution traces as the one
which was generated at the profiling phase, i.e., tuples made of functions
and basic blocks IDs, and referenced memory addresses;

2. Verifiers, whose role is to check if the generated traces are still compliant
with the NLR affine loop model;

3. A parameter saver, whose role is to collect function input values which are
used by instructions of the impacting basic blocks.

We illustrate their functionality and how Rec2Poly modifies the IR of a given
recursive code to build its suitable inspector.

Trace Generators: A trace generator is made up of light minimal clones of the
impacting functions, i.e., source, recursive and reachable functions. Its role is to
generate a trace representing the actual control flow or the sequence of touched
memory addresses.

After cloning impacting functions and their basic blocks, Rec2Poly removes
instructions that involve access to memory such as stores and loads. Instructions

Rec2Poly 9

that are fundamental to preserve a correct control behavior of these functions
must be preserved such as branches, conditions, loop related instructions and
calls. We assume for this study that conditional branches do not depend on any
memory access. Moreover, in the clones, the referenced impacting functions in
call instructions must be replaced by their proper clones.

A trace generator is expected to output a trace so the latter can be verified
against the NLR affine loop model. For this sake, global memory buffers or arrays
are added to the IR.

The Inspector must be significantly slower than the original recursive pro-
gram, such that the final couple Inspector-Executor provides significant speed-
ups. Generating one complete trace of full tuples of values, similar to the trace
generated at the profiling phase, would be too costly. Thus, in order to guarantee
a fast trace generation process, an inspector, created by Rec2Poly, is composed
of multiple trace generators, i.e., multiple clones of impacting functions, that are
executed in parallel each by a distinct parallel thread. Each of these generators
is responsible for generating one sub-part of the trace, e.g., one generates the
whole control flow IDs, and the others generate sequences of touched memory
addresses. Accordingly, Rec2poly is expected to tackle a load balancing issue
among threads by deciding how many and which memory accesses a single trace
generator must handle.

Verifiers: For every trace generator, Rec2Poly creates a corresponding trace
verifier based on the NLR affine loop model. Each verifier is generated as a new
function that implements the NLR loops and minimal versions of their enclosed
basic blocks. At runtime, the trace verifiers are also launched in parallel threads.

Parameter Saver: Some input arguments of impacting functions may be val-
ues transmitted by the calling function and used directly by instructions. Such
parameters have to be collected specifically in order to instantiate the replac-
ing loops. Like trace generators, a parameter saver is made up of a minimal
light version of the code part involving impacting functions. It saves function
input values in a global buffer array at the entry of every impacting function.
Parameter savers are also executed simultaneously with trace generators and
verifiers.

Further Inspector Optimizations: In some cases, the inspector does not need
to handle every memory access inside an impacting basic block. For instance, in
cases of array accesses, if the same array is accessed several times through indices
computed using the same induction variable, then only one of these accesses is
worth being handled and verified by the inspector.

Figure 4 shows the call graph of an example of inspector based on the arbi-
trary example of recursive program of Figure 2. It shows that the main function
launches M + 2 parallel threads. There are one parameter saver and M/2 trace
generators, which require M/2+1 minimal light clones of the impacting functions

10 S. Kobeissi, A. Ketterlin and Ph. Clauss

which are the source functions A and B; the recursive functions C and E; and
the reachable functions D, F , G and H. For every thread that initiates a trace
generator, there is a thread initiating a verifier function. Each trace generator
and its verifier have their own set of buffers to process on, and they synchro-
nize using two semaphores. For instance, Thread 1 and Thread 2 synchronize
using Semaphores sem 0 and sem 1. Each trace generator saves its traces in its
dedicated N + 1 buffers to be verified by its corresponding verifier.

A1
l

B1
l

C1
l

E1
l

D1
l

G1
lH1

l

F 1
l

V 1
l

BB0

BB1

BB2

BB3

BB4

Buffer1
0 ...

Buffer1
1 ...

...
Buffer1

N
...

Trace Generator Verifier

sem 0

sem 1

.

A
M
2

l

B
M
2

l

C
M
2

l

E
M
2

l

D
M
2

l

G
M
2

lH
M
2

l

F
M
2

l

V 2
l

BB0

BB1

BB2

BB3

BB4

Buffer
M
2

0
...

Buffer
M
2

1
...

...
Buffer

M
2

N
...

Trace Generator Verifier

sem M-1

sem M

main

Thread 1 Thread 2 Thread M Thread M+1

A0
lB0

lC0
lE0

l

D0
l

G0
l

H0
l F 0

l

Buffer0
0 ...

Buffer0
1 ...

...
Buffer0

L
...

Parameter Saver

Thread 0

.

Fig. 4: Detailed Inspector Call Graph Example

7 Generation of Optimized Affine Loops as Executor

This last phase of code generation takes as input the recursive program after
variable globalization, and the corresponding NLR affine loop model obtained
at the profiling phase. Rec2Poly builds the replacing affine loop program by:
(1) cloning the impacting basic blocks; (2) replacing the referenced memory
addresses by the corresponding NLR affine functions added to the related base
addresses collected at runtime; and (3) replacing the use of function input values
by the values collected at runtime by the Inspector. Finally, the function called
in the original program to initiate the recursion is replaced by the newly created
function made up of the iterative code constructed from NLR affine loop model.

