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Abstract

We present a bio-inspired mechanism for data clustering. Our
method uses amoebae which evolve according to cellular automata
rules: they contain the data to be processed and emit reaction-
diffusion waves at random times. The waves transmit the informa-
tion across the lattice and causes other amoebae to react, by being
attracted or repulsed. The local reactions produce small homoge-
neous groups which progressively merge and realise the clustering at
a larger scale. Despite the simplicity of the local rules, interesting
complex behaviour occur, which make the model robust to various
changes of its settings. We evaluate this prototype with a simple task:
the separation of two groups of integer values distributed according
to Gaussian laws.

Introduction

Biology is an inexhaustible source of inspiration for computer science. In-
deed, many phenomena we observe in living organisms can be understood
in terms of simple interacting processes which create a self-organising pro-
cess with a rich behaviour, e.g. self-reproduction [NB66], cellular sort-
ing [VBD10], etc. The model we present here aims at performing a clus-
tering task. Various nature-inspired models have already been explored to
perform this task [HM07, NP14]. The particularity of our model is that it
inspired from the behaviour of the social amoeba Dictyostelium discoideum
and that it is a cellular automaton model, that is, space, time and states
of components are discrete and the interactions are purely local.

Our proposition relies on a previous cellular automata model of this
social amoeba [Fat10]. This original model was used to gather thousands
of particles initially scattered randomly on a lattice without any central
coordination. From this original model, a variant was proposed to locate a
hidden source on a lattice with the process called infotaxis, which is specific
to the case where the detection of the source needs to be achieved with rare
events [Fat16].

Our goal now is to continue this work of exploration of the amoebae
models and examine here whether they could be used to perform data
clustering: imagine that we have set of objects initially random scattered
on a lattice and we need to group this data into classes which share some
similarity. The difficulty of the task lies in the propagation of information
which needs to be achieved by simple cells with as few states as possible
and which obey local rules, more specifically they should interact only with
their nearest neighbours.

We present our model with formal definitions in Sec. 1. This presenta-
tion is then followed by an empirical observation of its behaviour (Sec. 2.1),
the description of a quantification tool (Sec. 2.2) and a first sequence of sta-
tistical experiments (Sec. 2.3). We then briefly explore some properties of
robustness of the model (Sec. 3) and say a few words on the work that
remains to be tackled.
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1 Presentation of the model

Our model is described as a stochastic dynamical system where space, time
and states are discrete. It is composed of two layers: the first layer cor-
responds to the environment, which propagates reaction-diffusion waves.
The second layer contains the amoebae, which move and interact with the
environment. Our objective is to design a system which will be as simple as
possible in terms of cell states and behaviour, and for which the amoebae
form groups according to the data they contain.

Space is modelled as a two-dimensional lattice with periodic boundary
condition (torus), represented by L = (Z/X ·Z)× (Z/Y ·Z), where X and
Y are the dimensions of the lattice. In this text, we only consider square
lattices, that is, we take X = Y = L, where L is called the size of the
lattice.

The set of states is that each cell can hold is itself composed of two sets:
the first part is a ternary state and the second part corresponds to the data.
The set of states is thus a Cartesian product Q×D. The first set is defined
as Q = {N, E, R}, where the states N, E, R, respectively correspond to the
excited, neutral and refractory states. The second set D is dependent on
the data set which is considered. We will assume that the set D contains a
particular value, called the void value, denoted by V , which represents the
absence of data in a given cell.

Formally, for a cell c ∈ L and time t ∈ N, we denote by σtc ∈ Q the state
of this cell and by ρtc ∈ D its data. For the sake of brevity, we will say state
only to refer to the first part of the cell and say data for the second part.
The reader should note that the data of a cell typically do not correspond
to the data of its amoeba. It corresponds to the data propagated by the
environment.

The set Atc represents the amoebae contained in a cell c. Formally, Atc is
represented by a multi-set of elements of D, that is, it may contain several
elements of D with an identical value. Recall that each amoeba is in charge
of carrying an element of the dataset that has to be processed.

The interactions between cells follow a local rule and we use here the
Moore neighbourhood, that is, a cell c will only “see” its own state and the
state of its 8 nearest neighbours. This set is denoted by N (c).

In all the experiments that follow, the initial condition of the system
is that all cells are initially in the neutral state N and the elements of
the dataset are randomly and uniformly distributed on the grid. For the
data, we simply assign to each cell a given probability dini to contain a
data, which is drawn at random according to a non-uniform distribution
that will be described later. The probability dini represents intuitively the
initial density of data, hence the use of the letter d.

