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Abstract—In this paper we consider a graph clustering prob-
lem with a given number of clusters and approximate desired
sizes of the clusters. One possible motivation for such task could
be the problem of databases or servers allocation within several
given large computational clusters, where we want related objects
to share the same cluster in order to minimize latency and
transaction costs. This task differs from the original community
detection problem. To solve this task, we adopt some ideas from
Glauber Dynamics and Label Propagation Algorithm. At the
same time we consider no additional information about node
labels, so the task has the nature of unsupervised learning. We
propose an algorithm for the problem, show that it works well for
a large set of parameters of Stochastic Block Model (SBM) and
theoretically show that its running time complexity for achieving
almost exact recovery is of O(n·d̄·ω) for the mean-field SBM with
d̄ being the average degree and ω tending to infinity arbitrary
slow. Other significant advantage of the proposed approach is its
local nature, which means it can be efficiently distributed with
no scheduling or synchronization.

I. INTRODUCTION

Community detection in networks is a very important topic
which has numerous applications in social network analysis,
computer science, telecommunications and bioinformatics, and
has attracted the effort of many researchers. Let us just
mention main classes of methods for network partitioning.
The first very large class is based on spectral elements of
the network matrices such as adjacency matrix and Laplacian
(see e.g. the surveys [1, 2] and references therein). The second
class of methods is based on the use of random walks (see
e.g. [3, 4, 5, 6, 7] for the most representative works in
this research direction). Finally, the third class of methods
to network partitioning is based on the optimization of some
objective such as likelihood [8, 9], modularity [10] or energy
function [11, 12]. Interestingly, many mentioned approaches
can also be viewed as particular instances of hedonic game
[13]. The approach developed in this paper is also based on
the energy function optimization.

We focus on the problem of graph partitioning given the
desired number of clusters and their approximate sizes as an
input. This problem statement can be useful for example when
it is needed to split some objects in a predetermined number
of clusters with respect to their relations or pack the graph into
several given folds trying to minimize some global metric. At
the same time we focus on algorithms which do updates based
only on local (node neighbourhood) information. In this paper
we consider partitioning into two folds, though the extension
for the larger number of folds can be naturally derived by
applying the “one-vs-rest” technique.

From formal side, we suppose that there is an unavailable
ground truth: each node has its original cluster number, 1 or
−1, which we want to determine. Similarly to [11], as a global
objective function we use the energy borrowed from the Ising
model. Let n = n1 + n2 be the total number of nodes with
n1, n2 denoting the desired cluster sizes. Given the graph G =
(V,E), we introduce a set of configurations Σ ⊂ {−1, 1}V ,
such that for every configuration σ ∈ Σ every node v ∈ V
has label σ(v) from {−1, 1}. Since we consider constraints
on the clusters’ sizes, each σ ∈ Σ consists of exactly n1
labels 1 and of exactly n2 labels -1. For convenience, we call
vertices labeled with “1” as black and vertices labeled with
“-1” as white. The global energy ε(σ) of a configuration is
then defined as follows:

ε(σ) = −
∑

{u,v}∈E

σ(u)σ(v). (1)

The global energy is then small when the number of edges
with same colour nodes is large and the number of edges with
different colour nodes is small. Alongside the global energy,
we shall also use the local energy of a node v in configuration
σ:

ε(σ, v) = −σ(v)
∑
w∼v

σ(w). (2)

In the steps of our algorithms (to be described in detail
a bit further) we shall do updates based on local energies
and keep the numbers of black and white nodes as invariants,
which is a major difference from Gibbs sampler and Glauber
dynamics [11, 12]. The main motivation for doing this is to
keep the current configuration cluster-size constrained and do
not hit configurations colored in the unique color, keeping the
algorithm of only local nature. We shall indicate how we can
organize an efficient and distributed implementation of our
algorithms.

II. SBM AND MEAN-FIELD SBM

Let us introduce the Stochastic Block Model (SBM) as the
basic model for graphs with clustered structure. In that model
we have a random graph Gsbm = (V,E) with two blocks
V1, V2, where V = V1 t V2 and for each pair of nodes {v, u}
an edge is drawn independently according to

P ({v, u} ∈ E) =


p1, v, u ∈ V1,
p2, v, u ∈ V2,
q, overwise,



with n1, n2, p1, p2, q possibly being functions of n. Let us
suppose that the block sizes differ by a factor α, i.e.,

|V1| = n1, |V2| = n2, n2/n1 = α ≥ 1.

