
HAL Id: hal-02973094
https://hal.inria.fr/hal-02973094

Preprint submitted on 20 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

cfda: an R Package for Categorical Functional Data
Analysis

Cristian Preda, Quentin Grimonprez, Vincent Vandewalle

To cite this version:
Cristian Preda, Quentin Grimonprez, Vincent Vandewalle. cfda: an R Package for Categorical Func-
tional Data Analysis. 2020. �hal-02973094�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362230423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02973094
https://hal.archives-ouvertes.fr

JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

cfda: an R Package for Categorical Functional Data
Analysis

Cristian Preda
Université de Lille

Quentin Grimonprez
Inria Lille

Vincent Vandewalle
Université de Lille

Abstract

Categorical functional data represented by paths of a stochastic jump process with con-
tinuous time and finite set of states are considered. As an extension of the multiple
correspondence analysis to an infinite set of variables, optimal encodings of states over
time are approximated using an arbitrary finite basis of functions. That allows dimension
reduction, optimal representation and visualisation of data in lower dimensional spaces.
The methodology is implemented in the cfda R package and is illustrated using a real
data set in the clustering framework.

Keywords: functional data, categorical data, stochastic process, multiple correspondence ana-
lysis.

1. Introduction

Most literature devoted to functional data considers data as sample paths of a real-valued
stochastic process, X = {Xt, t ∈ T }, Xt ∈ Rp, p ≥ 1 where T is some continuous set. Among
a considerable record of papers on the subject, the monographs of Ramsay and Silverman
(2005) and Ferraty and Vieu (2006) are still the main references presenting methodologies
for visualisation, denoising, clustering and regression when dealing with functional data rep-
resented by real-valued functions. The fda (Ramsay, Wickham, Graves, and Hooker 2018) R
(R Core Team 2020) package implements these methodologies and tools for dealing with such
functional data.

In this paper we consider the case where the underlying stochastic model generating the data
is a continuous-time stochastic process X = {Xt, t ∈ T } such that for all t ∈ T , Xt is a
categorical random variable rather than a real-valued one.

http://dx.doi.org/10.18637/jss.v000.i00

2 cfda: Categorical Functional Data Analysis

Let (Ω,A,P) be a probability space, S = {s1, . . . , sK}, K ≥ 2, be a set of K states and

X = {Xt ; Xt : Ω −→ S, t ∈ T } (1)

be a family of categorical random variables indexed by T . Thus, for some ω ∈ Ω, a path of
X, X(ω), is a sequence of states sij = sij (ω) and time points ti = ti(ω) of transitions from
one state to another one:

{(t0, si0), (t1, si1), (t2, si2), . . .} (2)

where 0 = t0 < t1 < t2 < . . . are the jump times in T and sij ∈ S with ij ∈ {1, . . . ,K},
∀j ≥ 0. This path is read as follows. At time t0 = 0, ω is in some state si0 ; at time t1,
t1 > t0, ω moves randomly from si0 to the state si1 ; then at time t2 > t1 it moves from the
state si1 to state si2 and so on. If T is the interval of time [0, T] for some T > 0, then the
observation process stops when the time T is reached or some absorbing state is observed.
We call the sample paths of X given by sequences of type (2) categorical functional data
generated by the process X.
Figure 1 presents the graphical representation of one observation of categorical functional
random variable. The representation (a) is appropriate when no natural order relationship
exists on the set of states S, whereas the representation in (b) supposes that there exists some
order relationship (≺) on S: s1 ≺ s2 ≺ . . . ≺ sK .

Figure 1: Categorical functional data: graphical representation.

To the best of our knowledge, and quite surprisingly, there are no recent researches devoted
to this type of functional data despite its ability to model real situations in different fields
of applications: health and medicine (status of a patient over time), economy (status of the
market), sociology (evolution of social status), and so on. As a start point of research on
this topic we mention the works of Boumaza (1980), Deville (1982), Deville and Saporta
(1983) and Saporta (1981). These works are devoted to the extension of factorial techniques
(canonical and multiple correspondence analysis) towards functional data. Applications of
these techniques are presented in Heijden, Teunissen, and van Orlé (1997) for analysing career

Journal of Statistical Software 3

data and in Preda (1998) for studying spectral properties of the transition probability matrix
of a stationary Markovian jump process with continuous time. In Cardot, Lecuelle, Schlich,
and Visalli (2019) the authors are interested to cluster paths of semi-Markov processes using
mixtures with application to sensory data.
In this article we present categorical functional data analysis as an extension of the multiple
correspondence analysis towards functional data and its implementation in the cfda R package.
The theoretical foundations of this work are given in Deville (1982) and are based on the
concept of optimal encoding of the states of the process X with respect to maximum variance
criterion among all encodings. In Section 2 we present the theoretical background of the
optimal encoding methodology defining the principal components of the process X throughout
the optimal encodings. The approximation of the optimal encodings of the states into a basis
of functions and optimal representation of categorical functional data in lower dimensional
spaces are detailed. The implementation of the optimal encodings is presented throughout
the cfda R package in Section 3 where an application on real data set (care trajectories for
patients diagnosed with severe infection) is performed in view of visualisation, descriptive
statistics and clustering.

2. Categorical Functional Data Analysis
Introduced in Saporta (1981) and Deville (1982) under the name "analyse harmonique qual-
itative", multiple correspondence analysis is extended to categorical functional data. There
are several ways to do this, we have chosen in this work to introduce it as a problem of
finding the latent variables (principal components) that are the most related to the process
X = {Xt, t ∈ T }. Therefore, the principal components will allow to define optimal encoding
of states S = {s1, . . . , sK}.
Without loss of generality, let suppose that T = [0, T], with T > 0. For x, y ∈ S and
∀t ∈ [0, T], let denote by:

• 1x
t =

1 if Xt = x,

0 otherwise,

• px(t) = P(Xt = x) and px,y(t, s) = P(Xt = x,Xs = y).

The general hypotheses considered in that framework are:
H1: the process X is continuous in probability,

lim
h→0

P(Xt+h 6= Xt) = 0

and
H2: for each time t ∈ [0, T] (except possibly a finite discrete set of time points), any state
has a strictly positive probability to occur:

px(t) 6= 0, ∀x ∈ S,∀t ∈ [0, T].

2.1. The Principal Components
Let L2(Ω) be the space of real random variables with finite second moment and, for some

4 cfda: Categorical Functional Data Analysis

t ∈ [0, T], L(Xt) be the linear space spanned by Xt. Then, the conditional expectation
operator associated to Xt,

Et : L2(Ω)→ L(Xt),

z ∈ L2(Ω), z 7−→ Et(z) =
∑
x∈S

E(z|Xt = x)1x
t ,

is also the orthogonal projector on the space linearly spanned by the set of indicator random
variables {1x

t , x ∈ S}. Notice that Et is self-adjoint, idempotent and of rank K.
For z ∈ L2(Ω) and t ∈ [0, T], the coefficient

η2(z;Xt) = VAR(Et(z))
VAR(z)

is a measure of the correlation between z and the variable Xt. The empirical version of η2

is known as Wilks’ Lambda statistics, well known in multivariate ANOVA (Nath and Pavur
1985).
Let us recall that if t1, t2, . . . , tp are p different time points in [0, T], then the random variable
z which maximizes

p∑
i=1

η2(z;Xti) (3)

defines the first principal component of the multiple correspondence analysis of the set of p
categorical variables {Xt1 , Xt2 , . . . Xtp} (Escofier 1978). By an iterative procedure, the princi-
pal components of higher order are defined as maximizing (3) under orthogonality conditions
with respect to the principal components of lower order.
In Saporta (1981) and Deville (1982) the authors extend the multiple correspondence analysis
to the process X = {Xt, t ∈ [0, T]} (seen as infinite set of categorical random variables). More
specifically, the principal components are defined as the random variable z that maximizes
the criterion ∫ T

0
η2(z;Xt)dt. (4)

They show that under the hypotheses H1 and H2, the variable z which maximizes (4) is the
variable associated to the largest eigenvalue of the following (stochastic) eigenvalue problem:∫ T

0
Et(z)dt = λz. (5)

The operator Q =
∫ T

0
Etdt is positive, hermitian, and compact. Therefore, Q has a countable

set of positive eigenvalues and eigenvectors, {(λi, zi)}i≥1 such that λ1 ≥ λ2 ≥ . . . ≥ 0 and∫ T

0
Et(zi)dt = λizi.

The variables {zi}i≥1 are called principal components of the process X. Notice that z = 1
(constant) is an eigenvector of Q associated to the largest eigenvalue λmax = T . It follows
that the principal components {zi}i≥1 form a set of zero-mean uncorrelated random variables.

