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Abstract

Facial expression recognition aims to accurately interpret facial muscle movements in affective states (emotions). Previous studies
have proposed holistic analysis of the face, as well as the extraction of features pertained only to specific facial regions towards
expression recognition. While classically the latter have shown better performances, we here explore this in the context of deep
learning. In particular, this work provides a performance comparison of holistic and part-based deep learning models for expression
recognition. In addition, we showcase the effectiveness of skip connections, which allow a network to infer from both low and
high-level feature maps. Our results suggest that holistic models outperform part-based models, in the absence of skip connections.
Finally, based on our findings, we propose a data augmentation scheme, which we incorporate in a part-based model. The proposed
multi-face multi-part (MFMP) model leverages the wide information from part-based data augmentation, where we train the net-
work using the facial parts extracted from different face samples of the same expression class. Extensive experiments on publicly
available datasets show a significant improvement of facial expression classification with the proposed MFMP framework.
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1. Introduction

Facial expressions constitute a pertinent human nonverbal
channel for communicating emotions [1]. Ekman and Friesen
have broadly analyzed this channel from psychological point
of view and have postulated the universality of neutral and six
prototypical human facial expressions, namely: anger, disgust,
fear, happiness, sadness, and surprise [2]. A growing litera-
ture has addressed the recognition of these facial expressions in
the contexts of human computer interaction, biometrics, digital
entertainment, health-care, as well as robotics [3]. The per-
formance of an automated facial expression recognition (FER)
system has been a function of the underlying representations.
While early approaches were based on hand-crafted features
representing the whole face, these were gradually replaced by
representations of salient facial regions, improving the FER-
performance [4, 5, 6, 7, 8]. Two major observations drove this
development: (a) facial expressions are predominantly reflected
in certain regions of face, i.e., lip and periocular regions; (b) fa-
cial expressions can be associated with action units (AUs), rep-
resenting movement of facial muscles, as described in the facial
action coding system (FACS) [9]. Thus, each basic expression
comprises the joint movement of multiple AUs. The AUs oc-
curring around lips and periocular region region have primarily
been utilized to recognize emotions [10].

Emerging deep learning based approaches have significantly
advanced research and the related performances in FER [11, 12,
13, 14]. While deep architectures proposed for FER have fo-
cused on the representation of the whole face, part-based mod-
els have received limited attention. Motivated by the above, we

here investigate and compare part-based deep learning models
vs. holistic models. While it is agreed that part-based models
outperform holistic hand-crafted models, the selection of suit-
able facial regions for FER has not been consented [4, 6, 7, 8].
However, the most prominent local regions have been lips, eyes,
and eyebrows. Specifically, we here select the periocular and
mouth regions, which have been shown to be prominent for
FER [3, 4], and proceed to investigate the performance of a
deep two-part model for FER. Further, we analyze the effect
of skipped connections and the benefits of facial patch-based
architectures based on the established VGG-Face model [15]
for FER. While the first few layers of CNN architectures en-
code low-level features, the layers towards the end encode high-
level information. Skip connections allow the network to infer
both low and high-level feature maps, which as we show in this
work, has a significant impact on expression recognition per-
formance.

Finally, this paper proposes a data augmentation scheme that
we incorporate in a part-based model, which we refer to as
multi-face multi-part (MFMP) model. Data augmentation and
specifically MFMP seeks to overcome a challenge related to
the limited dataset size, which is known to negatively affect the
learning process of deep models. While translation, rotation,
skew, flip, and perturbation has been often utilized in data aug-
mentation [16], we here propose to train the network using the
facial parts extracted from different face samples of the same
class. To be specific, during training of our two part model,
we use the periocular region from one face-sample, while the
mouth region comes from another face-sample of the same ex-
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pression class. Thus, the MFMP network is trained with differ-
ent facial parts, mitigating spatial correlation on the input side.
This allows the model to learn the expression representation
by finding the commonality between different parts of different
instances, improving the performance. Such data augmenta-
tion scheme can only be utilized in part-based models, thereby
leveraging the part-specific information of face to predict the
expression.

Contributions This paper has following contributions.

• We compare the performance of a set of variants of VGG-
16-based holistic and part-based models.

• We analyze the effect of skip connections in the analyzed
models, allowing for combinations of low and high-level
feature maps.

• We propose a novel data augmentation scheme MFMP,
which can be instrumental in other object classification
frameworks where object alignment can be achieved.

• Extensive experiments were carried out on in-the-lab
(CK+, RaFD, FACES, lifespan) and in-the-wild (RAF,
AffectNet) datasets, which validates the effectiveness of
skipped connections and the proposed data augmentation
scheme.

2. Related Work

A growing FER literature suggests that research in FER is on
the rise. We revisit here briefly hand-crafted methods and pro-
ceed to review deep feature extraction, focusing on most recent
transfer learning approaches employed in FER for improving
accuracy. Then, we discuss the part-based classification meth-
ods in deep learning domain and their pertinence for face rep-
resentation.