Rec2Poly 11

As mentioned in Section 5, NLR may produce two types of loop models: (1)
affine control and memory behavior and (2) affine control and non-linear memory
behavior. We use different approaches for optimizing each of these types of affine
loops, as it is explained below.

Loops with Affine Control and Memory Behavior: This is the most fa-
vorable case with pure affine loops which are ready to be optimized using an
automatic polyhedral optimizer as Pluto. However, since we generate and trans-
form code in LLVM Intermediate Representation, we need to feed Pluto with an
OpenScop representation [2] of the affine loops.

Loops with Affine Control and Non-Linear Memory Behavior: In this
case, polyhedral automatic optimizers cannot be used. However, efficient loop
parallelization can be achieved that requires a dedicated dependency analysis
process. It consists of computing the ranges of touched memory addresses by
store and load instructions at each iteration, in order to build independent sets
of iterations. Finally, the outer loop is broken into two nested loops: the outer
one iterating over lists of loop indices values and the inner one over the indices
values inside each list. The outer one is parallelized into parallel threads.

8 Experiments

The following programs have been compiled with Clang version 6.0 and flags
-O3 -march=native, and run on two Intel Xeon CPU E5-2650 v3 @ 2.30GHz of
10 cores each. Parallel programs have been run using 20 threads on the 20 cores
of the hardware platform.

0.40.60.8 1 2 3 4 5

·105

0

50

100

150

200

250

300

350

Loop Upper Bound

T
im

e
(S

)

Original Recursive Code
Inspector

Optimized Inspector
Optimized Iterative Code

Inspector-Executor

Fig. 5: Program Heat Experimental Results

Our first experiment has been conducted on program Heat which is a recur-
sive C implementation of a stencil computation. It involves a direct recursion

12 S. Kobeissi, A. Ketterlin and Ph. Clauss

invoked from within a loop. Its reachable functions also include for-loops ac-
cessing memory numerous times. In such an example, the recursion distorts the
existence of loops, and it is interesting to test how much time performance can be
gained by removing the recursion and applying polyhedral optimizations to the
recursion-free loop nest. Both control and memory behavior are linear. Hence,
an affine loop code can be reconstructed automatically from the NLR affine loop
model. The affine iterative code equivalent to this recursive program is optimized
using Pluto. Two versions of the inspector have been experimented here: (1) the
original inspector and (2) the optimized inspector. In the original inspector, we
verify all memory addresses referenced by impacting functions besides the con-
trol. Thus, 10 trace generators and 10 verifiers are launched. On the other hand,
in the optimized version, half of the time overhead is eliminated by not verifying
redundant memory accesses, thus only 5 trace generators and 5 verifiers are gen-
erated. Figure 5 shows the obtained execution times (vertical axis), relatively to
an increasing value of the upper bound of the loop invoking the recursion (hori-
zontal axis). The inspector version of the code, given that the loop bound equals
500000, has about 29% better performance than the original recursive code that
can be optimized more deeply to perform 56.8% faster. The equivalent optimized
iterative code executes about 86.5% faster than the original code. Overall, by
executing both of the optimized inspector and executor together instead of the
recursive code, the gain is about 24%.

800 1,600 3,200 6,4000
10
20
30
40
50
60
70
80
90

Matrix Sizes

T
im

e
(S

)

Original Recursive Code
Inspector

Optimized Inspector
Optimized Iterative Code

Inspector-Executor

Fig. 6: Program GEMM Experimental Results

Our second experiment was conducted on a C implementation of the recur-
sive matrix-matrix multiplication (GEMM) handling sub-matrices by successive
dichotomy until a given threshold. It involves an indirect recursion among four
functions. There is one reachable function from this recursion that includes a
sequence of affine loops accessing memory. The recursion in this program has
a linear control, but a non-linear memory behavior. Thus, the iterative code
handles independent lists of iterations that are executed in parallel. Note that

Rec2Poly 13

the original inspector is composed of 7 trace generators and 7 verifiers where
the optimized version includes only 4 trace generators in addition to 4 verifiers.
Figure 6 shows the obtained execution times. For matrix size 6400 × 6400, the
inspector version executes about 49.5% faster than the original recursive code
while the optimized inspector executes 55.5% faster. The equivalent optimized
iterative code executes about 87.8% faster than the original code. Overall, by
executing both the optimized inspector and executor together instead of the
recursive code, the gain is about 45.6%.

9 Related Work

Our study has been inspired by the automatic speculative polyhedral loop op-
timizer APOLLO [13, 9]. APOLLO applies automatic, speculative and dynamic
loop optimizing and parallelizing transformations. It addresses loop nests that
do not have an affine structure, yet adopt an affine memory behavior at run-time
discovered by dynamic profiling. Also, APOLLO’s verification of speculative loop
transformations is partially based on the inspector-executor paradigm. In com-
parison, Rec2Poly goes further by handling recursive codes and making use of
a profiling technique not only to discover the memory behavior, but also the
control behavior. Finally, Rec2Poly applies the Inspector-Executor paradigm to
verify recursions against a loop model, which requires the verification of both
control and memory behaviors, while APOLLO uses this paradigm only to verify
the memory behavior of loop nests against the one of a predictive loop model.