Journal of Statistical Software 5

Moreover, we have that ∑
i≥1

λi = KT,

where K is the number of states. Thus, excluding the trivial eigenvalue λmax = T , the
contribution of the i-th principal component zi to (4) is

Ctr(zi) = λi

(K − 1)T .

2.2. Optimal Encoding Functions

In order to solve (5), let denote by

ξt = 1
λ

Et(z), ∀t ∈ [0, T]. (6)

Under the hypotheses H1 and H2, for each t ∈ [0, T] ξt is Xt-measurable i.e. Etξt = ξt and
{ξt}t∈[0,T] is a L2-continuous stochastic process.
From (5) it follows that

z =
∫ T

0
ξtdt. (7)

Taking the conditional expectation with respect to Xt in (5), one obtains that the stochastic
process {ξt}t∈[0,T] is eigenvector of the following (stochastic) eigenvalue problem posed in the
space of L2-continuous stochastic processes:∫ T

0
K(t, s)ξsds = λξt, ∀t ∈ [0, T], (8)

with K(t, s) = EtEs, for all t, s ∈ [0, T]. Recall that the spectral analysis of the kernel K(t, s)
yields to the canonical analysis of Xt and Xs (Hotelling 1936).

It can be shown (Saporta (1981)) that the eigenvalue problems (5) and (8) are equivalent
in that sense that they have the same set of eigenvalues {λi}i≥1 and there is an one-to-one
correspondence between the principal components zi and the process ξi = {ξi,t, t ∈ [0, T]},
∀i ≥ 1. This correspondence is given by (6).
As in (5), the solution of (8) is unique up to a constant. To have unique eigenvectors, the
usual constraint on {ξt}t∈[0,T] is that of total variance equals to one,∫ T

0
VAR(ξt)dt =

∫ T

0
E(ξ2

t)dt = 1. (9)

The relation (9) implies
VAR(z) = E(z2) = λ. (10)

It follows from (6) that ξt is Xt-measurable for all t ∈ [0, T] and one can write

ξt =
∑
x∈S

ax(t)1x
t , (11)

6 cfda: Categorical Functional Data Analysis

where {ax}x∈S are deterministic functions on [0, T] that we call optimal encoding functions.
Introducing (11) in (8) one obtains the following eigenvalue equation,

∫ T

0

∑
y∈S

px,y(t, s)ay(s)ds = λax(t)px(t), ∀t ∈ [0, T],∀x ∈ S, (12)

where, px(t) = P(Xt = x) and px,y(t, s) = P(Xt = x,Xs = y).
The integral system (12) is a more "classic" one than (5) and (8). Under the hypothesis
H1 and H2 it admits the sequence of eigenvalues {λi}i≥1 associated to the optimal encoding
eigen-functions {ax

i , x ∈ S}i≥1.
Notice that the constraint conditions in (9) are expressed now in terms of optimal encoding
functions, ∫ T

0

∑
x∈S

[ax(t)]2 px(t)dt = 1. (13)

According to (7), for i ≥ 1, the i-th principal component zi is derived from the i-th optimal
encoding functions {ax

i } as

zi =
∫ T

0

∑
x∈S

ax
i (t)1x

t dt, ∀i ≥ 1. (14)

2.3. Expansion Formulas and Dimension Reduction

As a summary of the previous section, the three equivalent eigen-problems stated in (5), (8)
and (12) yield to the following elements of the analysis of X:

• the set of principal components {zi}i≥1 are zero-mean and uncorrelated:

– E(zi) = 0, ∀i ≥ 1.

– COV(zi, zj) =
{
λi if i = j,
0 otherwise.

• the set of eigen-processes {ξi = {ξi,t, t ∈ [0, T]}}i≥1 which generates the principal com-
ponents by (7),

zi =
∫ T

0
ξi,tdt, i ≥ 1,

are zero-mean and of unit total variance.

• the optimal encoding functions, {ax
i = {ax

i (t), t ∈ [0, T]}}x∈S,i≥1. They generate the
eigen-processes ξi by (11),

ξi,t =
∑
x∈S

ax
i (t)1x

t , ∀t ∈ [0, T].

They satisfy the normalization condition (13).

Journal of Statistical Software 7

Expansion Formulas. As an analogy to the Karhunen-Loève expansion for the scalar
processes (Deville 1974), the following expansion formulas hold (Saporta 1981):

• for the process X = {Xt, t ∈ [0, T]} throughout the indicators 1x = {1x
t , t ∈ [0, T]}:

1x
t =

∑
i≥1

zia
x
i (t) 1

px(t) , ∀x ∈ S. (15)

• for the bivariate joint probability function, px,y = {px,y(t, s), t, s ∈ [0, T]}: applying
the Mercer theorem (Mercer 1909) to the integral equation (12), one has the following
expansion formula:

px,y(t, s) = px(t)py(s)
∑
i≥1

λia
x
i (t)ay

i (s), ∀t, s ∈ [0, T], ∀x, y ∈ S. (16)

In particular, for x = y and s = t we obtain

px(t) =

∑
i≥1

λi [ax
i (t)]2

−1

, ∀t ∈ [0, T], ∀x ∈ S. (17)

Dimension Reduction. Using only the q first terms in the right-side part of (15) , q ≥ 1,
one obtains the best approximation of order q of X (viewed as a vector process X = {1x, x ∈
S}) under the L2 norm, among all the linear expansions of type

1x
t ≈

q∑
i=1

zia
x
i (t) 1

px(t) , ∀x ∈ S.

Thus, the q first principal components,

{z1, . . . , zq}, q ≥ 1,

allow for

– graphical representation of sample paths of X in Rq (especially for q = 2, one obtains
a 2-D representation of categorical functional data),

– fit of clustering and regression models with X as explanatory variables.

2.4. Approximation of Optimal Encoding Functions: a Basis Expansion
Approach

The eigenvalue equation in (12) provides the optimal encoding functions. For a two-state
process, Saporta (1981) considers the birth-and-death process on [0, 1],

Xt =
{

0, if t < θ,
1, if t ≥ θ, (18)

where θ is a random variable uniformly distributed on [0, 1]. The authors provide in this case
explicit formulas for the eigenvalues {λi}i≥1, the optimal encoding functions {ax

i }i≥1, x ∈ S,

8 cfda: Categorical Functional Data Analysis

and the principal components {zi}i≥1. In Preda (1998), the author considers the case of
stationary Markovian continuous time processes with reversible distribution. In this case, the
system in (12) reduces to a system of linear second-order differential equations with constant
coefficients.
In general, the solution of (12) is obtained by approximation. In his seminal work, Deville
(1982) proposes to approximate the encoding functions {ax

i }i≥1, x ∈ S, into a basis of func-
tions of dimension m, m ≥ 1. As in the classical framework of functional data (Ramsay
and Silverman (2005)), the choice of m is a trade-off between complexity computation and
precision of the approximation. In our simulation study (section 4) we show the influence of
the choice of m on the approximation of optimal encodings.
Let {φ1, . . . , φm}, φi : [0, T] → R, i = 1, . . . ,m, be a basis of functions (Fourier, B-splines,
monomial, etc.) and for each x ∈ S consider the approximation:

ax(t) ≈ α(x,1)φ1(t) + α(x,2)φ2(t) + . . .+ α(x,m)φm(t), ∀t ∈ [0, T], (19)

where αx =
(
α(x,1), α(x,2), . . . , α(x,m)

)′

∈ Rm is the column vector of the expansion coefficients
of ax into the basis {φ1, . . . , φm}.
Plugging (19) in (12) and (13) one obtains the following classical eigen-problem:

Gα = λFα, (20)

under the constraint
α′Fα = 1, (21)

where α ∈ Rm×K is the column vector obtained by the concatenation of the vectors {αx}x∈S
and G and F are square matrices of size mK ×mK defined as follows:

• The matrix G is the covariance matrix of the random variables {V(x,i), x ∈ S, i ∈
1, . . .m}, defined as

V(x,i) =
∫ T

0
φi(t)1x

t dt, ∀x ∈ S, (22)

G =
{
G(x,i),(y,j) = COV

(
V(x,i), V(y,j)

)
, x, y ∈ S, i, j = 1, . . . ,m

}
, (23)

G =

. . . (y, 1) . . . (y, j) . . . (y,m) . . .

· · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
(x, 1) · · · · · · · · · · · · · · ·

...
...

...
...

...
...

...
...

(x, i) · · · · · · · COV
(
V(x,i), V(y,j)

)
· · · · · · ·

...
...

...
...

...
...

...
...

(x,m) · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...

.

Journal of Statistical Software 9

• The matrix F is defined by

F =
{
F(x,i),(y,j) = E

(
U(x,i),(y,j)

)
, x, y ∈ S, i, j = 1, . . . ,m

}
, (24)

where U(x,i),(y,j) is the random variable

U(x,i),(y,j) =
∫ T

0
φi(t)φj(t)1x

t 1y
t dt =

∫ T

0
φi(t)φj(t)1x

t dt if x = y,

0 otherwise.
(25)

Thus, F is a block diagonal matrix, each block being a square matrix of size m × m
corresponding to each x in S, {U(x,i),(x,j), i, j = 1, . . . ,m}.

Example. Let observe that if 0 = t0 < t1 < . . . < tm = T is a sequence of time points in
[0, T] and for i = 1, . . . ,m, one defines the basis (B-splines of order 1),

φi(t) =

1 if t ∈ [ti−1, ti[,

0 otherwise

then the random variable V(x,i) represents the time spent in the state x in the interval [ti−1, ti[.
Since V(x,i) = U(x,i),(x,i), then F is a diagonal matrix with elements E(V(x,i)), x ∈ S, i =
1, . . . ,m.

2.5. Estimation

Notice that the random variables V(x,i) and U(x,i),(y,j), x, y ∈ S, i, j = 1, . . . ,m, are computed
from X = {Xt, t ∈ [0, T]} throughout the basis of functions {φ1, . . . , φm}.
Thus, if {X1, . . . , Xn} is a sample of n paths of X corresponding to a random sample
(ω1, . . . , ωn) ∈ Ωn, then the corresponding samples V(x,i)(ω) and U(x,i),(x,j)(ω), ω ∈ {ω1, . . . , ωn},
provide two classical data sets, V and U, as:

• the V data set with n rows and Km columns for the V ’s random variables,

V =

ω V(s1,1) · · · V(s1,m) · · · V(x,i) · · · V(sK ,m)

ω1 V(s1,1)(ω1) · · · V(s1,m)(ω1) · · · V(x,i)(ω1) · · · V(sK ,m)(ω1)
...

...
...

...
...

...
...

...
ωn V(s1,1)(ωn) · · · V(s1,m)(ωn) · · · V(x,i)(ωn) · · · V(sK ,m)(ωn)

• and the U dataset with n rows and Km2 columns for the U ’s random variables, respec-
tively:

U =

ω · · · U(x,i),(x,1) · · · U(x,i),(x,m) · · · U(sK ,m),(sK ,m)

ω1 · · · U(x,i),(x,1)(ω1) · · · U(x,i),(x,m)(ω1) · · · U(sK ,m),(sK ,m)(ω1)
...

...
...

...
...

...
...

ωn · · · U(x,i),(x,1)(ωn) · · · U(x,i),(x,m)(ωn) · · · U(sK ,m),(sK ,m)(ωn)

10 cfda: Categorical Functional Data Analysis

Therefore, the matrices G and F are estimated from the sample {X1, . . . , Xn} by the matrices
Ĝ and F̂ , the covariance matrix estimator of the random variables V ’s and the mean estimator
of the random variables U ’s. For each i and j in {1, . . . ,m} and x and y in S one has:

Ĝ(x,i),(y,j) = ĈOV
(
V(x,i), V(y,j)

)
= 1
n− 1

(
n∑

h=1
V(x,i)(ωh)V(y,j)(ωh)− nV̄(x,i)V̄(y,j)

)

and

F̂(x,i),(y,j) =

 Ū(x,i),(y,j) = 1
n

n∑
h=1

U(x,i),(y,j)(ωh) if x = y,

0 otherwise.

An estimate of i-th eigen vector of (20), α(i), i ≥ 1, is the i-th eigenvector α̂i of the eigen-
equation (26),

Ĝα̂ = λ̂F̂ α̂, (26)

under the constraint
α̂′F̂ α̂ = 1. (27)

Then, for each x ∈ S, the i-th encoding eigen-function ax
i is estimated by

âx
i =

m∑
j=1

α̂i,(x,j)φj , i ≥ 1. (28)

The estimates for the encoding functions allow to compute the principal components zi for
each unit ω in the sample (ω1, . . . , ωn), as

ẑi(ω) =
∫ T

0

∑
x∈S

âx
i (t)1x

t (ω)dt =
∑
x∈S

m∑
j=1

α̂i,(x,j)V(x,j)(ω), i ≥ 1. (29)

Notice that the variance of ẑi equals the i-th eigenvalue λ̂i of (26),

V̂AR(ẑi) = λ̂i, i ≥ 1. (30)

Confidence bounds. Bootstrapping from the V and U datasets, throughout (26) one ob-
tains an estimate of the covariance matrix of α̂i denoted with Σ̂i. Therefore, for each t ∈ [0, T],
we have

̂VAR(ax
i (t)) = φ(t)′Σ̂(i,x)φ(t),

where φ(t) is the column vector φ(t) = (φ1(t), . . . , φm(t))′ and Σ̂(i,x) is the covariance matrix
of α̂i,x =

(
α̂i,(x,1), . . . , α̂i,(x,m)

)
. Notice that Σ̂(i,x) is a submatrix of Σ̂i.

Then, for a confidence level 1− u, u ∈ [0, 1], a confidence interval for ax
i (t) is obtained as

CI1−u(ax
i (t)) = âx

i (t)± ζ1−u
2

√
̂VAR(ax

i (t)),

where ζ1−u
2
is the quantile of order 1− u

2 of the standard normal distribution.

Journal of Statistical Software 11

3. The cfda Package through Examples
The cfda R package provides functions to analyze categorical functional data allowing to
compute basic statistics such as transition tables or visualisation, and compute the optimal
encodings. It uses ggplot2 (Wickham 2016) package to display graphics and the snow (Tierney,
Rossini, Li, and Sevcikova 2018) and foreach (Microsoft and Weston 2019) packages for code
parallelization.
Other packages for analyzing sequences of categorical data exist, but not in a functional
way. The TraMineR (Gabadinho, Studer, Müller, Bürgin, Fonta, and Ritschard 2019) R
package provides functions to perform descriptive analysis, and distance functions between
sequences to perform clustering analysis. The WeightedCluster (Studer 2013) package re-
lies on TraMineR and implements a clustering method and some cluster quality statistics.
The msm (Jackson 2011) package estimates a continuous-time (hidden) Markov multi-state
model. The R packages ClickClust (Melnykov 2016) and clickstream (Scholz 2016) model
these sequences as discrete Markov chains to cluster them with mixture models or k-means.