Cases when α = 1 and α > 1 are different, since for the
first case there are two configurations giving us exact recovery
(black-white and white-black configurations), whereas for the
second case there is only one such configuration. This is a
very important observation, which we shall discuss later in
detail.

Let
G = {0, 1}(

(n1+n2)
2 )

be a set of all possible graphs and let µ be a probability
distribution over G derived from the SBM model.

The mean-field SBM is going to be used to obtain some
theoretical insights, especially about the complexity of the
proposed algorithms. In the mean-field SBM we have a
complete deterministic graph Gmf = (V1 t V2, E) and each
edge has a weight according to its probability in the SBM
graph, i.e., p1, p2 or q.

We consider only the case when the nodes have the same
expected degree, namely, we assume that

p1 + αq = αp2 + q. (3)

If the expected degrees differ for different blocks then the
clustering task is trivial. Here we use exact and not asymptotic
equality for simplicity of statements.

When p1 = p2 = q then the SBM graph collapses to
the Erdős-Rényi G(n, p1) graph where all edges are drawn
independently with probability p1 and no reconstruction is
possible. Let us recall some facts about regimes in the SBM
model [14].
• Erdős-Rényi G(n, p) (as a block in SBM) is connected

if and only if p = c ln(n)/n and c > 1.
• Exact recovery (i.e., right labeling of all nodes) in
Gsbm for α = 1 and p1 = p2 = a(n) ln(n)/n, q =
b(n) ln(n)/n is possible if (a(n) + b(n))/2 > 1 +√
a(n)b(n) and is not possible if (a(n) + b(n))/2 <

1 +
√
a(n)b(n).

• Almost exact recovery (i.e., right labeling of 1 − o(1)
share of nodes) in Gsbm with p1 = p2 = a(n)/n, q =
b(n)/n is possible if and only if

(a(n)− b(n))2

(a(n) + b(n))
→∞.

We split all configurations from Σ into groups Σ(i), such
that σ(i) ∈ Σ(i) denotes arbitrary configuration that has exactly
i black nodes in the first block. Then, we consider the energy
of configuration σ(i) as a function of i. Taking j = n− i and
averaging, we obtain:

ε(i) := Eµε
(
σ(i)
)

=

= (−1) · ((n1 − 2i)2
p1
2

+ (n2 − 2j)2
p2
2

+

Algorithm 1

Require: n1 6 n2, G has n = n1 + n2 nodes
Require: relative error 0 < δ < 1/2

1: function ALGORITHM 1(n1, n2, G, δ)
2: initialize σ with n1 labels 1 chosen at random, other
n2 labels set with −1

3: α← n2/n1
4: t← 0
5: T ← (1 + α)n/δ
6: while t < T do
7: choose two random nodes v, u of different labels
8: calculate sum s of local energies for v, u
9: if s > 0 then

10: swap(σ[v], σ[u])

11: t+ = 1

12: return σ

Fig. 1. One-round basic algorithm

+(n1 − 2i)(n2 − 2j)q + (n1p1 + n2p2))(1 + o(1)). (4)

It is easy to see, that the expectation with respect to µ is
exactly the corresponding weighted sum over all edges for the
mean-field SBM.

We also need to define events, or subsets of configurations,
which give us desired solution of the partitioning task. We
introduce an event Aδ with δ denoting a relative error, which
corresponds to configurations, where at least (1− δ)n1 nodes
from V1 are labeled with 1 (that would mean not more that
δn1 nodes with label 1 happen to be in V2). Formally, we can
write

Aδ =
⊔

i>(1−δ)n1

Σ(i).

For α > 1 the event Aδ corresponds to desired partitioning,
though for α = 1 we also need to define

Bδ = Aδ tA1−δ,

which consists of both white-black and black-white optimal
configurations and configurations close to them.

III. DESCRIPTION OF THE ALGORITHMS

Let us describe and discuss in detail two proposed algo-
rithms. The first, basic algorithm is presented in Algorithm 1.

