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Abstract

Biological aging is revealed by physical measures, e.g., DNA probes or brain scans. Indi-
vidual differences in personal functioning are instead explained by psychological constructs.
Constructs such as intelligence or neuroticism are typically assessed by specialized work-
force through tailored questionnaires and tests. Similar to how brain age captures biological
aging, intelligence and neuroticism may provide empirical proxies for mental health. Could
the combination of brain imaging and sociodemographic information yield measures for
these constructs that do not rely on human judgment? Here, we built proxy measures by
applying machine learning on multimodal MR images and rich sociodemographic information
from the largest brain-imaging cohort to date: the UK Biobank. Objective comparisons
revealed that all proxies captured the target constructs and related to health-contributing
habits beyond the measures they were derived from. Our results demonstrate that proxies
targeting classical psychological constructs reveal facets of mental health complementary to
information conveyed by brain age.

Introduction 1

Individual assessments in psychology and psychiatry rely on observing behavior. Using 2

biological insight to diagnose and treat mental disorders remains a hard problem despite 3

substantial research efforts (Kapur et al., 2012). The field of psychiatry has struggled with 4

purely descriptive and unstable diagnostic systems (Insel et al., 2010), small sample sizes 5

(Szucs and Ioannidis, 2017), and reliance on dichotomized groups, i.e., patients vs controls 6

(Hozer and Houenou, 2016). Compared to somatic medicine, mental-health research faces 7

the additional roadblock that mental pathologies cannot be measured the same way diabetes 8

can be assessed through plasma levels of insulin or glucose. Psychological constructs, e.g., 9

depressiveness or anxiety can only be probed indirectly through expert-built procedures 10
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such as specially-crafted questionnaires and structured interviews. Measuring reliably a 11

given construct is difficult and questionnaires often remain the best option (Enkavi et al., 12

2019). While the field of psychometrics has thoroughly studied the validity of psychological 13

constructs and their measures (Borsboom et al., 2004; Cronbach and Meehl, 1955; Eisenberg 14

et al., 2019), the advent of new biophysical measurements on the brain brings new promises 15

(Engemann et al., 2020; Kievit et al., 2018b; Nave et al., 2018). In particular, the growth of 16

biobanks as well as the advances in statistical-learning techniques opens the door to large- 17

scale validation of psychological constructs and measures for neuropsychiatric research 18

(Collins, 2012). 19

In clinical neuroscience, machine learning is increasingly popular, driven by the hope 20

to develop more generalizable models (Woo et al., 2017). Yet, to be reliable, machine 21

learning needs large labeled datasets (Varoquaux, 2018). Its application to learn imaging 22

biomarkers of neuropsychiatric disorders is limited by the availability of large cohorts with 23

high-quality neuropsychiatric assessements (Bzdok and Meyer-Lindenberg, 2018). However, 24

data on populations without diagnosed neuropsychiatric conditions is easier to collect. Such 25

data has driven successes in developing brain-derived aging measures that capturing proxy 26

information on mental health (Cole et al., 2015, 2018; Dosenbach et al., 2010; Engemann 27

et al., 2020; He et al., 2020; Koutsouleris et al., 2014; Liem et al., 2017; Smith et al., 2020). 28

Extrapolating from these successes, we propose to learn more of such proxy measures of 29

health-related individual traits in large datasets. These could then enhance an analysis in 30

a small dataset via links between the proxy measures and the actual clinical endpoint of 31

interest, e.g., diagnosis or drug response. Emerging results validate the usefulness of age 32

as one such proxy measure, leading to the so called brain age delta: the difference between 33

predicted and actual age (Cole et al., 2015; Dosenbach et al., 2010; Smith et al., 2019a). 34

The delta has been shown to reflect physical and cognitive impairment in adults and gives an 35

index of neurodegenerative processes (Gonneaud et al., 2020; Liem et al., 2017). Can this 36

strategy of biomarker-like proxy measures be extended beyond the construct of aging? Can 37

measures derived from other targets than age serve as proxies for latent constructs? 38

Beyond aging, one high-stake target is intelligence, which is measured through socially 39

administered tests and is one of the most extensively studied constructs in psychology. 40