3.1. Data

Real Dataset

The cfda package is illustrated with the care dataset. It contains 2929 care trajectories for
patients diagnosed with a severe infection. Each month from the diagnosis of the infection,
the follow-up of each patient is filled in using one of the following 4 states: "D", the patient
has not a medical follow-up, "C", the patient has a medical follow-up but no treatment, "T",
the patient has a medical follow-up with a treatment but the infection is not suppressed and
"S", the patient has a medical follow-up with a treatment and the infection is suppressed.
The dataset can be loaded running:

R> data(care)
R> head(care, 10)

id time state
3 0 D
3 5 D
9 0 D
9 1 D

13 0 D
13 7 D
15 0 D
15 4 T
15 7 C
15 8 D

The dataset is in a specific format required by every function in this package. Data must be
provided as a data.frame with 3 columns named id, time and state. the id column contains
the identifiers of the different individuals, the time column the different time of records of
state changes and the state column containing the state that occurs at the corresponding

12 cfda: Categorical Functional Data Analysis

time. For example, in the dataset above, four individuals (3, 9, 13 and 15) are visible. The
individual 15 has an initial state (D) at time t = 0, it stays in this state until t = 4 months,
at which he moves to a new state (T), and so on.
Note that within each individual, the time values must be ordered. Concerning id and state,
the used format is quite versatile: character, factor or integer can be used.

Generate a Dataset
There are two functions for generating datasets: generate_Markov and generate_2State.
The generate_Markov function generates individuals following a Markov process where dif-
ferent time values are defined by an exponential law. The function is defined as below:

generate_Markov(n, K, P, lambda, pi0, Tmax, labels)

with n the number of individuals, K the number of state, P the transition matrix of size K*K
between states containing the probabilities of changing from one state to another, lambda
a vector of length K containing the parameters of the exponential law associated with each
state, pi0 a vector of length K containing the probabilities of being in the different states at
time t = 0, Tmax the maximal time of each individual, labels a vector containing the state
names.
The generate_2State function generates individuals starting at time t = 0 with state 0 and
with with a unique change into the state 1 at a time t ∼ U(0, 1). The only argument of
generate_2State is n the number of individuals.

Visualize a Dataset
The summary_cfd function gives an overview of the dataset by printing information such
as the number of individuals, the time range or the number of states, etc. All the printed
information are returned in a list.

R> summary_cfd(care)

Number of rows: 10017
Number of individuals: 2929
Time Range: 0 - 50
Same time start value for all ids: TRUE
Same time end value for all ids: FALSE
Number of states: 4
States:

D, T, C, S
Number of individuals visiting each state:

D C T S
2905 1154 1014 1063

One can note that all individuals have the same start time value but not the same end time
value. This does not meet the constraints for performing a functional data analysis. A
subsample of the dataset must be extracted before performing the encoding computation.
A sample of the individuals from the care dataset is plotted using the plotData function
(see Figure 2). Each line corresponds to an individual of the dataset, the successive changes
of states are represented by different colors.

Journal of Statistical Software 13

3

9

13

15

18

21

37

43

44

46

47

48

53

57

63

65

68

71

77

80

84

87

89

93

96

97

0 10 20 30
Time

id

State

D

C

T

S

0 10 20 30 40 50
Time

State

D

C

T

S

Figure 2: A sample (left) and all individuals (right) from the care dataset plotted using the
plotData function.

plotData(data, col, addId, addBorder, sort)

The plotData function takes in argument a formatted data.frame (data) and additional
aesthetic parameters:

group a vector of length the number of individuals of data containing a variable describing
the group of each individual. Individuals from different groups are displayed on different
subplots. Individuals whose group is NA are ignored.

addId a boolean to add the individuals id on the y-axis.

addBorder a boolean to add the black border around each individual.

sort a boolean to sort individuals according to the duration in their first state.

col allows users to customize state colors by providing a vector of the same length as the
number of state. col is a character (named) vector containing defined color names
from R (e.g. c("red", "blue", "darkgreen")) or RGB colors (e.g. c("#E41A1C",
"#377EB8", "#4DAF4A")).

nCol only when group is used, the number of columns used to display the different groups.

R> plotData(care[care$id <= 100,])
R> plotData(care, addBorder = FALSE, addId = FALSE, sort = TRUE)

14 cfda: Categorical Functional Data Analysis

0

200

400

600

800

0 20 40
Duration

F
re

qu
en

cy

Figure 3: Distribution of the duration of trajectories.

Extract a Dataset Meeting the Constraints

To compute the encodings, each individual must have the same start and end time. This is
not the case in the care dataset. So, we select patients with a follow-up of at least 18 months
and works from t = 0 to t = 18 months.
First, we compute the duration of each individual using the compute_duration function.
It computes the last time value minus the first time value for every individual. It returns a
named vector, with the id as names, containing the duration. The results can be plotted using
the hist function with the output of compute_duration as argument; it returns a ggplot
object that can be modified.

R> duration <- compute_duration(care)
R> head(duration)

3 9 13 15 18 21
5 1 7 32 18 5

R> hist(duration)

The resulting plot is displayed in Figure 3. Most trajectories last less than 40 months. To
restrict individuals to a maximal time value of 18 months, we use the cut_data function that
has two parameters: data and Tmax, the maximal time value. After applying this function,
all individuals have Tmax as ending time.

R> idToKeep <- names(duration[duration >= 18])
R> care2 <- cut_data(care[care$id %in% idToKeep,], 18)
R> head(care2)

id time state
1 15 0 D

Journal of Statistical Software 15

2 15 4 T
3 15 7 C
4 15 8 D
5 15 15 C
6 15 18 C
7 18 0 D
8 18 2 S
9 18 18 S
10 43 0 D

3.2. Basic Statistics for Categorical Functional Data

Time Spent in each State
An interesting statistic is the time spent in each state per individual that can be computed
with compute_time_spent function. It returns a matrix with n rows (number of individuals)
and K columns (number of states) with the computed time. A plot function is provided to
plot the distribution of each state. Figure 4 displays the graphic for the care dataset. We
note that people tends to stay longer without medical follow-up (D) than in the other states.

R> timeSpent <- compute_time_spent(care2)
R> head(timeSpent)

D C T S
15 11 4 3 0
18 2 0 0 16
43 4 1 2 11
48 0 7 11 0
53 7 0 0 11
65 18 0 0 0

R> plot(timeSpent)

Number of Jumps
The compute_number_jumps function counts the number of changes in each individual’s state.
It has two arguments: data, the dataset in the right format and countDuplicated, a binary
value indicating if jumps in the same state must be ignored (FALSE) or not, the default is
FALSE. An hist function is provided to plot the distribution of the number of jumps. For the
care dataset, the number of jumps varies between 0 and 8 (cf. Figure 5), with most patients
with less than 6 jumps.

R> nJump <- compute_number_jumps(care2, countDuplicated = FALSE)
R> head(nJump)

15 18 43 48 53 65
4 1 3 6 1 0

16 cfda: Categorical Functional Data Analysis

0

5

10

15

D C T S
State

T
im

e
S

pe
nt

State

D

C

T

S

Figure 4: Distribution of time spent per state.

R> hist(nJump)

The states between which these jumps occur are visible using the statetable function that
counts the number of transitions between each pair of states. Transitions between identical
states can be removed from the output table using removeDiagonal = TRUE.

R> statetable(care2, removeDiagonal = TRUE)

to
from D C T S

D 0 697 253 146
C 271 0 346 97
T 16 74 0 461
S 16 91 31 0

We note that the state S (infection suppressed) is not an absorbing state indicating some
patients have relapsed.

Probability to be in a State

The last interesting statistic is the probability to be in a state at a given time which is
computed using the estimate_pt function. It has two arguments: data, the dataset in the
right format and NAafterTmax. If NAafterTmax = FALSE, it considers that the last entry
of an individual corresponds to its last change of state, i.e. the individual stays in the last

Journal of Statistical Software 17

0

100

200

300

0 2 4 6 8
Number of jumps

F
re

qu
en

cy

Figure 5: Distribution of number of jumps per individual.

recorded state for any time greater than the last time entry; if TRUE, it considers that for any
time greater than the last time entry, the records are missing; the default is FALSE. This is
an important parameter when individuals have different ending time. This function returns
a list of two elements: t, a vector containing the time values, pt, a matrix (with the states in
rows and the time values in columns) containing the computed probabilities. A plot function
is provided to display the results, the first parameter is the output of estimate_pt function,
the second is ribbon. If ribbon = FALSE, the probability for a state is displayed with a line,
if TRUE, with a ribbon (cf. Figure 6). In this figure, we note that the probability of not having
a follow-up (D) decreases with the time. The probability to be cured (S) has an opposite
trend.