As one can see, Algorithm 1 strictly maintains the number
of nodes of each color. The stopping rule here is defined by
the number of steps derived in Proposition IV.3. Other possible
natural stopping rules might depend on the number of steps
without significant updates of the objective function.

One more approach for stopping rule works if we are
aware of the graph structure like in SBM graphs with known
parameters. For the SBM graph we know the expected global
energy value and thus we can use the following stopping
rule: if the current global energy obtained in an update of the
algorithm is close to the expected global minimum in SBM,
we stop the algorithm.



Algorithm 2

Require: n1 6 n2, G has n = n1 + n2 nodes
Require: relative error 0 < δ < 1/2

1: function ALGORITHM 2(n1, n2, G, δ)
2: σ ← ALGORITHM 1(n1, n2, G, δ)
3: v ← 0
4: labels ← σ
5: while v < n do
6: s←

∑
u∼v labels[u] / (labels[u] == 1? n1 : n2)

7: if s 6 0 then
8: σ[v] = −1
9: else

10: σ[v] = 1

11: v+ = 1

12: return σ

Fig. 2. Two-rounds algorithm

A significant advantage of the proposed algorithms consists
in the nature of their local updates. The updates of the
algorithms can be distributed over many machines with shared
memory with no need for synchronization. Two updates of the
algorithm are dependent if there is an edge between one of two
nodes chosen at one update and one of two nodes chosen at the
next update. More generally, if we have k machines making
updates at the same time, then for independence there must
not exist 2k · (2k − 2)/2 = 2k(k − 1) such edges. If edge
probability tends to zero and average degree is sub-linear,
which is typically the case in real world graphs, then the
probability that such 2k(k − 1) edges do not exist is lower
bounded by (1 − p)2k(k−1) for p = max(p1, p2, q) and that
expression tends to 1 given that k is a constant, i.e., with high
probability these k machines make update independently for
large graphs.

It is easy to notice, that in SBM setting Algorithm 1 is
likely to make an effective update of the objective function (the
objective can either decrease or stagnate), if there are many
nodes with wrong labels. This reminds us about the coupon
collector problem. We shall elaborate on this connection in the
next section.

In order to deal with slow performance at the end of the
algorithm run, we can apply the following heuristic: after run-
ning Algorithm 1 with any chosen stopping rule, we can iterate
through all nodes and label each node independently based on
the majority labeling of its neighbours. Thus, we come up with
the second round of the algorithm, see Algorithm 2, given that
the first round provides us some high quality but not perfect
partitioning. We note that such two-rounds scheme is common
practice to achieve exact recovery in graph clustering (see e.g.,
[15]).

The other possible heuristic inspired by the coupon collector
setting might be the following. We can choose nodes to update
not at random but based on their local energies: at each step we
choose one black and one white nodes with the largest local
energy and swap their labels. In order to do that we introduce

into the algorithm Cartesian tree with the node number as a
key and with the local energy as a value. After two nodes
v, u are chosen and updated we need to update their local
energies and the local energies of their neighbours, updating
the Cartesian tree. This takes O((deg(v) + deg(u)) · log(n)).
Therefore, the total asymptotic running time is only factor
log(n) larger. However, the expected number of updates is
supposed to be much smaller. We leave this modification as a
subject of future research.

IV. RUNNING TIME FOR MEAN-FIELD SBM
First of all we need to note here the following. The mean-

field SBM is clearly different from the authentic SBM. Nev-
ertheless, studying the running time of the algorithm for the
mean-field model gives intuition concerning the running time
for the SBM and, as it will be shown in the next sections, the
two models behave very similarly in numerical experiments.

Recall, that the intuition behind the use of the energy
function is that it measures the quality of clustering: a lower
energy means there is a smaller number of edges between
nodes colored differently and more edges with the nodes
sharing the same color.

Let us consider the energy as an objective of the discrete
optimisation problem, where the steps of the optimisation
procedure generate a sequence of configurations ending in a
configuration with a local optimum of the energy. We first
establish some properties of the expected energy.