Informally, our model relies on three main features: (a) the amoebae
have the ability to randomly trigger reaction-diffusion waves that will make
other amoebae react; (b) these waves propagate without attenuation and
by partially colliding and merging when they meet ; (c) when amoebae sees
such a wave in its environment, it reacts by being attracted or repulsed
according to the data it sees and its own data. Let us now describe these
steps more precisely.

1.1 The reaction-diffusion waves

The rules that govern the propagation of reaction-diffusion waves are sim-
ple: (a) A neutral cell becomes excited if it has an excited neighbour; (b)
an excited cell always becomes refractory at the next time step: (c) a re-
fractory cell always become neutral at the next time step. Once a neutral
cell gets excited, the excitations propagate in form of waves formed by lines
of excited cells that we call fronts, which are followed lines of refractory
cells (Fig. 1). The role of the refractory state is to prevent the retroprop-
agation of excitations. When two waves meet, they annihilate if the fronts
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Figure 1: Propagation of two excitations waves: red,orange and white
squares respectively correspond the excited, refractory and neutral cells.
(colour online)

propagate in opposite directions and merge if the fronts propagate in the
same direction.

In addition to the possibility to being excited by its neighbours, a cell
which contains at least one amoeba becomes excited with a probability λ,
called the excitation rate. In this case, the excited cell takes the state E,
and its data ρtc will be chosen randomly and uniformly among the data
of amoebae it contains. This choice is represented by R[Atc] where the
operation of random uniform choice in a multiset X is denoted by R[X].
We note B(p) as a Bernoulli law of probability p.

We denote by Etc = {c′ ∈ N(c) : σtc = E} the set of cells which are in
the excited state in the neighbourhood of c and by Dt

c = {ρtc : c ∈ Etc} the
set of data that these cells contain. It should be noted that in general the
values of the data contained in a given wave are uniform, as they come from
the same amoeba source. However, when two waves of excitation collide
and merge, a given cell might see in its neighbour two excited cells with
different data, in which case it will choose randomly and uniformly in the
multiset of values it sees.

The status of a cell is updated as follows:

If σtc = N

if Atc 6= ∅ and B(λ) = 1 then σt+1
c = E and ρt+1

c = R[Atc]

else if card(Etc) > 0 then σt+1
c = E and ρt+1

c = R[Dt
c]

else if σtc = E then σt+1
c = R and ρt+1

c = V

else if σtc = R then σt+1
c = N and ρt+1

c = V

else σt+1
c = N and ρt+1

c = V .

We find our different cases: the self-excitation of a cell by an amoeba,
the excitation by a neighbouring cell, the de-excitement and the return to
the neutral state.

1.2 Movements of the amoebae

Let us describe the movements of the amoebae, which take place in the
second layer of the model. To end, we introduce some intermediary defini-
tions. A cell is empty if does not contain any amoeba and it is available it is
either empty of it contains only one amoeba. In order to limit the number
of amoebae (that is data) contained per cell we use the following rules: (a)
Amoebae can move only to the available cells of their neighbourhood. (b)
If a cell contains several amoebae, only one may move to a neighbour. (c)
There is no limit on how many amoebae an available cell can simultaneously
receive.

Let us now describe how the amoebae react to the presence of excited
cells in their neighbourhood. The key point of the model is that an excita-
tion can be either attractive or repulsive for an amoeba, depending on the
value of the excitation and the data of the amoeba. The use of a repulsive
interaction is a novelty compared to the previous models using amoebae
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Figure 2: Representation of the four sets used to define the movements
of an amoeba. Amoebae are represented in black and excited cells in red
(colour online). The data contained in the excitations are represented in
white.

(see Introduction) and its purpose is to separate the groups of amoebae
that will correspond to different data clusters.

The idea is that for each excited cell in the neighbourhood, we will deter-
mine the excitation is attractive cell or repulsive according to a probability
law, denoted by patt, depending on the absolute value of the difference δ
between the value of the amoeba and the value of the nearby excitation.

The probability patt to be attractive is defined with the following equa-
tion: patt(δ) = e−δ/Λ, that is, the higher δ is, the lower the probability to be
attractive and thus the higher the probability to be repulsed. The constant
K is set by the user of the model and depends on the dataset that is used;
it roughly corresponds to the expected distance between the clusters of the
dataset.

Naturally, a problem arises when a cell contains several amoebae. In
this case, we simply choose uniformly at random which of the amoebae
is selected to move and we calculate δ according the data of the selected
amoeba.