R> proba <- estimate_pt(care2)
R> proba

$pt
0 1 2 3 4 5 ...

D 0.991 0.653 0.596 0.566 0.555 0.552 ...
C 0.008 0.202 0.180 0.166 0.156 0.134 ...
T 0.000 0.099 0.171 0.203 0.159 0.128 ...
S 0.001 0.046 0.053 0.065 0.131 0.185 ...
$t
[1] 0 1 2 3 4 5 6 ...

R> plot(proba, ribbon = TRUE)

Continuous-time Markov Chain
Assume the data come from a continuous-time Markov chain. Note S the set of states and

18 cfda: Categorical Functional Data Analysis

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Time

p(
t)

State

D

C

T

S

P(X(t) = x)

(a) ribbon = TRUE

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Time

p(
t)

State

D

C

T

S

P(X(t) = x)

(b) ribbon = FALSE

Figure 6: Probabilities to be in each state with regards to the time.

Xt ∈ S, the state at time t then for i, j ∈ S and t, s ≥ 0, then:

P (Xs+t = j|Xs = i, {Xu = xu : 0 ≤ u < s}) = P (Xs+t = j|Xs = i) = Pij(t).

Pij(t) is the probability that the chain will be in state j in t time units, given it is in state i.
A continuous-time Markov chain is completely described by its transition matrix P = (Pij)
and λi, i ∈ S the parameters of the exponentially distributed sojourn time in state i.
The estimate_Markov function estimates the transition matrix (P) and the λ parameter
(lambda) associated with the mean sojourn time spent in each state through 1/lambda.

R> mark <- estimate_Markov(care2)
R> mark

$P
to

from D C T S
D 0.00000000 0.63594891 0.23083942 0.13321168
C 0.37955182 0.00000000 0.48459384 0.13585434
T 0.02903811 0.13430127 0.00000000 0.83666062
S 0.11594203 0.65942029 0.22463768 0.00000000

$lambda
D C T S

0.1328033 0.2538578 0.2438443 0.1149503
attr(,"class")
[1] "Markov"

The estimated process can be plotted as a diagram with the plot function displayed in
Figure 7. Each node represents a state with its mean sojourn time. An arrow between two
nodes defined a possible transition with its probability.

Journal of Statistical Software 19

care: transition graph

0.64

0.23

0.13

0.38

0.48

0.14

0.03

0.13

0.84
0.12

0.66

0.22

D (7.53)

C (3.94)

T (4.1)

S (8.7)

Figure 7: Transition graph displayed using plot.Markov.

R> plot(mark, main = "care: transition graph")

3.3. Optimal Encoding
The main contribution of cfda is the computation of an optimal encoding for categorical
functional data performed by the compute_optimal_encoding function. The two main pa-
rameters are data, the dataset in the cfda format, and basisobj, a basisfd object created
using the different create.*.basis functions from the fda package. It also performs boot-
strap for computing a confidence interval on the computed encoding; associated parameters
are computeCI, a logical indicating if bootstrap must be performed, nBootstrap, the number
of bootstrap samples, and propBootstrap, the proportion of individuals used for each boot-
strap sample. Other parameters are nCores the number of cores to use, verbose, if TRUE,
some information are printed during the process. The compute_optimal_encoding function
uses integrate (R Core Team 2020) to compute integrals, parameters for this function can
be passed through ... in particular subdivisions, the number of subdivisions to estimate
the integral.

R> set.seed(42)

20 cfda: Categorical Functional Data Analysis

R> basis <- create.bspline.basis(c(0, 18), nbasis = 10, norder = 4)
R> fmca <- compute_optimal_encoding(care2, basis, nCores = 7)

######### Compute encoding #########
Number of individuals: 1317
Number of states: 4
Basis type: bspline
Number of basis functions: 10
Number of cores: 7
---- Compute V matrix:

|===| 100%

DONE in 21.78s
---- Compute U matrix:

|===| 100%

DONE in 122.42s
---- Compute encoding:
DONE in 0.13s
---- Compute Bootstrap Encoding:
**
DONE in 1.3s
Run Time: 149.84s

The main part of the computation time comes from the computation of V and U, these two
steps are performed with parallel computation. Once these matrices computed, bootstrap is
performed at a low computational cost. The output object of compute_optimal_encoding is
a list containing:

eigenvalues eigenvalues of the problem (26)

alpha coefficients of the different encoding for each eigenvector (a list of matrices) (26)

pc principal components for each eigenvector

F F matrix (see equation (24))

V V matrix (see equation (22))

G covariance matrix of V (see equation (23))

basisobj basisobj parameter

bootstrap encoding for each bootstrap sample

varAlpha a list containing Σ̂(i,x) ∀i,∀x ∈ S, covariance matrix of α̂i,x =
(
α̂i,(x,1), . . . , α̂i,(x,m)

)
Plot Functions
Three plot functions are associated with the compute_optimal_encoding function, the first
argument of these functions is the output of compute_optimal_encoding.

Journal of Statistical Software 21

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
Number of components

C
um

ul
at

iv
e

ei
ge

nv
al

ue
s

Cumulative eigenvalues

(a) plotEigenvalues

−7.5

−5.0

−2.5

0.0

2.5

−4 −2 0 2 4 6
Comp 1

C
om

p
2

(b) plotComponent

Figure 8: Plots generated by different graphical functions on the output of the
compute_optimal_encoding function.

The first one, the plot function plots the encodings associated with a given eigenvector (harm
parameter, by default, the encodings associated with the first eigenvector are plotted). If
compute_optimal_encoding was run with parameter computeCI = TRUE, then the confidence
interval can be added on the plot using the parameter addCI = TRUE. A subset of the states
can be plotted by providing a vector with the state names to the states parameter.
The plotEigenvalues function plots the computed eigenvalues. It has two extra boolean
parameters: cumulative, if TRUE, the cumulative sum of the eigenvalues is plotted and
normalize, if TRUE, eigenvalues are normalized such that their sum is equal to 1.
The last one is the plotComponent function that plots the individuals using the given compo-
nents (comp parameter, a vector of length 2 containing the components’ number). The other
arguments are addNames that adds the individual’s names on the plot and some parameters
to adjust the position and size of these names (nudge_x, nudge_y and size).
The plots for the care dataset are shown in Figure 8 and 9 and are produced by the following
code:

R> plotEigenvalues(fmca, cumulative = TRUE, normalize = TRUE)
R> plotComponent(fmca, comp = c(1, 2), addNames = FALSE)
R> plot(fmca)
R> plot(fmca, addCI = TRUE)

Extract the Encoding Functions

The computed encoding functions can be extracted using the get_encoding function as an
object of class fd (functional object from fda) using fdObject = TRUE or as a matrix using

22 cfda: Categorical Functional Data Analysis

−0.25

0.00

0.25

0 5 10 15
Time

a x
(t

)

State

D

C

T

S

Encoding function for harmonic number 1

(a) plot(fmca)

−0.2

0.0

0.2

0.4

0.6

0 5 10 15
Time

a x
(t

)

State

D

C

T

S

Encoding function for harmonic number 1

(b) plot(fmca, addCI = TRUE)

Figure 9: Plots generated by the plot function on the output of the
compute_optimal_encoding function.

Journal of Statistical Software 23

fdObject = FALSE. In the latter case, an extra parameter nx specifies the number of time
points to extract.