Proposition IV.1. Let α > 1, let nodes in Gsbm share the
same expected degree. If (p1+p2)/2 > q, then for the expected
energy ε(i) = Eε(σ(i)), as for a function of i, the following
properties hold:

1) ε(i) with i from the discrete segment [0, n1] has a unique
global minimum at i = n1 (in that case all nodes are
labeled correctly);

2) ε(i) with i from the continuous segment [0, n1] has exactly
two local minima, associated with i = 0 and i = n1;

3) finally, ε(n1) − ε(0) > 4(α− 1)n21(p2 − q)(1 + o(1)).

Proof. From (4) and n2 = αn1, we can derive that

ε(i) = Eε(σ(i)) = −(a · i2 + b · i+ c), (5)

with a = 4((p1 + p2)/2− q) and

b = 2(α− 2)n1p2 − 2n1p1 − 2(α− 2)n1q + 2n1q.

By the conditions of the proposition, we conclude that a > 0
and thus ε(i), as a continuous function of i, is a parabola with
tails going down. So, on the segment i ∈ [0, n1] there might
be either one or two local minima of ε(i) potentially given by
the endpoints of the segment.

Again, using (4), we obtain

(−1) · (ε(n1) − ε(0)) =
n21
2

(p1 + α2p2 − 2αq)(1 + o(1))−

−n
2
1

2
(p1 + (α− 2)2p2 + 2(α− 2)q)(1 + o(1)) >

> 4(α− 1)n21(p2 − q)(1 + o(1)).



Now in order to finish the proof we need to show that there
cannot be a unique local minimum, i.e., we need to show that
−b/2a > 0 (i.e., −b > 0). Suppose the opposite, −b 6 0.
Then,

−b 6 0⇔ 2(α−2)n1p2−2n1p1−2(α−2)n1q+2n1q > 0⇔

⇔ (α− 2)p2 − p1 − (α− 2)q + q > 0⇔

⇔ (α− 2)p2 − p1 > (α− 3)q.

Recall, nodes share the same expected degree, which means
that the equation (3) holds. Thus, we have

p1 = αp2 − (α− 1)q

and

(α− 3)q 6 (α− 2)p2 − (αp2 − (α− 1)q)⇔

⇔ −2q 6 −2p2 ⇔ q > p2.

Using q > p2 and equation (3) we have

p1 6 p2

and so (p1 + p2) 6 2q which disagrees with the conditions
of the proposition. Therefore, under the conditions of the
proposition, there are always two local minima.

Note that the statement about exactly two local minima
has rather negative implications. Namely, there is no chance
to have a parameter setting such that the application of our
algorithm to the mean-field model will for sure produce con-
vergence to the global optimum. There is always a chance that
the algorithm converges to the non-desired local minimum.
However, a good news is that, as it is stated in the proposition,
the values of the global energy in two optima differ by a
significant margin. It is also possible to show in some regimes,
that the difference of Θ(n2(p2 − q)) is enough to distinguish
optima in Gsbm with probability tending to 1 due to high
concentration of the energy around its expected value.

Next, we consider the algorithm complexity in terms of its
expected running time in different scenarios for the mean-field
SBM.

Proposition IV.2. Let p1 +p2 > 2q. Then, for the graph Gmf
the expected number of updates T for Algorithm 1 to hit a
local minimum (any of them) is bounded by

ET 6
π2

12
n2.

Proof. Recall that we have two local minima with i = 0 and
i = n1. Each step of the greedy algorithm does not increase
the global energy and in some cases strictly decreases it by
moving configuration σ ∈ Σ(i) from class Σ(i) to Σ(i+1) or
Σ(i−1) depending on the tail of parabola parameter i happen
to occur in.

The move is effective if two nodes {v1, v2}, chosen uni-
formly at random, are such that v1 ∈ V1, v2 ∈ V2 and
σ(v1) 6= σ(v2). And depending on the parabola tail all further
steps will move parameter i in the same direction (in Gsbm

graph that is not true due to local topology). Without loss
of generality, we consider the case moving towards i = n1,
namely, i > −b/2a with a, b specified in (5). Then, in order
to do effective step, we need two nodes of different labels
chosen at random at the current step to be in different blocks
and both of them should be labeled wrongly.