Facial expression recognition (FER) Feature extraction
methodologies and classifiers used for FER to encode the ap-
pearance and geometrical changes of expressions have been
broadly reviewed in a survey by Sariyanidi et al. [3]. In
summary, while spatial feature extractors can be categorized as
high-level, low-level, and hierarchical features, high-level rep-
resentations, such as NMF [17] and sparse coding [18, 19], aim
to encode semantically interpretable traits.On the other hand,
low-level features – like local binary patterns, histogram of
oriented gradients, local phase quantization, local directional
patterns etc., [8, 20, 21, 22, 23] – generally encode the local
edge patterns into a global representation by pooling local his-
tograms of each region. Though low-level representations are
relatively less sensitive to illumination variation and registra-
tion errors, they can be affected by identity and demographic
bias. Hierarchical feature representation benefits from both low
and high-level representation and is more robust to registration
errors, partial occlusions, and bias factors [3].

Deep learning methods for FER CNNs have excelled hi-
erarchical feature extraction and while hand-crafted features
dominated FER previously, recently researchers have been fo-
cusing on deep learning methods for FER [16, 24, 25, 26, 27,

28, 29, 30].Notably, Jung et al. [26] attempted to encode tem-
poral appearance and geometry features in a CNN framework.
Boosted Deep Belief Network [31] improved the expression
recognition performance by jointly learning the feature rep-
resentation, feature selection, and classification. Peak-piloted
deep network [32] implicitly embedded facial representation
of both, peak and non-peak expression frames. Identity-aware
CNN [33] jointly learned expression and identity related fea-
tures to improve person independent recognition performance.
Conditional convolution neural networks enhanced random for-
est was proposed [13], which used salient features from salient
facial patches for FER in unconstrained scenarios including
pose variations and occlusions.

Transfer-learning The lack of sufficient annotated data has
been a major challenge in expression recognition. Early de-
veloped datasets, such as CK+ and JAFFE [34], have less than
400 samples per six basic expression categories. Irrespective
of the difficulty, manual labour, and time-consuming nature of
emotion database creation, databases with more than a thousand
images have emerged [35, 36, 37]. However, with such limited
data, machine learning algorithms, especially the deep learning
models failed to train well. Transfer learning [38] has proved
to be an efficient choice in such scenarios by which the param-
eters learned with large data of related task was used as the net-
work initialization. Ng et al. [39] observed the improvement
in expression classification by using the model weights trained
on ImageNet. FaceNet2ExpNet [11] fine-tuned the FaceNet
model to capture high level expression semantics. For expres-
sion recognition, the models trained with faces for face recog-
nition are more suitable. The same work suggests the use of
pre-trained VGG-Face model [15] achieves promising perfor-
mance due to transfer learning. VGG-Face uses a VGG-16 ar-
chitecture and was trained with 2.6 million face images for face
recognition application. Instead of learning the model param-
eters from scratch, the pre-trained weights of VGG-Face is a
popular choice of researchers [11, 12, 13, 40] for FER applica-
tions.

Part-based classification Object alignment is a critical fac-
tor in object classification. In part-based classification, each
part of the object is treated independently for global represen-
tation, which makes the system less sensitive to registration is-
sues. Recognizing fine-grained categories (like bird species) is
challenging because of the lack of suitable learning method to
discriminate the fine-grained local features. Using parts of an
object instead of the whole image [41, 42, 43, 44] has substan-
tially improved the performance of visual recognition tasks. Lin
et al. [45] proposed a fine-grained object recognition system by
incorporating localization and alignment of object parts in a sin-
gle deep learning framework. Attention mechanism is used in
[46] to recursively learn the discriminative regions followed by
region-based feature representation for classification. A weakly
supervised method for obtaining part attention mechanism is
proposed in [47]. Both object-level and part-level features are
integrated in [48] to boost the recognition performance. Sim-
ilar part-based models are also popular in face detection, face
recognition [49, 50], head pose estimation [51] and gender clas-
sification [7, 51].
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Part-based face representation Due to the success of part-
based learning, a research trend involved part-based models
[4, 5, 7, 8, 52] in FER. Deviating from encoding faces as a
whole, part-based representation processes each registered fa-
cial regions independently and combines the final representa-
tion from multiple parts as the global face descriptor. Thus,
such models are robust against head pose variation and reg-
istration errors. The efforts of [5, 22, 52], and [53] involve
the division of face into multiple blocks and encoding face as
the concatenation of individual block representation. In FACS,
each facial muscle movements was associated with an AU and
the combination of certain AUs was considered for expression
classification. Enhancing and cropping network was proposed
by Li et al. [54] which provided attention to facial regions based
on facial landmarks and individual CNN layers were used to
learn the patterns of each facial region separately to recognize
action units. Specific facial regions were targeted for recog-
nizing these AUs based on domain knowledge [10]. This im-
plied that the facial expression could be inferred directly by
processing these areas without AU classification. The works
in [4, 6, 7, 8, 55] were focused on extracting features from
facial regions dynamically around the mouth and eyes, where
the emotion change was prominently observed. Particularly
the salient expressive regions were defined based on domain
knowledge (FACS) and they were localized based on the de-
tected facial landmarks. Patch-Gated CNN [14] inspects several
patches from the intermediate feature map using the landmarks
and assigned a weight to each patch according to its importance,
thereby making the system aware of facial occlusions.