R> encodingFd <- get_encoding(fmca, fdObject = TRUE)
R> str(encodingFd)

List of 3
$ coefs : num [1:10, 1:4] 0.0299 -0.0543 -0.1965 -0.1645 -0.2371 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:4] "D" "C" "T" "S"

$ basis :List of 10
..$ call : language basisfd(type = type, | __truncated__
..$ type : chr "bspline"
..$ rangeval : num [1:2] 0 18
..$ nbasis : num 10
..$ params : num [1:6] 2.57 5.14 7.71 10.29 12.86 ...
..$ dropind : NULL
..$ quadvals : NULL
..$ values : list()
..$ basisvalues: list()
..$ names : chr [1:10] "bspl4.1" "bspl4.2" "bspl4.3" "bspl4.4" ...
..- attr(*, "class")= chr "basisfd"

$ fdnames:List of 3
..$ args: chr "time"
..$ reps: chr [1:4] "reps 1" "reps 2" "reps 3" "reps 4"
..$ funs: chr "values"

- attr(*, "class")= chr "fd"

R> encodingMat <- get_encoding(fmca, fdObject = FALSE, nx = 19)
R> encodingMat

$x
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

$y
D C T S

[1,] 0.02986969 0.169492601 0.50380590 0.4559043
[2,] -0.06073672 0.163315622 0.35643506 0.4180230
[3,] -0.12970105 0.088328506 0.34225746 0.4126089
[4,] -0.16758420 0.020411074 0.34651825 0.4159033
[5,] -0.17812958 -0.007566828 0.31652186 0.4149973
[6,] -0.18096760 -0.014569119 0.27436391 0.4100582
[7,] -0.19348217 -0.020533054 0.24249695 0.4020949
[8,] -0.21335627 -0.032358522 0.21809774 0.3925044
[9,] -0.23081796 -0.051930578 0.18880144 0.3828197

[10,] -0.24069960 -0.077085840 0.15014660 0.3734934

24 cfda: Categorical Functional Data Analysis

[11,] -0.24597159 -0.098545473 0.11162958 0.3630747
[12,] -0.25009513 -0.107580629 0.08297660 0.3500902
[13,] -0.25321503 -0.107980977 0.06221397 0.3347482
[14,] -0.25359641 -0.110631333 0.04073503 0.3182122
[15,] -0.25084388 -0.121299335 0.01379572 0.3018281
[16,] -0.24813344 -0.132111070 -0.01301242 0.2873926
[17,] -0.24881502 -0.133707940 -0.03278505 0.2766485
[18,] -0.24943891 -0.128922501 -0.04469775 0.2692082
[19,] -0.24091335 -0.130703127 -0.05297104 0.2629170

Interpreting the Encoding Functions
First have a look at the plot of the encoding functions associated with the harmonic number
1 (cf. Figure 9a).

R> plot(fmca, harm = 1)

The lowest curve is for state "D", this indicates that individuals with a large negative value for
component number 1 tend to spend more time in this state. Similarly, individuals with a large
positive value tend to spend more time in the state "S". To check these statements, individuals
with extreme values on the first component are plotted using the plotData function with
the group parameter. A group variable is created with two different values: "min" for the
individuals with the 5% lowest value, and "max" for the individuals with 5% highest value.

R> minpc1 <- names(which(fmca$pc[,1] <= quantile(fmca$pc[,1], 0.05)))
R> maxpc1 <- names(which(fmca$pc[,1] >= quantile(fmca$pc[,1], 0.95)))
R> ids <- unique(care2$id)
R> group <- factor(rep(NA, length(ids)), levels = c("min", "max"))
R> group[ids %in% minpc1] = "min"
R> group[ids %in% maxpc1] = "max"
R> plotData(care2, group = group, addId = FALSE, addBorder = FALSE,
+ sort = TRUE) +
+ ggplot2::labs(title = "Extreme individuals on component 1")

The result is visible in Figure 10 and confirms our suppositions. Clearly, individuals in the
"min" group spend 18 months in the "D" state (without medical follow-up) whereas individuals
in the "max" group spend most of their time in the state "S" (infection suppressed).

Application to Clustering
The proposed method produces numerical encoding for categorical functional data. These
encoding can be used for classical statistical methods such that regression or clustering. In
the following, we perform a hierarchical clustering to find a structure in the care dataset.
The clustering is performed with the first principal components explaining at least 90% of
the variance. The associated tree is displayed in Figure 11.

R> nPc90 <- which(cumsum(prop.table(fmca$eigenvalues)) > 0.9)[1]
R> hc <- hclust(dist(fmca$pc[, 1:nPc90]), method = "ward.D2")
R> plot(hc, labels = FALSE)

Journal of Statistical Software 25

min: n=372 max: n=91

0 5 10 15 0 5 10 15
Time

State

D

C

T

S

Extreme individuals on component 2

Figure 10: Individuals with extreme negative value (min) and extreme positive value (max)
on the component 1.

26 cfda: Categorical Functional Data Analysis

0
50

10
0

15
0

Cluster Dendrogram

hclust (*, "ward.D2")
dist(fmca$pc[, 1:nPc90])

H
ei

gh
t

Figure 11: Hierarchical tree obtained using the principal components.

We decide to keep 4 clusters regarding the heights of the tree. The resulting clusters can be
displayed using the plotData function with the group argument.

R> class <- cutree(hc, k = 4)
R> plotData(care2, group = class, addId = FALSE, addBorder = FALSE, +
+ sort = TRUE)

The different clusters are associated with the time spent in the different states after leaving
the state "D" (cf. Figure 12). For example, the cluster number 1 corresponds to individuals
that have spent most of their time (after "D") in the "C" state.

4. Simulation Study

4.1. Birth-and-death Process

Data are simulated under the simple model of birth-and-death process presented in Saporta
(1981). The process is defined on the interval time [0, 1] by

Xt =
{

0, if t < θ,
1, if t ≥ θ, (31)

where θ is a random variable uniformly distributed on [0, 1].

Journal of Statistical Software 27

3: n=323 4: n=428

1: n=219 2: n=347

0 5 10 15 0 5 10 15
Time

State

D

C

T

S

Figure 12: Content of the different clusters.

28 cfda: Categorical Functional Data Analysis

In this case, K = 2, S = {s1 = 0, s2 = 1} and

px(t) = P(Xt = x) =
{
t, if x = 1
1− t, if x = 0.

For t < s we have

px,y(t, s) = P(Xt = x,Xs = y) =

1− s, if x = 0, y = 0,
s− t, if x = 0, y = 1,
0 if x = 1, y = 0,
t if x = 1, y = 1,

and for t > s,

px,y(t, s) = P(Xt = x,Xs = y) =

1− t, if x = 0, y = 0,
0 if x = 0, y = 1,
t− s if x = 1, y = 0,
s if x = 1, y = 1.

From (12) and (14), the authors provide explicit formulas for the eigenvalues {λi}i≥1, the
optimal encoding functions {ax

i }i≥1, x ∈ S, and the principal components {zi}i≥1 as follows:

• the eigenvalues are given by:

λi = 1
i(i+ 1) , i ≥ 1. (32)

• if Pn(u) = 1
2nn!

dn

dun
(u2− 1)n is the Legendre polynomials of order n, then the principal

components zi corresponding to λi, are given, up to a constant, by:

zi = Pi(2θ − 1), i ≥ 1.

In particular, for i = 1, 2,
z1 =

√
6
(
θ − 1

2

)
is uniformly distributed on

[
−
√

3
2 ;
√

3
2

]
and

z2 =
√

30
(
θ2 − θ + 1

6

)
.

Let observe that z1 and z2 are linearly uncorrelated but related by

z2 =
√

5
6

(
z2

1 −
1
2

)
, (33)

showing some regularity of the 2-D representation of data throughout the plot {(z1(ω), z2(ω), ω ∈
Ω}.

Journal of Statistical Software 29

• for i = 1, 2, the optimal encoding functions are given by:

ax
1(t) =

√

6t, if x = 0,
√

6(t− 1), if x = 1,
(34)

and

ax
2(t) =

√

120
(
t2 − t

2

)
, if x = 0,

√
120

(
t2 − 3

2 t+ 1
2

)
, if x = 1.

(35)

4.2. Results

We simulate data from the above process with different number of trajectories (individuals),
n = 50, 100, 200, 500 and a B-spline basis functions of order 4 with different number of basis
functionsm = 5, 10, 20 (equidistant knots). Simulation results are compared to the theoretical
results presented in Section 4.1 to ensure the well-behaviour of the implemented method.