This is now equivalent to the well-studied coupon collector
problem. Let T (σ) be a random variable denoting the number
of steps needed to achieve i = n1. That is, we need to hit all
wrongly labeled nodes starting the algorithm from an arbitrary
configuration σ. Then,

T (σ) 6
n1−1∑

i=b−b/2ac

Ti 6
n1−1∑
i=0

Ti, (6)

where Ti is the number of steps needed to hit two wrongly
labeled nodes from different blocks and to swap their labels
(regardless the values of the local energies). From the defini-
tion of Σ(i), the probability of choosing the needed {v1, v2}
is equal to

2 · n1 − i
n1 + n2

· n1 − i
n1 + n2

=
2

(1 + α)2
(n1 − i)2

n21
.

Ti being a geometrical random variable, yields

ETi =
(1 + α)2n21

2
· 1

(n1 − i)2
.

Then, we can write

ET (σ) 6
n1−1∑
i=0

ETi =
(1 + α)2n21

2

n1−1∑
i=0

1

(n1 − i)2
=

=
(1 + α)2n21

2

n1∑
i=1

1

i2
6

(1 + α)2n21π
2

12
=
n2π2

12
.

In the case of moving towards i = 0 we can consider j = n1−i
and collect j white labels in first block instead of i black ones.
Then, the calculations using this change of variables will be
just the same.

As it was mentioned before, the algorithm reduces to
the coupon collector problem, so the probability to make a
right update, when the current error is small, is small itself.
However, we can apply a so-called 80/20 Pareto rule and do
not all, but almost all, needed work in a much smaller number
of steps. We formally state this in the next proposition.

Proposition IV.3. Let 0 < δ = δ(n) < 1/2 and the conditions
of Proposition IV.1 hold. Then, the expected number of steps
T needed to hit the Bδ is such that

ET <
(1 + α)

δ
n.

Proof. First, let us consider the case of moving towards i = n1
and estimate the expected number of steps to hit n1(1 − δ)
black labels in the first block. Using the same notations as
before, we can write

n1(1−δ)∑
i=0

ETi =
(1 + α)2n21

2

n1(1−δ)∑
i=0

1

(n1 − i)2
<



<
(1 + α)2n21

2

∞∑
i=n1δ

1

i2
<

(1 + α)2n21
2

∞∫
n1δ−1

dx

x2
=

=
(1 + α)2n21
2n1δ − 2

<
(1 + α)2n21

2n1δ/2
=

(1 + α)n

δ
.

The steps to converge to the other optimum i = 0 can be upper
bounded as before with the change of variable: j = n1−i.

When blocks are of different sizes (α > 1), Algorithm 1
can converge to any of the local optima depending on the
tail of the parabola where the initial configuration happens
to be initiated. However, these optima can be distinguished
from each other. Thus, in the case of convergence to the
wrong optimum, we need to run the algorithm once again
starting from another initial configuration. The probability that
an initial configuration leads to the wrong optimum depends
on the number of black labels in the first block. Easy to notice,
that −b/2a matches the expectation of the number of black
nodes in the first block if n1 black nodes were distributed over
n = n1 + n2 nodes uniformly at random. In other words, let
each of n1 black nodes in the initial configuration fall into the
first block with probability n1/(n1+n2) independently. Given
that the initial number of black labels in the first block is a
binomial random variable and that the mean and median for
the binomial random variable are equal with respect to integer
part, the desired probability to occur within range [−b/2a, n1]
is almost 1/2. That means that with high probability we need
constant (around 2) times to re-run the algorithm from scratch
in order to converge to a vicinity of the desired minimum
(i = n1) and to hit the event Aδ .

When blocks are of the same size (α = 1), ε(i), as a function
of i, is symmetric with the center of symmetry i = n1/2.
Since both i ∼ 0 and i ∼ n1 we consider as good solutions
and, obviously, both of them and only them provide local and
global minima of energy with the same value, we can converge
to any of them. Therefore, the event Bδ , introduced earlier, is
the desired solution. The above can be summarized formally
as follows:

Proposition IV.4. Let α = 1, p1 = p2 and p1 > q. Then, the
expected number of steps T to obtain the exact recovery by
Algorithm 1 in the mean-field SBM is upper bounded by

ET 6
π2

12
n2.

Proposition IV.5. Let α = 1, p1 = p2, p1 > q and δ = o(1).
Then, the expected number of steps T to obtain the almost
exact recovery in the mean-field SBM is upper bounded by

ET 6
2

δ
n.