For a given cell c ∈ L which contains one amoeba or more, we define
for each cell c′ in the neighbourhood of c the quantity δc,c′ = |ρtc′ −R[Atc]|.
(Note that the random value R[Atc] is chosen once and not for each neigh-
bour.) We map δc,c′ to a value δ∗c,c′ ∈ {A, R}, where A and R respectively
denote an attractive or repulsive signal.

To express the local rules which define the movements of the amoebae,
we need to define three sets. For a given cell c the set Ñ t

c is the set of

available neighbours: Ñ t
c = {c′ ∈ N (c) : card(Atc′) ∈ {0, 1}}. The sets

Ãtc (resp. R̃tc) is the set of available neighbours that are attractive (resp.

repulsive): Ãtc = {c′ ∈ Ñ t
c : δ∗c,c′ = A} and R̃tc = {c′ ∈ Ñ t

c : δ∗c,c′ = R}. The

set Ẽtc is the complement of the previous set; it is the set of cells where an

amoeba can escape in case of repulsion: Ẽtc = Ñ t
c \ R̃tc. All these sets are

represented in fig. 2.
The movements will determined by a list of rules with an imposed order

of priority: an amoeba may make a random movement to an available cell
according to the probability pag, the phenomenon of attraction and finally
that of repulsion. Second, the priority is given to attraction over repulsion,
that is, if an amoeba sees at least one excited cell A, it chooses attraction,
otherwise it will choose a repulsive movement.

Denoting by ∆t
c the cell where the selected amoeba moves, this yields:

∆t
c =


R[Ñ t

c ] if B(Pa) = 1 and card(Ñ t
c) > 0

R[Ãtc] if σtc = N and card(Ãtc) > 0

R[Ẽtc] if σtc = N and card(R̃tc) > 0 and card(Ẽtc) > 0

c otherwise.

These rules represent the four possible movements: by agitation, by
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Figure 3: Evolution of the clustering process for times: 0, 450, 880 and
1270. The amoebae are represented in black and dark grey: this colour
differentiation is only visual and indicates whether the value they contain
are greater or lower than the average value 200. When several amoebae are
present in the same cell, the number of amoebae is indicated by a white
number (this number can me magnified in the online version). A neutral
cell is white and a refractory cell in light grey. Excited cells are coloured
in red and blue depending on whether the data they contain is greater or
lower than the average value 200.

attraction, by repulsion and finally staying in the same cell. The positions
of the amoebae are then updated synchronously for each non-empty cell c
with the movement from c to ∆t

c.

2 Study of the model

2.1 A first observation of the behaviour

Let us now observe some simulations. Figure 3 shows the clustering process
on a lattice of size L = 50 cells. The initial condition is set with dini = 0.1,
that is, each cell has a probability of 10% to contain a data. The value
initially attributed to the amoebae is an integer drawn randomly in the
interval I = [[0, 400]]. The data is not uniformly distributed: its distribution
is the sum of two Gaussian laws of parameters (µ1, σ1) and (µ2, σ2) where
the mean values are set to µ1 = 100 and µ2 = 300 and the standard
deviations are set to σ1 = σ2 = 0.2.

The parameters settings were determined empirically after a series of
tests. We set the value of the emission rate of waves to λ = 0.01 and the
attraction probability law patt is set with Λ = 40. In order to introduce
some “difficulty” in the clustering process, we also add some agitation,
setting pag = 0.1, that is, the amoebae will make a random move every ten
steps in average.

One can observe the following general behaviour: the amoebae start
forming small groups where the type is rather homogeneous. Thanks to
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the randomness of the excitation waves, these groups progressively merge
until they form larger groups.

At this stage two possibilities are generally observed: either the large
groups directly form two well-sorted clusters, or the sorting stagnates with
approximately two or three formed groups and a few isolated amoebae. In
this case, the sorting process is somehow delayed due to two main reasons:
(a) isolated amoebae may find themselves blocked between the different
excitations, and (b) two groups of amoebae that contain amoebae of the
same type might try to get closer but get repelled by another large group
formed of amoebae of the opposite type. However, as one can observe on
Fig. 3, the clusters are well formed after a few thousand steps and remain
stable over time.

2.2 Quantify sorting progress and efficiency

We now describe how to evaluate more quantitatively the evolution of the
clustering process. We continue to consider the simple case where the
system should separate the data into two clusters only. Our problem is
to evaluate, for a given distribution of amoebae on the grid, how far we are
from our goal. Our clustering estimator will associate to each data a type,
A or B, depending on its value. For example if the data is distributed in
the range of integers from 0 to 100, type-A data will cover the range 0 to
49 and type-B data will cover the rest of the interval.