Eigenvalues

The first five eigenvalues for the different settings are compared to the eigenvalues from (32)
in the table 1. The estimations are presented together with the associated standard errors in
order to measure the impact of the choice of the sample size (n) and the dimension of the
basis (m).

Encoding Functions

Figure 13 shows the mean over 100 samples of the first and second encoding functions for the
state 0 for m = 5. The true encoding functions (34) and (35) are displayed in solid black line.
As for the eigenvalues, the best estimates are achieved with n = 200 and n = 500. The same
conclusion holds for m = 10 and m = 20 but the number of basis does not seem to influence
the accuracy.

Principal Components

In Figure 14, we check the relation between the first and second principal component (33).
The theoretical equation is displayed in black whereas the computed principal components
for a sample with n = 500 and m = 20 are in red. We note the closeness of the computed
components with the theoretical equation.
In Figure 15, the cumulative distribution functions (cdf) for the two first principal components
are displayed as well as their empiric equivalent for n = 500 and m = 20. As described above,
z1 follow an uniform distribution between −

√
3
2 and

√
3
2 , the empiric cdf (in red) is closed to

the theoretical one. The same representation is made for z2.

Computational details

30 cfda: Categorical Functional Data Analysis

Table 1: True and estimated eigenvalues for the birth-and-death process. The estimated
values are the mean over 100 samples. In brackets, the standard error is displayed.

m=5

true n=50 n=100 n=200 n=500

1 0.5000 0.5117 (6.4e-4) 0.5013 (4.4e-4) 0.5000 (3.1e-4) 0.5009 (1.8e-4)
2 0.1667 0.1680 (3.3e-4) 0.1672 (2.0e-4) 0.1679 (1.5e-4) 0.1664 (0.9e-4)
3 0.0833 0.0824 (1.9e-4) 0.0835 (1.4e-4) 0.0834 (0.9e-4) 0.0835 (0.5e-4)
4 0.0500 0.0455 (1.3e-4) 0.0490 (0.9e-4) 0.0494 (0.6e-4) 0.0492 (0.4e-4)
5 0.0333 0.0184 (0.6e-4) 0.0205 (0.4e-4) 0.0211 (0.3e-4) 0.0215 (0.2e-4)

m=10

true n=50 n=100 n=200 n=500

1 0.5000 0.5124 (6.4e-4) 0.5016 (4.3e-4) 0.5002 (3.1e-4) 0.5009 (1.8e-4)
2 0.1667 0.1692 (3.4e-4) 0.1677 (2.0e-4) 0.1682 (1.5e-4) 0.1665 (0.9e-4)
3 0.0833 0.0841 (2.0e-4) 0.0843 (1.4e-4) 0.0839 (0.9e-4) 0.0837 (0.5e-4)
4 0.0500 0.0486 (1.3e-4) 0.0510 (0.9e-4) 0.0508 (0.7e-4) 0.0501 (0.4e-4)
5 0.0333 0.0317 (0.8e-4) 0.0335 (0.6e-4) 0.0334 (0.4e-4) 0.0336 (0.2e-4)

m=20

true n=50 n=100 n=200 n=500

1 0.5000 0.5128 (6.4e-4) 0.5018 (4.4e-4) 0.5003 (3.1e-4) 0.5010 (1.8e-4)
2 0.1667 0.1699 (3.4e-4) 0.1681 (2.0e-4) 0.1683 (1.5e-4) 0.1666 (0.9e-4)
3 0.0833 0.0849 (2.0e-4) 0.0847 (1.4e-4) 0.0841 (0.9e-4) 0.0837 (0.5e-4)
4 0.0500 0.0495 (1.3e-4) 0.0514 (0.9e-4) 0.0510 (0.6e-4) 0.0502 (0.4e-4)
5 0.0333 0.0327 (0.8e-4) 0.0340 (0.6e-4) 0.0337 (0.5e-4) 0.0337 (0.2e-4)

Journal of Statistical Software 31

0

1

2

0.00 0.25 0.50 0.75 1.00
Time

E
nc

od
in

g

n

500

200

100

50

1st encoding function for state 0 for m=5

(a) First encoding function for state 0 (m = 5)

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Time

E
nc

od
in

g

n

500

200

100

50

2nd encoding function for state 0 for m=5

(b) Second encoding function for state 0 (m = 5)

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.25 0.50 0.75 1.00
Time

E
nc

od
in

g

m

5

10

20

1st encoding function for state 0 for n=100

(c) First encoding function for state 0 (n = 100)

0

2

4

0.00 0.25 0.50 0.75 1.00
Time

E
nc

od
in

g

m

5

10

20

2nd encoding function for state 0 for n=100

(d) Second encoding function for state 0 (n = 100)

Figure 13: True (solid black) and estimated encoding functions for state 0 of the birth-and-
death process. The estimated encoding functions are the mean of 100 samples.

32 cfda: Categorical Functional Data Analysis

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
Comp 1

C
om

p
2

true

Figure 14: In red, first and second principal components for every individual of the birth-
and-death process for n = 500 and m = 20. In solid black, the theoretical relation between
these two components.

0.00

0.25

0.50

0.75

1.00

−1 0 1
z1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

cdf

true

empiric

1st principal component cumulative distribution function

(a) Cumulative distribution function for z1

0.00

0.25

0.50

0.75

1.00

−1 0 1
z1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

cdf

true

empiric

2nd principal component cumulative distribution function

(b) Cumulative distribution function for z2

Figure 15: Empirical (resp. theoretical) cumulative distribution function for the first (z1) and
second (z2) principal components of the birth-and-death process for n = 500 and m = 20.

Journal of Statistical Software 33

• The approximation of optimal encoding functions in a basis of functions is based on
the computation of random variables V(x,i) and U(x,i),(x,j) defined in (22) and (25) re-
spectively. The computation of integrals involved in the definition of these random
variables uses the inprod function of the fda R package which, at its turn, calls the
function eval.fd. For n and K fixed, this step is the most computational in terms of
time resources and it depends of the number of basis functions, m, considered for the
approximation (19). As the computation is at done for every ω in (ω1, . . . , ωn), parallel
computation in performed.

• The F matrix (24) can be singular in some specific situations, namely when there exists
an interval I ⊂ [0, T] and some state x such that px(t) = 0,∀t ∈ I. In this case the
hypothesis H2 is not satisfied. For t ∈ I, the operator Et is degenerated, however, the
eigenvalue equation (5) is still valid. From (12), the optimal encodings ax function is not
defined for t ∈ I. From a computational point of view, if φi is some element of the basis
functions {φ1, . . . , φm} with support in I then the random variables V (x, i) and U(x,i),(.,.)
are zero-constant and therefore, the row and column corresponding to (x, i) in the F
and G matrices are zero vectors. Thus, the element α(x,i) of the expansion coefficients
vector αx is not defined. Dropping the rows and columns from F and G corresponding
to (x, i) allows to solve the eigen-problem in (26). Notice that the constraints (27) are
fulfilled.

The results in this paper were obtained using R 4.0.3 with the cfda 0.9.7 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.

5. Summary and discussion
Categorical functional data is represented by paths of a continuous-time stochastic process
with values in a finite set of states. Less popular than the real-valued functional data, that
is yet another kind of infinite dimensional object. The analysis of categorical functional data
is presented in this paper as an extension of the multiple correspondence analysis for the
finite dimensional setting. principal components, optimal encoding functions and optimal
representations are presented. A simulation study and a real data application illustrate the
methodology implemented in the cfda R package.

References

Boumaza R (1980). Contribution à l’Étude Descriptive d’une Fonction Aléatoire Qualitative.
Ph.D. thesis, Université Paul Sabatier, Toulouse.

Cardot H, Lecuelle G, Schlich P, Visalli M (2019). “Estimating Finite Mixtures of Semi-
Markov Chains: an Application to the Segmentation of Temporal Sensory Data.” Journal
of the Royal Statistical Society C, 68(5), 1281–1303. doi:10.1111/rssc.12356.