Multiple works have been published to transform recursive codes and opti-
mize them. Nevertheless, the proposed approaches are mainly static and involve
task parallelization where several recursive calls are run simultaneously.

PolyRec [14] optimizes nested recursive programs by polyhedral scheduling
transformations. To allow such optimizations, PolyRec represents recursive func-
tion instances and their dependences as polyhedra, and applies scheduling trans-
formations. Nevertheless, their approach is exclusively committed to particular
forms of recursions such that recursive invocations are nested and data is orga-
nized in two trees, the inner and outer trees.

Gupta et al. [6] propose an approach to optimize recursive task parallel pro-
grams through lessening task creation and termination overhead. Adriadne [10]
is a compiler that retrieves, from recursive functions, directive-based parallelism.
It applies either: (1) recursion elimination, (2) parallel-reduction removing recur-
sion such that workload is distributed to independent tasks, or (3) thread-safe
recursive functions parallelization involving independent recursive calls. Adri-
adne is solely devoted to recursive functions whose parameters remain unchanged
among recursive calls except for one integer parameter.

10 Conclusion

To our knowledge, Rec2Poly is the first attempt of speculative program opti-
mization involving the rewriting of the target code. We have shown that using

14 S. Kobeissi, A. Ketterlin and Ph. Clauss

such an approach, some recursive programs may take advantage of efficient affine
loops optimizations, and even take advantage of advanced transformations of the
polyhedral model.

However, while the inspector-executor mechanism is adapted to such specu-
lative optimizations, the final performance is mostly relying on the performance
of the inspector. We have shown that the inspector must also be deeply opti-
mized and parallelized to lower its time overhead. In the near future, we will still
investigate strategies to lower even further the inspector time-overhead.

References
1. Arsac, J., Kodratoff, Y.: Some techniques for recursion removal from recursive

functions. ACM Trans. Program. Lang. Syst. 4(2), 295–322 (Apr 1982)
2. Bastoul, C.: Openscop: A specification and a library for data exchange in polyhe-

dral compilation tools. Tech. rep., University of Paris-Sud, France (Sept 2011)
3. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-

matic polyhedral parallelizer and locality optimizer. In: PLDI ’08. pp. 101–113.
ACM (2008)

4. Feautrier, P., Lengauer, C.: Polyhedron model. In: Padua, D. (ed.) Encyclopedia
of Parallel Computing, pp. 1581–1592. Springer US (2011)

5. Gupta, M., Mukhopadhyay, S., Sinha, N.: Automatic parallelization of recursive
procedures. International Journal of Parallel Programming 28(6), 537–562 (Dec
2000)

6. Gupta, S., Shrivastava, R., Nandivada, V.K.: Optimizing recursive task parallel
programs. In: Proceedings of the International Conference on Supercomputing.
pp. 11:1–11:11. ICS ’17, ACM, New York, NY, USA (2017)

7. Ketterlin, A., Clauss, P.: Prediction and trace compression of data access addresses
through nested loop recognition. In: Proceedings of the 6th IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization. pp. 94–103. CGO’08,
ACM, New York, NY, USA (2008)

8. Kobeissi, S., Clauss, P.: The Polyhedral Model Beyond Loops Recursion Opti-
mization and Parallelization Through Polyhedral Modeling. In: IMPACT 2019 -
9th International Workshop on Polyhedral Compilation Techniques, In conjunction
with HiPEAC 2019. Valencia, Spain (Jan 2019)

9. Martinez Caamano, J.M., Selva, M., Clauss, P., Baloian, A., Wolff, W.: Full runtime
polyhedral optimizing loop transformations with the generation, instantiation, and
scheduling of code-bones. Concurrency and Computation: Practice and Experience
29(15) (Jun 2017)

10. Mastoras, A., Manis, G.: Ariadne - directive-based parallelism extraction from
recursive functions. J. Parallel Distrib. Comput. 86(C), 16–28 (Dec 2015)

11. Rauchwerger, L., Padua, D.A.: The LRPD test: Speculative run-time paralleliza-
tion of loops with privatization and reduction parallelization. IEEE Transactions
on Parallel and Distributed Systems 10(2), 160–180 (1999)

12. Saltz, J.H., Mirchandaney, R., Crowley, K.: Run-time parallelization and schedul-
ing of loops. IEEE Transactions on Computers 40(5), 603–612 (1991)

13. Sukumaran-Rajam, A., Clauss, P.: The polyhedral model of nonlinear loops. ACM
Trans. Archit. Code Optim. 12(4), 48:1–48:27 (Dec 2015)

14. Sundararajah, K., Kulkarni, M.: Scheduling transformation and dependence tests
for recursive programs (2018)