3. Holistic and Part-based Deep Face Models

We investigate the effectiveness of the features of the whole
face (holistic features) and part-based features in deep learning
scenario for FER. During our experiments, the skipped connec-
tions found to be an important technique for performance im-
provement. Therefore, this section describes four CNN mod-
els, which are VGG-16 variants to evaluate the effectiveness of
holistic/part-based models with/without skipped connections in
FER.

Model M1 To achieve transfer learning, many researchers
[11][12][40] use pre-trained VGG-Face model [15] for expres-
sion recognition. VGG-Face has 13 convolutional layers and
three fully connected layers followed by the softmax layer.
Since its weights are trained for face recognition, its face repre-
sentation supposedly perform well for any face analysis appli-
cation including expression classification. In our experiments,
the last fully connected layer is replaced by the expression clas-
sification layer with the number of units equivalent to the num-
ber of expression classes as shown in Fig. 1a. The following
conventions are used in the network definition: “3 × 3 conv,
64” : 64 convolutional filters of size 3 × 3; “pool (2 × 2)/2 :
pooling filters of size 2 × 2 with stride 2; and “fc, 4096” : fully
connected layer with 4096 units.

Model M2 Different literature suggests extracting features
from different facial regions [7, 4, 8, 6] of different sizes for ac-
curate expression recognition. These regions are mostly around

the eyes and lips, which is also supported by FACS [9]. Thus,
instead of investigating the size, number, and location of facial
regions, we use large facial regions around both lips and eyes so
that most of the features are retained for expression classifica-
tion. In our experiments, peri-ocular region and mouth region
are used for part-based model construction.

The eyebrows move with the presence of AU 1, 2 and 4.
Thus, selecting a region around the eyebrow corners does not
make sense as its position is not intact. Rather the eye corners
are fixed and can be considered as reference points. The rel-
ative position of eyebrows from these reference points can be
encoded in a feature descriptor for improved expression recog-
nition. Similarly, the raised cheek (AU 6 and 12) can also be
identified with reference to the position of eye. Therefore, we
choose the eye region along with the eyebrow and cheek portion
as one region of interest. Similarly, we cropped a large region
around lips including lips corners, chin, and some portion of
cheek, which contain most information pertaining to expression
classes.

These regions can be cropped and processed independently
with a CNN model for feature extraction. To do so, we need to
train a new CNN architecture from scratch based on the shape
of these regions, without the benefit of transfer learning that
we expect from a pre-trained model. Therefore, we processed
the whole image through the VGG-Face model and cropped
the feature representation of the corresponding facial regions
from the output feature map. In order to accurately obtain the
feature representations in higher order layers of CNN, we first
aligned each face image using the position of eyes and nose.
Both the eyes were positioned at a fixed distance parallel to the
horizontal axis using image transformations and then re-sized
to 224 × 224 resolution facilitating the input to the pre-trained
VGG-face model. Since the location of eyes and nose does not
change with expressions, we assume that the facial region rep-
resentations are the higher layer feature maps in corresponding
fixed positions. As can be seen in Fig. 1b, the feature maps
from the fourth pooling layer are used for further processing of
individual patch.

The CNN architecture in M2 (refer Fig. 1b) is based on the
VGG-16 with two parallel cropped branches (for mouth and
peri-ocular region) from the fourth pooling layer. Further, each
branch is passes through 1×1 and 3×3 convolutional layer each
with 128 filters followed by a max polling and fully connected
layer. The 1 × 1 layer helps in reducing the number channels
of the feature maps. Since the 3 × 3 weights are not shared
between the parallel branches, they supposedly learn different
activation patterns for different facial regions. The pooled fea-
tures are flattened and fed to a fully connected layer with 256
units. In this network, we use Rectified Linear Unit (ReLU) as
the activation function. The output from each stream is further
concatenated and fed to the classification layer.

Model M3 Being an hierarchical feature extraction method,
CNN learns low-level features in the early layers while high
level features are learned in the layers toward the end of the
pipeline. The local feature extraction techniques were very pop-
ular before the deep learning era which are similar to low-level
features. Though perception of expressions from low-level fea-
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(a) M1

(b) M2

(c) M3

(d) M4

Figure 1: Different deep learning architectures considered in this work. (a) M1: The original VGG-Face model with suitable softmax layer for expression classes,
(b) M2: Two facial patch (eye and mouth) based architecture with separate weights for each branch, (c) M3: Skipped connection based architecture with features
pooled from both lower and higher order layers, (d) M4: Architecture with skipped connections followed by two parallel branches with separate weights to extract
features from two facial patches.
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tures such as local edges is quite inefficient, its contribution to-
wards learning overall expression representation cannot be ig-
nored. We used skip connections to make the model learn both
high-level and low-level features simultaneously. Here the skip
connections allow the concatenation of output of different lay-
ers to bring both high (early layers) and low (later layers) level
features to the same vector space. The architecture of M3 is
shown in Fig. 1c.