Deville J, Saporta G (1983). “Correspondence Analysis with an Extension towards Nomi-
nal Time Series.” Journal of Econometrics, 22, 169–189. doi:10.1016/0304-4076(83)
90098-2.

https://CRAN.R-project.org/
http://dx.doi.org/10.1111/rssc.12356
http://dx.doi.org/10.1016/0304-4076(83)90098-2
http://dx.doi.org/10.1016/0304-4076(83)90098-2

34 cfda: Categorical Functional Data Analysis

Deville JC (1974). “Méthodes Statistiques et Numériques de l’Analyse Harmonique.” Annales
de l’INSEE, 15, 5–101. doi:10.2307/20075177.

Deville JC (1982). “Analyse de Données Chronologiques Qualitatives : Comment Analyser
des Calendriers ?” Annales de l’INSEE, 45, 45–104. doi:10.2307/20076433.

Escofier B (1978). “Analyse Factorielle et Distances Répondant au Principe d’Équivalence
Distributionnelle.” Revue de Statistiques Appliquées, 26, 29–37.

Ferraty F, Vieu P (2006). Nonparameric Functional Data Analysis. Theory and Practice.
Springer-Verlag New York. ISBN 978-0-387-36620-3. doi:10.1007/0-387-36620-2.

Gabadinho A, Studer M, Müller N, Bürgin R, Fonta PA, Ritschard G (2019). TraMineR:
Trajectory Miner: a Toolbox for Exploring and Rendering Sequences. R package version
2.0-13, URL https://CRAN.R-project.org/package=TraMineR.

Heijden P, Teunissen J, van Orlé C (1997). “Multiple Correspondence Analysis as a Tool for
Quantification or Classification of Career Data.” Journal of Educational and Behavioral
Statistics, 22, 447–477. doi:10.3102/10769986022004447.

Hotelling H (1936). “Relations Between Two Sets of Variates.” Biometrika, 28, 321–377.
doi:10.2307/2333955.

Jackson CH (2011). “Multi-State Models for Panel Data: The msm Package for R.” Journal
of Statistical Software, 38(8), 1–29. doi:10.18637/jss.v038.i08.

Melnykov V (2016). “ClickClust: An R Package for Model-Based Clustering of Categorical
Sequences.” Journal of Statistical Software, 74(9), 1–34. ISSN 1548-7660. doi:10.18637/
jss.v074.i09.

Mercer J (1909). “Functions of Positive and Negative Type and their Connection with the
Theory of Integral Equations.” Philosophical Transactions of the Royal Society A, 209,
441–458. doi:10.1098/rsta.1909.0016.

Microsoft, Weston S (2019). foreach: Provides Foreach Looping Construct. R package version
1.4.7, URL https://CRAN.R-project.org/package=foreach.

Nath R, Pavur R (1985). “A New Statistic in the One Way Multivariate Analysis of Variance.”
Computational Statistics and Data Analysis, 2, 297–315. doi:10.1016/0167-9473(85)
90003-9.

Preda C (1998). “Analyse Harmonique Qualitative des Processus
Markoviens des Sauts Stationnaires.” Scientific Annals of Computer Sci-
ence, 7, 5–18. URL https://www.info.uaic.ro/en/sacs_articles/
analyse-harmonique-qualitative-des-processus-markoviens-des-sauts-stationnaires/.

Ramsay J, Silverman B (2005). Functional Data Analysis. Springer-Verlag New York. ISBN
978-0-387-22751-1. doi:10.1007/b98888.

Ramsay JO, Wickham H, Graves S, Hooker G (2018). fda: Functional Data Analysis. R
package version 2.4.8, URL https://CRAN.R-project.org/package=fda.

http://dx.doi.org/10.2307/20075177
http://dx.doi.org/10.2307/20076433
http://dx.doi.org/10.1007/0-387-36620-2
https://CRAN.R-project.org/package=TraMineR
http://dx.doi.org/10.3102/10769986022004447
http://dx.doi.org/10.2307/2333955
http://dx.doi.org/10.18637/jss.v038.i08
http://dx.doi.org/10.18637/jss.v074.i09
http://dx.doi.org/10.18637/jss.v074.i09
http://dx.doi.org/10.1098/rsta.1909.0016
https://CRAN.R-project.org/package=foreach
http://dx.doi.org/10.1016/0167-9473(85)90003-9
http://dx.doi.org/10.1016/0167-9473(85)90003-9
https://www.info.uaic.ro/en/sacs_articles/analyse-harmonique-qualitative-des-processus-markoviens-des-sauts-stationnaires/
https://www.info.uaic.ro/en/sacs_articles/analyse-harmonique-qualitative-des-processus-markoviens-des-sauts-stationnaires/
http://dx.doi.org/10.1007/b98888
https://CRAN.R-project.org/package=fda

Journal of Statistical Software 35

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Saporta G (1981). Méthodes Exploratoires d’Analyse de Données Temporelles. Université
Pierre et Marie Curie, Paris, France. URL http://www.numdam.org/item/BURO_1981_
_37-38__7_0/.

Scholz M (2016). “R Package clickstream: Analyzing Clickstream Data with Markov Chains.”
Journal of Statistical Software, 74(4), 1–17. doi:10.18637/jss.v074.i04.

Studer M (2013). “WeightedCluster Library Manual: A Practical Guide to Creating Typolo-
gies of Trajectories in the Social Sciences with R.” Technical report, LIVES Working Papers
24. doi:10.12682/lives.2296-1658.2013.24.

Tierney L, Rossini AJ, Li N, Sevcikova H (2018). snow: Simple Network of Workstations. R
package version 0.4-3, URL https://CRAN.R-project.org/package=snow.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.org.

Affiliation:
Cristian Preda
Université de Lille,
Laboratoire de Mathématiques Paul Painlevé, UMR CNRS 8524
59655 Villeneuve d’Ascq, France
and
MΘDAL team, Inria Lille-Nord Europe
40 avenue Halley
59650 Villeneuve-d’Ascq, France
and
Institute of Statistics and Applied Mathematics of the Romanian Academy
050711 Bucharest, Romania
E-mail: cristian.preda@univ-lille.fr

Quentin Grimonprez
MΘDAL team, Inria Lille-Nord Europe, France
40 avenue Halley
59650 Villeneuve-d’Ascq, France
E-mail: quentin.grimonprez@inria.fr

https://www.R-project.org/
http://www.numdam.org/item/BURO_1981__37-38__7_0/
http://www.numdam.org/item/BURO_1981__37-38__7_0/
http://dx.doi.org/10.18637/jss.v074.i04
http://dx.doi.org/10.12682/lives.2296-1658.2013.24
https://CRAN.R-project.org/package=snow
https://ggplot2.tidyverse.org
mailto:cristian.preda@univ-lille.fr
mailto:quentin.grimonprez@inria.fr

36 cfda: Categorical Functional Data Analysis

Vincent Vandewalle
Université de Lille
ULR 2694 - METRICS
59000 Lille, France
and
MΘDAL team, Inria Lille-Nord Europe, France
40 avenue Halley
59650 Villeneuve-d’Ascq, France
E-mail: vincent.vandewalle@univ-lille.fr

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

mailto:vincent.vandewalle@univ-lille.fr
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v000.i00

	Introduction
	Categorical Functional Data Analysis
	The Principal Components
	Optimal Encoding Functions
	Expansion Formulas and Dimension Reduction
	Approximation of Optimal Encoding Functions: a Basis Expansion Approach
	Estimation

	The cfda Package
	Data
	Real Dataset
	Generate a Dataset
	Visualize a Dataset
	Extract a Dataset Meeting the Constraints

	Basic Statistics for Categorical Functional Data
	Time Spent in each State
	Number of Jumps
	Probability to be in a State
	Continuous-time Markov Chain

	Optimal Encoding
	Plot Functions
	Extract the Encoding Functions
	Interpreting the Encoding Functions
	Application to Clustering

	Simulation Study
	Birth-and-death Process
	Results
	Eigenvalues
	Encoding Functions
	Principal Components

	Summary and discussion