Fluid intelligence refers to the putatively culture-free, heritable and physiological component 41

of intelligence (Cattell, 1963; Cattell and Scheier, 1961). Fluid intelligence is a latent 42

construct designed to capture individual differences in cognitive capacity. It has been 43

robustly associated with neuronal maturation and is typically reflected in cognitive-processing 44

speed and working-memory capacity (Shelton et al., 2010). Compared to brain age, fluid 45

intelligence may yield a proxy measure more specifically indexing cognitive function. It 46

has been associated with psychiatric disorders such as psychosis, bipolar disorder and 47

substance abuse (Keyes et al., 2017; Khandaker et al., 2018). 48

Neuroticism is a second promising target. As a key representative of the extensively stud- 49

ied Big Five personality inventory, neuroticism has a long-standing tradition in the psychology 50

of individual differences (Costa and McCrae, 1992; Eysenck et al., 1985). Neuroticism is 51

typically measured using self-assessment questionnaires and conceptualized as capturing 52

dispositional negative emotionality including anxiety and depressiveness (Shackman et al., 53

2016). It has been inter-culturally validated (Cattell and Scheier, 1961; Lynn and Martin, 54

1997) and population-genetics studies have repeatedly linked variance in neuroticism to 55

shared genes (Birley et al., 2006; Hettema et al., 2006; Pedersen et al., 1988). Neuroticism 56

was shown useful in psychometric screening and supports predicting real-world behavior 57

(Lahey, 2009; Tyrer et al., 2015). However, despite strong heritability at the population level 58

(Power and Pluess, 2015; Vukasović and Bratko, 2015), the link with brain function at the 59

level of large-scale network dynamics or the level of molecular mechanisms is being actively 60
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researched (Shackman et al., 2016; Yarkoni, 2015). 61

The advent of large MRI datasets has revealed the complexity of predicting personality 62

traits from brain signals. Current attempts to predict fluid intelligence or neuroticism from 63

thousands of MRI scans argue in favor of overwhelming heterogeneity and rather subtle 64

effects that do not generalize strongly to unseen data (Dubois et al., 2018a,b). This stands in 65

contrast to the remarkable performance obtained when predicting intelligence or neuroticism 66

from other psychometric measures or semantic data qualitatively similar to psychometric 67

questionnaires, e.g., Twitter and Facebook posts (Quercia et al., 2011; Youyou et al., 2015). 68

As MRI acquisitions can be expensive and difficult in clinical settings or populations, the 69

promises of social-media data is appealing. However, in clinical practice or research, such 70

data can lead to measurement and selection biases difficult to control. On the other hand, 71

background sociodemographic characteristics of individuals can be easily accessible and 72

may help inform in similar ways on the heterogeneity of psychological traits, for instance 73

capturing that fluid intelligence decreases with age (Horn et al., 1981). An important question 74

is then whether this data can reveal non-redundant information on the constructs of interest. 75

Another challenge of quantifying psychological traits is the diversity of measurement 76

scales, often categorical or on arbitrary non-physical units , e.g. education degree or monthly 77

income. In fact, society treats individual differences as categorical or continuous, depending 78

on the practical context. Personality has been proposed to span a continuum (Eysenck, 79

1958). Nevertheless, psychiatrists treat certain people as patients and not others (Perlis, 80

2011). The utility of any mental-health measure therefore depends on its practical context: 81

When learning boundaries between qualitatively distinct groups, a measure that performs 82

globally poorly as a continuous scale can nevertheless be sufficient to distinguish subgroups. 83

In fact, a measure may be solely informative around the boundary region between certain 84

classes, e.g., pilots who should fly and who should not. Importantly, the utility of any measure 85

ultimately depends on its signal-to-noise ratio, which may be driven by measurement noise, 86

heterogeneity, as well as the interesting variability of the particular construct measured, e.g., 87

the type of test to assess intelligence. 88

Confronting the promises of population brain imaging with the challenges of measuring 89

psychological traits raises the following questions. 1) How well can various health-related 90

latent constructs be approximated from general-purpose inputs not designed to measure 91

specific latent constructs? 2) What is the relative merit of brain imaging and sociodemo- 92

graphics for probing various latent constructs? 3) Can the success of brain age be extended 93

to other proxy measures that capture complementary facets of health-contributing behavior? 94

In this study, we tackled these questions by using machine learning to build proxy mea- 95

sures, crafted to approximate well-characterized target measures from brain-imaging and 96

sociodemographic data. As target measures, we studied age, fluid intelligence, and neuroti- 97

cism. Figure 1 summarizes our approach. We first assessed how well the proxy measures 98

approximated the target measures, isolating the contributions of the different data types. 99