Since the dimension of feature maps for different convolution
blocks are different, it is difficult to directly fuse these features.
As can be seen from Fig. 1c, the skip connections from pooling
layer of different blocks are further processed through pooling
and 1 × 1 convolution to reduce the feature maps to a particular
size (7 × 7). Note that this pooling operation is different for
different blocks based on their feature map size. Finally, the
outputs are concatenated channel-wise forming a feature map
of size 7 × 7 with 256 channels. A fully connected layer with
512 units is used before the final classification layer.

Model M4 In our experiments, we observe that the skip con-
nections in M3 are more effective than the part-based model of
M2. To further validate the effect of skip connections along
with part-based feature processing, we propose another model
which takes the advantage of both the models. The fourth
model (M4) uses the the skip connections of M3 and part-based
architecture of M2 as shown in Fig. 1d. Different to M3, the
skipped connections are processed with pooling and 1 × 1 con-
volutional layers to reduce the feature map dimension to 14×14,
which corresponds to the dimension of feature maps in M2 for
part based branching. The parallel branches for feature extrac-
tion of facial parts follow the same architecture as in M2.

Network Training of M1-M4 Given the input image x, the
classification network learns to accurately predict the relevance
expression scores p(k|x, θ), where θ are the network parame-
ters and k ∈ {1, 2, ...,K} represents K classes. For the soft-max
layer, we have p(k|x, θ) =

exp(zk)∑K
i=1 exp(zi)

, where zi are the unnor-
malized log probabilities. The ground-truth distribution q(k|x)
is used to train the network parameters (θ) by minimizing the
cross-entropy loss function

L = −

K∑
k=1

log(p(k|x, θ))q(k|x). (1)

Usually one-hot encoding is used in classification tasks, which
takes the form q(y|x) = 1 and q(k|x) = 0,∀k , y for a sample x
having class label y. However, the expression classes are highly
correlated and two or more expressions can occur simultane-
ously as compound expressions. One-hot vectors impose for
the CNN to predict one of the class labels with high confidence,
i.e., with probability 1. We observe that learning the expression
classifier with one-hot encoding prohibits the model to learn
low intensity and mixed expressions. We use label smoothing
[56] to allow the CNN model to adapt to the low intensity ex-
pressions to some extent. In label smoothing, the smoothed la-
bel information is used instead of 0-1 targets which imposes the
model to be less confident about its predictions and the model is
learned without pursuing of hard probabilities while encourag-
ing the correct classification. We implement the label smooth-

ing as,

q(k|x) =

1 − ε, k = y
ε

K−1 , k , y,
(2)

where ε ∈ [0, 1] is the label smoothing hyperparameter. While
setting ε = 0 refers to one-hot encoding, setting ε a large value
might result in learning a poor performing model.

4. Multi-Face Multi-Part (MFMP) Framework

Data augmentation improves the performance in problems
with low sample size. In our expression recognition framework,
the pre-processing step involves face alignment. Once the faces
are aligned, image augmentation with large translation or rota-
tion is not effective. We used a simple strategy to augment data
for part-based models. Instead of using periocular region and
mouth region of the same face sample during network training,
we augment the data by using these two regions from differ-
ent face samples of the same expression class. We here exploit
the improvement due to the augmentation with multiple regions
sampled from multiple instances.

The multi-face multi-part (MFMP) architecture is shown in
Fig. 2. It accepts two inputs, one for processing the peri-ocular
region and another for processing the mouth region. As dis-
cussed earlier (in the description of M2), the feature maps of the
facial regions in higher order layers are used instead of learning
the weights for these regions from scratch. Here the network
model M4 up to the concatenation layer is considered as the
base network. The response of this base network to a whole face
is used for further processing of each facial part. Specifically,
both the inputs are first passed through the base network of M4
which produces a feature map of size 14 × 14 × 192. As can
be seen in Fig. 2, the base networks for both input stream share
the same weights. The peri-ocular region is extracted from the
upper branch, whereas the mouth region is extracted from the
feature map of lower branch. Further, the extracted features
are passed through the network similar to M4 resulting a 512
dimensional face embedding which is used for expression clas-
sification.

This architecture benefits from huge data augmentation. In
a K class classification scenario with nk samples in kth class
and p number of patches, MFMP scheme increases the sample
size from

∑
k nk to

∑
k

(
nk
p

)
by part-based augmentation. The im-

provement in classification accuracy with MFMP on different
datasets are discussed in the result section.

During test time, we need to predict the emotion probabili-
ties for each sample. Since the proposed MFMP accepts two
inputs, the testing scheme needs to be defined thoroughly. Two
methods can be followed to obtain the emotion probabilities
of a sample: 1) The same image can be fed to both of the in-
puts in order to process the periocular region and mouth region
in parallel followed by the feature concatenation and further
recognition; 2) Since the weights are shared between both base
networks, we can only use one of the parallel branches with a
single input image. The latter method is equivalent to training
the MFMP model with two inputs followed by transferring the
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Figure 2: Proposed MFMP model for FER. The weight-sharing indicates that the weight parameters of all the convolution layers in the convolution blocks in for
both branches are shared with each other.

weights of base network and the following layers to M4 archi-
tecture, thereby using a single input during testing phase.