With this particular setting of the problem, two main features can be
isolated: (a) homogeneity: once the groups of connected amoebae are iden-
tified, we estimate to which extent they are mixed or not. (b) compactness:
we estimate how far the global configuration of amoebae is from forming
two main groups.

For a given configuration, we thus partition the set of amoebae into
connected components of amoebae, where Moore’s neighbourhood is used
to define the connexity property. Let us denote by C1, . . . , Ck the compo-
nents obtained, with the convention that C1 and C2 are respectively the
largest and second largest sets (in terms of number of amoebae they con-
tain). Given two components i and j, we denote by dH(i, j) the Hausdorff
distance between these two components. This distance is frequently used
to evaluate distances between sets of points and displays various good ana-
lytical properties [Fuj13]. We then make a partition of the set components
{C1, ..., Ck} into two sets of components P1 and P2 by assigning each com-
ponent Ci to P1 if the distance dH(Ci, C1) is smaller than dH(Ci, C2) and
to P2 otherwise.

To define the homogeneity criterion, we simply calculate the number
of amoebae nA1 and nB1 (resp. nA2 and nB2 ) that are of respective type A
and B that are contained in P1 (resp. in P2). The homogeneity of Pm for
m ∈ {1, 2} is then set equal to hm =

∣∣nAm − nBm∣∣ /(nAm + nBm). The global
homogeneity h is then simply the minimum of h1 and h2. This form is
chosen such that a homogeneous set of components will lead to h = 1 while
a set of components with an equal number of amoebae of each type will
give us h = 0.

Let us now examine the compactness criterion. We first calculate the
average distance between the components and the main component they
belong to; that is,

d̃ =
1

k
·
( ∑
Ci∈P1

dH(Ci, C1) +
∑
Ci∈P2

dH(Ci, C2)
)

We compare this value to the distance between the two main components
of the system dH(C1, C2). The compactness κ is then defined as κ = 1 −
d̃/dH(C1, C2); a form that is chosen in order to approach 1 as d̃ gets smaller
(while dH(C1, C2) remains stable).

The combination of these two criteria will give us an estimation of how
the clustering process evolves in time. Note that criteria are not defined
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Figure 4: Representation of a particular configuration obtained at time
880. (left) The same conventions are applied, in particular amoebae are
differentiated in black and dark grey depending on whether their value
is higher or lower than the average value 200. (right) The amoebae are
coloured in green or magenta according to the partition realised to calculate
the homogeneity and compactness criteria (see Sec. 2.2). The red segments
materialise Hausdorff distances; the dotted lines indicate that the shortest
distance are calculated with periodic boundary conditions.

when we have only one component and note that we considered here the
case of two types, but this method can of course be extended to any num-
ber of types. It should also be emphasised that the types are only given
for the analysis of the process, but that the process itself never uses this
information in the local rules it applies. Let us now observe the clustering
process on some simple examples.

2.3 Quantitative analysis of the behaviour

Let us now analyse the relevance of the two criteria introduced above to
quantify the progress of the sorting of amoebae in the system. The two
connected components of amoebae are illustrated Fig. 4 and the evolution
of the temporal values of these criteria are represented on Fig. 5. The
parameters are set identically to those exposed in Sec. 2.1.

Let us first put our attention on the homogeneity criterion. One can
observe that during the first moments of the simulation, the amoebae are
scattered in space and the two main sets are very heterogeneous, which
leads to a low homogeneity. This continues until amoebae form larger
groups of amoebae with similar data, which yields a gradual increase in
the homogeneity criterion, with an additional noise due to the randomness
inherent to the model. As mentioned earlier, after this stage is complete,
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Figure 5: Temporal evolution of the criteria of homogeneity and compact-
ness of a particular simulation.

Figure 6: Convergence time as a function of the excitation rate λ : (left)
regular lattice (right) lattice with obstacles.

two possibilities generally occur: we either have a rather steady increase of
the criteria, which indicates that the amoebae are sorted into two groups,
or the values will stagnate for a while (as shown on Fig. 4), and then find
the sorted stable.

The stochastic nature of the model makes that some evolutions may last
longer to reach the sorted state. For instance, when three main groups of
amoebae are formed, with one group of one type and the other two of the
second type, the value of homogeneity remains around 50% for a moment
until the two groups of the same type can merge.