Second, to assess the intrinsic value of the proxy measures, we studied their associations 100

with health-related habits (alcohol consumption, cumulative tobacco consumption, sleep 101

duration, physical activity). Results suggest that, as with brain age, proxy measures can bring 102

value for the study of mental health that goes beyond approximating an available measure. 103
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Figure 1. Methods overview: building and evaluating proxy measures We combined multiple brain-imaging modalities (A)
with sociodemographic data (B) to approximate health-related biomedical and psychological constructs (C), i.e., brain age
(accessed through prediction of chronological age), cognitive capacity (accessed through a fluid-intelligence test) and the
tendency to report negative emotions (accessed through a neuroticism questionnaire). We included the imaging data from the
10 000-subjects release of the UK biobank. Among imaging data (A) we considered features related to cortical and subcortical
volumes, functional connectivity from rfMRI based on ICA networks, and white-matter molecular tracts from diffusive directions
(see Table 3 for an overview about the multiple brain-imaging modalities). We then grouped the sociodemographic data (B)
into five different blocks of variables related to self-reported mood & sentiment, primary demographics, lifestyle, education,
and early-life events (Table 4 lists the number of variables in each block). Subsequently, we systematically compared the
approximations of all three targets based on either brain images and sociodemographics in isolation or combined (C) to evaluate
the relative contribution of these distinct inputs. Models were developed on 50% of the data (randomly drawn) based on random
forest regression guided by Monte Carlo cross-validation with 100 splits (see section Model Development and Generalization
Testing). We assessed generalization using the other 50% of the data as fully independent out-of-sample evaluations (see
section Statistical Analysis).

Results 104

Traditional measures of mental health can be empirically approximated 105

We first performed model comparisons to evaluate the relative performance of proxy mea- 106

sures built from brain signals and distinct groups of sociodemographic variables. Figure 2 107

summarizes these model comparisons for approximating three targets: age, fluid intelligence 108

and neuroticism. For the sociodemographic variables (Figure 2, dotted outlines), the analysis 109

revealed that, for each target, there was one principal block of variables explaining most 110

of the prediction performance. Combining all sociodemographic variables did not lead to 111

obvious enhancements (Figure 2 – Figure supplement 2). For age prediction, variables 112

related to current life-style showed by far the highest performance. For fluid intelligence, 113

education performed by far best. Finally, for neuroticism, mood & sentiment clearly showed 114

the strongest performance. 115
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Figure 2. Approximation performance of proxy measures derived from sociodemographic data and MRI. To approximate
age, fluid intelligence and neuroticism, we applied random-forest regression on sociodemographic data and brain images as
inputs. The data was split into validation data for model construction (see section Model Development and Generalization
Testing) and generalization data for statistical inference on out-of-sample predictions with independent data (see section
Statistical Analysis). For each block of sociodemographic predictors models were fitted with and without additional predictors
derived from brain images. We report the R2 metric to facilitate comparisons across prediction targets. The cross-validation
(CV) distribution (100 Monte Carlo splits) on the validation dataset is depicted by violins. Drawing style indicates whether
brain imaging (solid outlines of violins) was included in addition or not (dotted outlines of violins). Dots depict the average
performance on the validation data across CV-splits. Pyramids depict the performance of the average prediction (CV-bagging)
on held-out generalization datasets. For convenience, the mean performance on the validation set is annotated for each plot.
Vertical dotted lines indicate the average performance of the full MRI model. The validation and held-out datasets gave similar
picture of approximation performance with no evidence for cross-validation bias Varoquaux et al. (2017a). One can readily
see that approximation from sociodemographics (dotted violins) was often markedly better than purely brain-based models
(dotted vertical lines) for all three targets. The most important blocks of sociodemographic predictors (annotated with red
cross) were lifestyle for age, education for fluid intelligence, and mood & sentiment for neuroticism. The effect of combining
sociodemographics with brain-data depended on the target measure. For age, overall performance improved beyond the purely
sociodemographics-based or imaging-based analyses. The picture was less consistent for fluid intelligence and neuroticism
showing weaker additive effects, if any. For the averaged out-of-sample predictions, the probability of the observed performance
under the null-distribution and the uncertainty of effect sizes were formally probed using permutation tests and bootstrap-based
confidence intervals (Table 1). Corresponding statistics for the baseline performance of models solely based on brain imaging
(vertical dotted lines) are presented in Table S1. For additional findings please consider the supplement of Figure 2:
Figure 2 – Figure supplement 1. Prediction of individual differences in proxy measures from MRI.
Figure 2 – Figure supplement 2. Approximation performance using all sociodemographic data.
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Table 1. Paired difference between purely sociodemographic and models including brain imaging on
generalization data.