Though the base networks share the same weight, the branch
networks for each part learn separate weights. Thus, MFMP
can be considered as a late fusion method with separate weight
scheme for different facial parts [57]. With separate-weights,
each branch treats input feature maps of facial parts differently
and learns the high-level patterns associated to a specific part
of face. Thereby, the network leverages the huge data augmen-
tation possibility and learns the weights for a specific part in
order to represent that region in the best possible way, which
helps in improving the model performance.

MFMP+ : On the top of training with MFMP, an additional
strategy is used in our experiments. We fine-tune the model
trained with MFMP using different parts of the same face sam-
ple, which we refer as MFMP+. In other words, MFMP+ is
firstly trained with facial parts from multiple faces (like MFMP)
followed by fine-tuning the weights by training the model with
parts of the same face sample. This process is similar to learn-
ing the model weights with MFMP first followed by using M4
for further fine-tuning the network weights. This process learns
with a few more samples (

∑
k

(
nk
p

)
+

∑
k nk) apart from the possi-

ble set from MFMP. Usually, the high-level feature map reveals
the relation between different areas of the input. Since the face
parts used in MFMP come from dissimilar faces, the weights
learned by the parallel branches are less related. We hypoth-
esize that once the weights of part-based parallel branches are
learned with MFMP, they benefited from the positional relation
of facial parts which is learned by the high-level feature map.

5. Experiments

Experiments are carried out on a number of data sets to vali-
date the effectiveness of the part-based models. In this section,
we first describe the data sets and the evaluation metrics we
have used in this paper. Then, the implementation details of
the CNN models are discussed followed by the experimental
results from individual and cross-database evaluation. Finally,
the results obtained in our method are compared to the state-of-
the-art methods.

5.1. Data Set Description

Both in-the-lab (CK+[34], RaFD[35], FACES[37],
lifespan[36]) and in-the-wild (RAF[58], AffectNet[59])
datasets are used in our experiments. The in-the-wild ex-
pression datasets contain data collected from uncontrolled
environments and thus cover real-world expressions with var-
ious facial poses, illuminations, emotion intensity, occlusion,
and other factors. Whereas the in-the-lab datasets are mostly
posed in a controlled environment and contain exaggerated
expressions of frontal faces.

Most of these datasets contain annotation for six basic ex-
pressions, namely: anger, disgust, fear, happy, sad, and sur-
prise. Datasets like AffectNet and RAF are collected from in-
ternet by using certain emotional terms in various search en-
gines. RAF [58] contains manually annotated images, out of
which 12271 are listed in training set and 3068 samples in test-
ing set. AffectNet [59] contains around 400000 labelled data
for training from 10 categories and 5000 samples for valida-
tion. The agreement between two annotators in AffectNet is
found to be 60%, which explains the complexity and subtlety
of the expressions in this dataset. Following the experimental
settings of [14] and [60], we only used the seven classes (six
basic expressions and neutral). For both these datasets, we used
the aligned images provided by the respective authors.

Among the in-the-lab datasets, CK+[34] is the smallest one
with 327 sequences annotated with 7 expression labels (anger,
disgust, fear, happiness, sad, surprise, and contempt). The con-
tempt class was excluded in our experiments as we aim for
cross-database evaluation and comparison purposes [31]. The
image sequences in CK+ start from a neutral face and end with
a peak of the respective expression. Following the literature
[31][11][33], we used the 10-fold cross validation while using
the first frame as neutral and the last three frames of each se-
quence as the corresponding expression label. Thus, our seven
class framework on CK+ uses the classes: anger, disgust, fear,
happiness, neutral, sad, and surprise; and in 6 class classifica-
tion, it excludes the ‘neutral’ class. The frontal faces (1407
samples) were used from RaFD dataset for our experiments,
which includes neutral and six basic expressions of 67 models.
Lifespan database is a challenging dataset with subjects of var-
ious age groups. We followed the experimental settings of [61],
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[62] and [63], and conducted experiments on four class (happy,
neutral, sad, surprise: 1137 images) and two class (neutral and
happy: 995 images) settings.

5.2. Implementation Details

The faces from the dataset images were detected using
MTCNN [64] followed by face alignment by positioning both
eyes at a fixed distance parallel to the horizontal axis. The
aligned faces were re-sized to 224 × 224 resolution and feed
to the CNN models. The initial model weights were obtained
from the pretrained VGG-Face model for the layers that were
borrowed from VGG-Face. The rest of the weights were ini-
tialized with Xavier uniform initialization. The network was
trained with mini-batch gradient descent method with batch size
of 32. We normalized the training data to zero mean and unit
variance in all experiments. Data augmentation was carried out
with random horizontal flip, small rotation, and scaling. We use
Adam optimizer with β1 = 0.9, β2 = 0.999 and a learning rate
of 1e–4 for all the models. The label smoothing parameter ε
was empirically set to 0.1 in all our experiments. The experi-
ments were carried out using NVIDIA 1080 GPU with CUDA
to improve the speed.