V. SIMULATIONS

Let us study the application of the proposed algorithm to
the authentic Stochastic Block Model and compare the results
with spectral clustering which is considered as one of the state
of the art methods (see [2, 14, 16]). We consider the regimes
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Fig. 3. Running time comparison for SBM and mean-field SBM.

were p1 = a ln(n)/n, q = b ln(n)/n and p2 is automatically
derived from (3) for some constants a > 0, b > 0 (for α = 1,
p2 is equal to p1). In this section for all simulations we use
Algorithm 2 with the desired relative error δ = 1/(2 ln(n))
and hence T = 4 · n ln(n).

A. Symmetric case, α = 1

First, we want to compare running times of the algorithm
for Gsbm and Gmf graphs. We have theoretical estimates
on the running time on Gmf (see the previous section). In
contrast with the mean-field model, in the authentic SBM
Algorithm 1 does not always increase (decrease) the number
of black nodes in the first cluster monotonously converging
to a local minimum of energy. In the stochastic case, some
steps might go in the undesired direction producing a random
walk on a segment [0, n1], were the “walker” corresponds to
the class i of configuration σ ∈ Σ(i). Nevertheless, it appears
that in most regimes the derived upper bound for the expected
running time is close to the actual running time in the authentic
SBM model.

For the first set of simulations we took α = 1, a = 7, b = 3,
which represents a difficult setting since the exact recovery for
this regime is not possible according to conditions mentioned
is Section II. For each graph of size n from the list, we
have measured the number of steps needed to achieve δ =
1/(2 ln(n)) relative clustering error. We repeat the experiment
several times for each n. We have compared the output with
the theoretical estimation provided for the mean-field model.
The result is presented in Fig. 3 with log-log scale. It can be
seen that for non-trivial regime the running time is very much
as expected from the mean-field model.

At the same time on Fig. 4 we can see trajectories of the
share of black nodes in the first cluster during the simulations
of Algorithm 2 on two different graphs (difficult and very
difficult), each with 50000 nodes. In the first plot, trajectories
tend to 0 or 1, since the both are global optima of the
objective; both are desired solutions since the clusters are
balanced. Spikes at the end of each line correspond to the
second round of the algorithm. Considering the first plot, we
can distinguish three phases of the algorithm. Phase 1: the
algorithm accumulates a critical shift from the equilibrium.
In this phase accuracy changes slow, there is a small chance
to do right update given the configuration is balanced. This
is the most tricky phase – it is difficult to analyze the graph
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topology and to estimate the number of steps needed here.
Phase 2: judging by significant progress, the algorithm does
most of the work here. In this phase the accuracy changes fast,
right pair of nodes are likely to be updated in the correct way.
Finally, phase 3: the algorithm is trying to hit wrongly-labeled
nodes when there are only few of them. A right pair of nodes
is almost surely updated in the correct way, but the probability
to hit such pair is low since the error is low. In this phase the
accuracy again changes slowly.

It is nice to observe that the upper bound for the mean-
field model given in Proposition IV.5 seems to work for the
authentic SBM as well. Another interesting remark is that
the trajectories in the first plot never cross 50%-line, which
confirms the algorithm’s strong dependency on the initial
configuration. Moreover, in the authentic SBM, the updates
might be done in both right and wrong directions depending on
the local graph topology. However, in the first plot of Fig. 4 we
see smooth lines with no backward movements, when the task
is not extremely difficult. In contrast, in the second plot, the
trajectories look more like random walks tightly concentrated
around the 50%-line, which corresponds to a random guess.

Next, we want to compare Algorithm 1 with Algorithm 2.
We do that in several regimes: more or less difficult regimes,
large or small graphs. The results are presented in Fig. 5; each
bar corresponds to 5 independent simulations for a common
random graph.

As expected, two-round algorithm significantly improves
the accuracy of clustering. We would also like to note that
we should not look at the average accuracy, but rather at the
maximal accuracy, since we have the energy as a measure of
clustering quality and can distinguish the best results from
the rest. We also have some simulations that ended up in
almost random partitioning, which means some of random
initial configurations happened to be very poor.