Target sociodemographics R2
diff p-value CIlow CIhigh

Age Early Life 0.494 0.0001 0.473 0.515
Age Education 0.458 0.0001 0.437 0.479
Age Life style 0.071 0.0001 0.058 0.085
Age Mood & sentiment 0.294 0.0001 0.272 0.315
Fluid intelligence Age, Sex 0.048 0.0001 0.040 0.057
Fluid intelligence Early Life 0.039 0.0001 0.027 0.050
Fluid intelligence Education 0.018 0.0001 0.010 0.025
Fluid intelligence Life style 0.030 0.0001 0.020 0.040
Fluid intelligence Mood & sentiment 0.031 0.0001 0.019 0.043
Neuroticism Age, Sex 0.001 0.6789 −0.006 0.008
Neuroticism Early Life 0.010 0.0697 −0.001 0.021
Neuroticism Education 0.009 0.0817 −0.001 0.020
Neuroticism Life style −0.008 0.1750 −0.020 0.004
Neuroticism Mood & sentiment −0.030 0.0001 −0.041 −0.018

When combining MRI and sociodemographics (Figure 2, solid outlines), age prediction 116

was enhanced in a systematic and visible way on all four blocks of variables (Table 1), 117

suggesting that the observed differences should reproduce on future data and are unlikely to 118

be due to chance. The benefit of including brain-imaging features, however, was less marked 119

for prediction of fluid intelligence and neuroticism. With fluid intelligence, brain-imaging data 120

improved the performance statistically significantly for all models, yet, with small effect sizes 121

at the scale of a few percent or even lower (Table 1). Further, for neuroticism, no systematic 122

advantage of including brain images alongside sociodemographics emerged. Instead, includ- 123

ing brain images seemed to reduce generalization performance when predicting from mood & 124

sentiment variables (Table 1, bottom row). Nevertheless, using only brain data was sufficient 125

for statistically significant approximation of the target measures not only for age but also 126

fluid intelligence and neuroticism (Table S1), suggesting that lifestyle and mood & sentiment 127

explains at least some of the neurobiological variance. For neuroticism, variables on current 128

mood & sentiment were strongly informative for prediction, reflecting that mood & sentiment 129

is strongly related to neuroticism. Overall, predicting fluid intelligence or neuroticism was 130

clearly more successful when sociodemographic was included (Table 1). For subsequent 131

analyses we included all sociodemographic variables (Figure 2 – Figure supplement 2). 132

One important challenge with evaluating approximations of psychological measures is 133

that such measures often come without physical scales and units (Stevens et al., 1946). 134

In practice, clinicians and educators use them with specific thresholds for decision making. 135

How useful proxy measures built with predictive models are to separate out discrete extreme 136

groups? To address this question, we performed binary classification of extreme groups 137

obtained from discretizing the targets using the 33rd and 66th percentiles. Moreover, we 138

focused on the AUC as a performance metric which is only sensitive to ranking while 139

ignoring the scale of the error. The results are comparable to the previous regression 140

analysis. Classification performance for extreme groups visibly exceeded the chance level 141

of an AUC of 0.5 for all models (Figure 3). Across proxy measures, models including 142

sociodemographics performed best but the difference between purely sociodemographic and 143

brain-based models was comparably weak, at the order of 0.01-0.02 AUC points (Table 2). 144

Using only brain data resulted in proxy measures that perform less well, yet, still better than 145

chance as revealed by permutation testing (Table S2). It is noteworthy that for both types 146

of models the performance of discrimination reached levels above 0.8, which is considered 147

clinically useful for biomarkers (Perlis, 2011). Overall, the results suggest that moving 148
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from the more difficult full-scale regression problem to extreme-group classification problem 149

with purely ranking-based loss functions, the relative differences between brain-based and 150

sociodemographics-based prediction gradually faded away. 151

Table 2. Difference statistics for classification on the held-out set for sociodemographic vs combined
approximation.