The compactness criterion allows us to complete our analysis of the
clustering process. Recall it estimates the average relative distance of the
connected components of the amoebae to the closet main component. In
the beginning of the simulation, since amoebae are scattered randomly in
space and these main components are not stable and the criterion is of little
relevance. As one can observe, the compactness criterion becomes relevant
only when larger groups of amoebae are formed, in which case its values
become greater than 25%.

Note that when the clustering has occurred (that is, when we have
only two groups), the homogeneity approaches 100% but the compactness
stabilises at lower values (between 40 and 50%). Indeed, the rules we
imposed on the movements of amoebae (agitation, limit of their number
per cell) do not allow them to form perfect components.

3 Robustness of the model
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Figure 7: (left) Convergence time for three distribution laws which are sums
of two Gaussian laws (right) Representation of the distribution laws.

Data. Let us examine how the model responds to variations of the distri-
bution of data. We take again the interval I = [[0, 400]] and generate the
data distribution according to the sum of two Gaussian laws of parameters
(µ1, σ1) and (µ2, σ2). We fix the value of Λ to Λ = 40 and the standard
deviation to σ1 = σ2 = 0.4.

We perform different experiments by varying (µ1, µ2). We define the
convergence time as the number of time steps that are needed to attain both
a homogeneity greater than h∗ = 0.8 and compactness of κ∗ = 0.25. These
values are fixed empirically by observing the situations which correspond
to a good clustering quality and a relatively stable global state. Since we
aim at achieving a rapid convergence, we stop the simulation after 3000
time steps.

The results are presented on Fig. 7. We observe that the clustering is
rapid when the two Gaussian laws are well separated (µ1, µ2) = (100, 300).
More surprising, we note that when the averages are made closer (µ1, µ2) =
(125, 275), and even though the two laws begin to overlap, the convergence
time remains low and is even better than the previous case. A limit case is
observed for (µ1, µ2) = (150, 250) where the convergence time jumps above
the limit value of 3000 steps. A visual inspection of the simulations and an
observation of the evolution of the criteria shows that on the two first case,
the clusters remain stable and well-sorted after the convergence time. Of
course, Λ values are more suitable for some datasets but we here fix Λ for
the sake of brevity.

We also examined the behaviour of the model when the data is a super-
position of three Gaussian laws: in this case, we observe that the clustering
process occurs as expected by sorting the data into three groups, without
any significant delay when λ is set to the appropriate value.

Initial conditions. One may also examine what happens if a large num-
ber of amoebae is initially introduced. A new series of simulations is carried
out with the following initial condition for an initial density between 10%
and 75%: a cell has a chance of initially containing an amoeba containing a
data. We empirically observed that although the movements of the amoe-
bae are more constrained and although the propagation of cell excitations
are more difficult, the model succeeds in achieving the clustering operation
in times that are comparable to those expressed above. It is only when
the initial density reaches dini = 0.75 that strong difficulties appear and
that the convergence time significantly rises. This suggest that the size
of the lattice should always be set in agreement with the quantity of data
that needs to be processed; with say at least three times as many cells as
amoebae.

9



Obstacles. As mentioned earlier, one of the motivations for the use of bio-
inspired models is their robustness to errors and failures in the computing
medium. We thus consider the case where obstacles can be present on the
lattice, that is, cells that cannot transmit any information which cannot
hold any amoeba.

Simulations in such conditions are represented on Fig. 6: we consider
different values of the emission rate λ with and without obstacles. One
can observe that the overall behaviour is not perturbed by the presence of
obstacles, although some isolated amoebae may take a longer time to join
other groups. The convergence of the amoebae can be slowed down but
we empirically observed that the process always manages to achieve the
clustering task.

4 Openings

These first tests are rather encouraging and show that our model remains
robust to various modifications of its settings. The particularity of our
bio-inspired method is its specific use of randomness: the moments where
the amoebae emit their waves is determined randomly, and should be set in
order to allow a good balance between “speaking” and “hearing”. The clus-
tering task is also realised by achieving an appropriate setting to determine
whether the data seen in the excitation waves are attractive or repulsive.
We here only presented a prototype tested on a rather simple clustering
task with only two groups to form. The model thus now needs to be eval-
uated on more realistic datasets and its robustness should be examined
thoroughly in more stringent conditions. Our first informal observations
on other conditions are rather encouraging and such explorations could be
performed by all researchers who interested in the exploration of the field
of bio-inspired cellular models.
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