We perform a series of experiments on M1 by freezing the
lower-order layer weights while fine-tuning the higher-order
layer weights to learn the suitable model for FER purpose.
From our experiments, we conclude that fine-tuning the last
fully connected layers achieves the best performance for ex-
pression classification in low sample size datasets, whereas
fine-tuning two or three more layers achieves the best perfor-
mance for large datasets. The best results for M1 in our experi-
ments are reported in this paper.

5.3. Evaluation Strategy

The in-the-wild datasets (AffectNet and RAF) have train and
validation sets defined by the database developers (for RAF,
the test set is used for validation). While we train our mod-
els on a train set, we validate it on a validation set. For other
datasets (CK+, RaFD, FACES, lifespan), we employ 5-fold
cross-validation, as often reported in literature [11], [33], [62],
[65]. To compare our model performance with the state-of-the-
art methods, we use macro average accuracy, which is com-
puted by averaging over the accuracy scores of each expression
category.

Cross-dataset Evaluation The reliability of data annotation
is a major concern in facial expression datasets. We adopted
rigorous cross-dataset evaluation protocol to validate the effec-
tiveness of the proposed method. In cross-dataset evaluation,
the models are trained on samples from one dataset while tested
on other, thereby demonstrating the generalization ability of the
model. For RAF and AffectNet, the models were trained or
tested on train and validation split respectively. For the rest
datasets, the models were trained or tested on whole data for
cross-dataset validation.

Table 1: Comparison of average classification accuracy on different databases
for VGG variants. The best accuracy is reported in bold text.

Models CK+ RaFD lifespan AffectNet
M1 97.34 97.23 92.98 52.83
M2 95.8 89.82 78.42 46.23
M3 98.54 98.93 91.67 53.68
M4 98.18 98.29 93.86 52.75

5.4. Performance Comparison of M1, M2, M3, and M4

The results obtained with models M1, M2, M3, and M4 are
presented in this section. The performance of different models
on different datasets are provided in Table 1. Though it is a pop-
ular belief that the use of patch-based features always enhances
the expression recognition performance, our experimental re-
sults differ from it for deep learning models. As can be seen
from Table 1, the performance of M2 is considerably lower than
the other models. While the other models achieve close perfor-
mances on different datasets, M2 lags by a huge margin to each
of them. In other words, features from regions beyond eyes and
mouth are also beneficial in expression recognition.

Table 1 indicates that the model with skip connections (M3)
performs well across the datasets. Comparing the accuracy M1
and M3, we observe the performance improvement by fusing
both low and high-order features. Since VGG-Face was ini-
tially trained for person identification, the receptive fields of
higher order layers tend to learn the identity instead of the ex-
pressions. However, by pooling information from lower order
layers enhances the expression classification rate.

The performance of M3 and M4 are very close. Though M4
achieves the best recognition accuracy in lifespan dataset, M3
outperforms M4 in the rest. One of the likely reasons for re-
duced performance of M4 is the loss of holistic information
from the face during part-based analysis. Since the performance
gap between M3 and M4 is very small, we can infer that the per-
formance is more robust after pooling the features from both
low and high-order deep layers. Moreover, the huge perfor-
mance gap between M2 and M4 implicates that the use of skip
connections improved the accuracy, even though both models
use similar part-based feature maps.

The following conclusions can be drawn from the observa-
tions: (1) the use of mouth and periocular regions for feature
extraction reduces the performance in CNN models, i.e. some
important information is lost that resides on other facial parts;
(2) the skip connections prove to be effective with or without
facial part based models. We will discuss in the following Sec-
tion that the performance of MFMP is slightly better than both
M3 and M4. Therefore, following the above observations, the
rest of the paper reports the performance comparison of M4 and
MFMP along with the other methods in the literature, while ne-
glecting the performance of other models.

5.5. Performance of MFMP/MFMP+ and Comparisons

The MFMP architecture has the advantage of data augmen-
tation as discussed in Section 4. The performance of MFMP
and MFMP+ is compared with M4 and other state-of-the-art
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Table 2: Comparison of average classification accuracy on CK+ database. The
best two accuracies are shown in bold and underlined text respectively.

Methods
Validation

settings Accuracy

STM-ExpLet [66] 7 class 94.19
LOMo [67] 7 class 95.1
IACNN [33] 7 class 95.37
DTAGN [26] 7 class 97.25
Lopes et al. [29] 7 class 98.8
Proposed M4 7 class 97.17
Proposed MFMP 7 class 97.09
Proposed MFMP+ 7 class 97.5
BDBN[31] 6 classa 96.7
PPDN [32] 6 class 97.3
facenet2expnet [11] 6 class 98.6
Lopes et al. [29] 6 class 98.92
Proposed M4 6 class 98.18
Proposed MFMP 6 class 98.65
Proposed MFMP+ 6 class 98.85

a Eight-fold cross-validation is per-
formed.

Table 3: Comparison of seven class classification accuracy on RaFD database.