Next we compare the accuracy of spectral clustering (python
realization from sklearn library) with the accuracy of Al-
gorithm 2 for the SBM with graph size n = 10000 and
different parameters a and b (see Fig. 6, Fig. 7 and Fig. 8).
In order to do so, we choose a trial with the best energy out
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Fig. 5. Accuracy comparison of Algorithm 1 and Algorithm 2.
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Fig. 6. Accuracy of Algorithm 2 in different regimes with n = 10000, α = 1.

of 3 trials for Algorithm 2 and then measure its accuracy.
As we can see, there are differences only in some extreme
regimes where spectral clustering performs better, while in
the majority of regimes the clustering result is perfect for
both algorithms. We emphasize here, that spectral clustering
has worst case time complexity O(n3) [17]. Often in practice
spectral clustering has very good performance but to the best
of our knowledge we do not know about any rigorous results
about the average time complexity of spectral clustering. In
contrast, our algorithm has the proven average number of
algorithm steps O(n ln(n)) for the mean-field SBM, with each
step complexity of O(ln(n)) in the original SBM graph given
each node has logarithmic degree in the considered regimes.

B. Asymmetric case, α > 1

Let us also briefly discuss some simulation results for the
case of unbalanced blocks. We have chosen α = 3 for
the simulations as a significant but not extreme value and
n = 10000. Spectral clustering algorithms work poorly on
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Fig. 7. Accuracy of Spectral Clustering in different regimes with n =
10000, α = 1.
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Fig. 8. Accuracy of Algorithm 2 minus accuracy of Spectral Clustering in
different regimes with n = 10000, α = 1.

such unbalanced graphs, so we only present the result of
running Algorithm 2 in different regimes. For α = 3 a natural
initialization would be to distribute n1 = 2500 black labels
and n2 = 7500 white labels uniformly at random having the
average accuracy of n21/(n1 + n2) = 62.5%. As discussed in
the previous sections, globally there are two minima of the
expected energy, close to which the algorithm can possibly
converge. In the case α = 3, the desired optimum gives as
before 100% accuracy and the other gives the accuracy of
50% since it corresponds to the case when all nodes from
the small cluster are colored incorrectly. Having that said, we
have the results presented in Fig. 9. Each point corresponds
to a simulation with the best energy out of 5 trials.

As we can see, the algorithm works for a significant range
of parameters a and b, though it is not very stable and
more independent trials should be applied for each graph.
Dark points surrounded by light ones mean that all 5 initial
configurations were not good enough, i.e., they happened to
occur on the wrong tail of the energy curve and thus led
the algorithm to the wrong minimum. The trajectories of the
accuracy in this case are presented in Fig. 10. Let us take a
closer look at the second round of Algorithm 2. The results of
good trajectories are practically improved to 100% accuracy.
Whereas for the wrong trajectories accuracy falls below 50%
which might look surprising at the first sight. This happens
because of the weighted re-labeling provided by line 6 in
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Fig. 9. Accuracy of Algorithm 2 in different regimes with n = 10000, α = 3.
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Fig. 10. Trajectories of accuracy with unbalanced clusters.

Algorithm 2.

VI. CONCLUSION AND FUTURE RESEARCH

To summarize, we see the following advantages of the
proposed approach:
• the running time complexity of the algorithm is around
d̄ · n ln(n) for the SBM graphs;

• the algorithm can be effectively distributed over any
number of machines with shared memory and with no
need in synchronization;

• the algorithm can have a natural stopping rule based on
the value of the desired global energy;

• the resulting accuracy is comparable with spectral clus-
tering algorithm within large area of parameters;

• the algorithm works with high accuracy even in the case
of unbalanced clusters;

• the approach can be customized with different objective
functions.

At the same time, we have noticed the following deficiencies:
• the output of the algorithm is not reproducible, it is a

result of a random process;
• the result and the quality of the algorithm strongly

depends on the initial configuration;
• for the extremely difficult problems it works worse than

the spectral clustering in the case of balanced clusters.



For the future research we see a number of opportunities.
First, establishing theoretical results for the authentic SBM
is of a significant interest. Second, different upgrades of the
algorithm are possible, such as: at each step nodes could be
chosen not at random but, e.g., according to the local energy;
the second round of the algorithm might be different, some
intermediate steps might be added in order to expand this
approach for the case with no cluster-size constraints. Finally,
different objectives (such as in [10] and [12]) can be used.
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