Methods
Validation

settings Accuracy

Metric learning[68] 10 fold 95.95
W-CR-AFM [69] train-test split 96.27
BAE-BNN-3[65] 5 fold 96.93
TLCNN+FOS[70]b 4 fold 97.75
Carcagni et al.[71] 10 fold 98.5
Proposed M4 5 fold 98.29
Proposed MFMP 5 fold 98.6
Proposed MFMP 10 fold 98.64
Proposed MFMP+ 5 fold 99.07
Proposed MFMP+ 10 fold 99.1
b Six classes considered. Neutral class

was not included.

Table 4: Comparison of expression recognition accuracy on lifespan database.

Methods
Validation

settings Accuracy

Guo et al.[61] 2 class 91.05
Joint-Learn [62] 2 class 93.91
Proposed M4 2 class 93.86
Proposed MFMP 2 class 94.29
Proposed MFMP+ 2 class 95.64
Wu et al. [63] 4 class 82.55
Proposed M4 4 class 81.66
Proposed MFMP 4 class 89.3
Proposed MFMP+ 4 class 88.45

Table 5: Comparison of expression recognition accuracy on FACES database.

Methods Accuracy
Guo et al. [61] 84.68
Joint-Learn [62] 92.19
Wu et al. [63] 94.12
Proposed M4 96.1
Proposed MFMP 96.49
Proposed MFMP+ 96.78

methods in Table 2–6. The best two accuracies in each table
are shown in bold and underlined text respectively. For CK+,
some literature reports the accuracy for 6 class classification,
whereas some other report the 7 class accuracy. Therefore, we
report both the cases. Similarly, we report the accuracy in two
and four class settings for lifespan dataset.

From Table 2, we observe that the method proposed by Lopes
et al. [29] achieves the best accuracy of 98.8% for seven class
classification. However, the accuracy of the proposed MFMP+

is the second best and for six class classification, MFMP+

performs close to the state-of-the-art accuracy. MFMP+ and
MFMP achieved the top accuracies (99.07% and 98.6% respec-
tively) in RaFD (see Table 3) outperforming the other state-
of-the-art methods. In both lifespan and FACES, the proposed
methods outperform the methods in literature with a margin of
2% approximately. As can be seen from Table 4, the best accu-
racy is obtained with MFMP for 4 class classification, whereas
MFMP+ achieves the best accuracy for 2 class classification.
Similarly, in FACES dataset, MFMP+ achieves an accuracy of
96.78% and outperforms the state-of-the-art results by a mar-
gin of 2.5%. For three in-the-lab datasets, MFMP and MFMP+

achieved the top two performances. Further, MFMP+ achieves
better accuracy than MFMP in all in-the-lab datasets. The lack
of sufficient samples might be the reason that prevents MFMP
to learn a suitable generalization, whereas MFMP+ uses the
same faces at both inputs for training once the model learns the
suitable weights with the proposed augmentation method, thus
learning a better expression generalization.

On the other hand, MFMP outperforms MFMP+ in case of
in-the-wild datasets, where the number of training samples is
large. As can be seen in Table 6, the performance of MFMP is
3% higher than that of MFMP+. However, the proposed meth-
ods could not achieve state-of-the-art performances in RAF.
IPA2LT [72] achieves the best on RAF as it is trained with both
AffectNet and RAF train data. We believe the presence of oc-
clusion, pose variations, lower resolution, and facial painting
are the major reasons for the failure of the model. However,
these limitations can be overcome with a larger dataset like Af-
fectNet. As can be seen in Table 7, the highest accuracy of
58.93% was obtained with MFMP for AffectNet.

The following observations can be outlined from the experi-
mental results: (1) Both MFMP and MFMP+ perform consis-
tently better than M4 model; (2) Different from other works in
literature we use only two facial regions to obtain good per-
formance; (3) The consistent trend of MFMP and MFMP+ on
all posed expression datasets confirms the advantage of facial
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Table 6: Comparison of expression recognition accuracy on RAF database.

Methods Accuracy
CAKE [60] 68.9
DLP-CNN [58] 74.2
Vielzeuf et al. [73] 80
PG-CNN [14] 83.27
IPA2LT [72]c 86.77
Proposed M4 72.54
Proposed MFMP 83.15
Proposed MFMP+ 80.26

c Trained with both Af-
fectNet and RAF train
set.

Table 7: Comparison of expression recognition accuracy on AffectNet database.

Methods Accuracy
PG-CNN [14] 55.33
IPA2LT [72]c 57.31
CAKE [60] 58.1
AlexNet [59] 58
Proposed M4 52.75
Proposed MFMP 58.93
Proposed MFMP+ 58.86

c Trained with both Af-
fectNet and RAF train
set.

patch augmentation. The performance of proposed methods
achieve higher accuracy or close to the state-of-the-art methods;
(4) A benefit of MFMP+ is observed in most in-the-lab expres-
sion datasets as they contain a small number of samples. How-
ever, MFMP method seems to perform better in large datasets.
This indicates that the generalization ability of our architecture
is improved with large dataset. Notice that the use of more ad-
vanced architecture (such as ResNet) could further improve the
model performance.

5.6. Results and Analysis

Fig. 3a and 3b respectively show the confusion matrices of
RAF and AffectNet. Happiness is detected with highest accu-
racy among all the expression classes in both the datasets. In
the RAF dataset, the accuracy of neutral and surprise is more
than 85%. However, disgust and fear are the lowest performing
classes in both the datasets. And it is observed in both datasets
that fear is classified as surprise among most of the false clas-
sifications. Similarly, sad is mainly misclassified as neutral.
The misclassified disgust samples are mostly assigned to neu-
tral and anger classes in RAF and AffectNet respectively. The
subtle variation among classes such as anger, sad, and neutral
is probably the primary reason behind misclassification among
these classes.

To further demonstrate the effectiveness of our method, we
report the class-wise ROC and the macro-ROC for RAF and
AffectNet datasets in Fig. 4a and 4b respectively. The ROC
curve is obtained by plotting the true-positive rates against the

(a) RAF

(b) AffectNet

Figure 3: Confusion matrices for RAF and AffectNet with the proposed
MFMP+ model.

false-positive rates while varying the decision threshold of the
prediction scores of the softmax layer. Similar to observations
in Fig. 3b, we can see that the ROC of happiness class is bet-
ter than the rest in AffectNet. The AUC for each class is also
shown for better comprehension. The proposed model achieves
an AUC macro average of 0.96 and 0.90 in RAF and AffectNet
respectively.

Fig. 5 shows the validation accuracies with respect to the
number of epochs during training. We can observe that the
curve of MFMP+ is above the other models with a significant
margin. Since the pretrained weights of VGG-Face are used for
the low order layers, each model learns the expression patterns
very quickly in less than 50 epochs. However, the MFMP+

model learns faster than other models and achieves the best ac-
curacy.

The T-SNE representation of the feature embedding of M3
and MFMP is shown in Fig. 6. Since both the models achieve
close performances, the projection patterns on two-dimensional
plane for these two models are almost similar. However, one
can see that the samples of surprise are projected to two clusters
and much more separated from other classes in case of MFMP.
Similarly, the samples from sad are scattered in M3 projection,
whereas these samples are more distinguished in MFMP pro-
jection.

5.7. Cross-database Evaluation

Table 8 reports the cross-dataset performance for classifica-
tion of seven expression classes. The other datasets are not in-
cluded in the evaluation due to the unavailability of all seven
class samples in those datasets. The best performing model
weights were used in these experiments. The datasets presented
in the table are in the increasing order of number of samples in
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(a) RAF

(b) AffectNet

Figure 4: Class-wise ROC and the macro-ROC for RAF and AffectNet with
the proposed MFMP+ model. Comparing the class-wise ROCs, happy class
performs the best in both the datasets.

Figure 5: The accuracy curves of different models on AffectNet validation set.
MFMP+ model learns faster than other models and achieves the best accuracy.

Table 8: Cross-dataset accuracy results for seven expression classes.

TrainTest CK+ RaFD RAF AffectNet
CK+ - 52.48 24.64 21.57
RaFD 63.41 - 27.65 22.64
RAF 70.91 68.45 - 42.17
AffectNet 81.96 86.92 69.89 -

the dataset (CK+ <RaFD <RAF <AffectNet). One interesting
trend that can be observed from Table 8 is that, when a dataset
with less samples is used for training, the model performance
is low on datasets with larger samples, and vice versa. This has
also been observed in [31] and [29], where this trend is consid-
ered as the effect of less variations in training data due to low
sample size. Furthermore, the occlusion, pose and illumination
variations are absent in-the-lab datasets; thus, it is difficult to
train the complex model architecture without causing signifi-
cant overfitting. As can be seen in Table 8, the best accuracies
are obtained when the models are trained on AffectNet. The
cross-dataset performance of RaFD is better than CK+ when
the model is trained on AffectNet; this probably happens as the
expressions in RaFD are more exaggerated than the samples of
CK+ and the model trained with AffectNet learns the optimal
weight for high intensity expression recognition.

6. Conclusions

In this paper, (a) we compared the performance of holistic
and part-based deep models for expression recognition, (b) we
explored skip connections in the context of studied models and
(c) we proposed a data augmentation scheme to improve the
performance of part-based models.

With respect to the experiments, the results suggest that (a)
holistic models outperform part-based models and hence per-
tinent information is lost when only facial parts are being an-
alyzed. Further, we showed that (b) skip connections can im-
prove the accuracy of part-based models substantially, which
attests the importance of low-level feature maps in expression
recognition. The proposed data augmentation scheme uses mul-
tiple facial parts, each from different samples of the same ex-
pression category, thereby increasing the number of samples
to a great extent. MFMP model that uses the data augmen-
tation scheme (c) improved additionally the performance of
part-based models. Since the spatial relationship is lost during
MFMP training, the model is able to learn to infer the best out
of a specific face region w.r.t. expression recognition. Further,
with separate weights for each facial part, the network learned
patterns associated to specific parts of the face and represented
that region efficiently, which benefited the model performance.
The proposed data augmentation framework can be instrumen-
tal in other part-based deep models, where data alignment plays
a critical role.
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