Target AUCdiff observed p-value CIlow CIhigh

Age 0.013 0.0008 0.006 0.021
Fluid intelligence −0.031 0.0001 −0.044 −0.017
Neuroticism −0.003 0.4818 −0.013 0.006

External validity: proxy measures capture ecological health-related factors 152

Results so far have shown that psychological constructs can be approximated from general- 153

purpose inputs such as brain images and sociodemographic variables that are not tailored to 154

measure these latent constructs. Beyond approximating target measures, which are them- 155

selves imperfect, can our empirically-derived proxy measures capture complementary facets 156

of real-world behavior? To address this question we studied the link between the three proxy 157

measures studied –built via brain age, fluid intelligence and neuroticism– and various health 158

behavior (sleep, physical exercise, alcohol and tobacco consumption). These behaviors are 159

more ecological probes of mental health than questionnaires or lab-based measures and 160

are potentially linked in multiple ways to our proxy measures. We, hence, modeled them as 161

weighted sums of predicted brain-age delta, fluid intelligence and neuroticism using multiple 162

linear regression. To avoid any form of circularity, we used the out-of-sample predictions for 163

all three proxy measures, applied on the generalization dataset that was not used for building 164

the machine learning models. We derived the brain-age delta by subtracting the actual 165

age from the predicted age. To mitigate brain age bias (Le et al., 2018), we deconfounded 166

health-related habits for their association with actual age (Engemann et al., 2020; Smith 167
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Figure 3. Classification analysis from imaging, sociodemographics and combination of both data. For classification of
extreme groups instead of continuous regression, we split the data into low vs high groups based on 33rd and 66th percentiles.
Visual conventions follow Figure 2. We report the accuracy in AUC. Models including sociodemographics performed visibly
better than models purely based on brain imaging. Differences between brain-imaging and sociodemographics appeared less
pronounced as compared to the fully-fledged regression analysis. For the average out-of-sample predictions, the probability of
the observed performance under the null-distribution and the uncertainty of effect sizes were formally probed using permutation
tests and bootstrap-based confidence intervals (Table 2). Corresponding statistics for the baseline performance of models solely
based on brain imaging (vertical dotted lines) are presented in Table S2.
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Specific associations of proxy and target measures with health−related habits

Figure 4. Proxy measures show systematic and complementary out-of-sample associations with health-related habits.
To probe external validity of the proxy measures, we investigated their out-of-sample associations with ecological indicators
of mental health (sleep duration, time spent with physical exercise, number of alcoholic beverages and cigarettes consumed).
To tease apart complementary and redundant effects, we constructed multiple linear regression models on out-of-sample
predictions combining the proxy measures (A) from Figure 2. For comparison, we repeated the analysis using the actual target
measures (B) observed on the generalization data. Regression models are depicted rows-wise. Box plots summarize the
uncertainty distribution of target-specific (color) regression coefficients with whiskers indicating two-sided 95% uncertainty
intervals (parametric bootstrap). A random subset of 200 out of 10000 coefficient-draws is illustrated by dots. The average
coefficient estimate is annotated for convenience. At least two distinct patterns emerged: either the health outcome was
specifically associated with one proxy measures (brain age delta and number of alcoholic beverages) or multiple measures
showed additive associations with the outcome (e.g. number of pack years smoked). Finally, target measures (B) show noisier
associations than proxy measures (A), though none of the significant associations changed direction. For additional findings,
please consider the supplement of Figure 4:
Figure 4 – Figure supplement 1. Marginal associations between proxy measures and health-related habits.

et al., 2019a). 168

The estimated regression coefficients, capturing partial correlations, revealed specific 169

as well as complementary associations between the proxy measures and health-related 170

behavior (Figure 4). A marginal association analysis shows similar patterns, indicating that the 171

relationships hold also when considering the proxy measures in isolation (Figure 4 – Figure 172

supplement 1). Elevated brain-age delta was consistently associated with increased number 173

of alcoholic beverages. These latter proxy measures showed no consistent association with 174

alcohol consumption (Figure 4, first row). Level of physical exercise –measured through the 175

number of minutes spent weekly with metabolic equivalent tasks– consistently associated 176

with the scores in all three predicted targets, suggesting independent associations (Figure 4, 177
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second row). This may seem counter-intuitive but could simply point at the possibility that 178

people with higher test scores, as a tendency, have a more sedentary life style. Sleep 179

duration was independently associated with brain age delta and predicted neuroticism but in 180

opposite directions (Figure 4, third row): increased sleep duration consistently went along 181

with elevated brain age, but lower levels of predicted neuroticism. No consistent effect 182

emerged for fluid intelligence. Increased cumulative numbers of cigarettes smoked was 183

independently and consistently associated with all predicted targets (Figure 4, last row): 184

Intensified smoking went along with elevated brain age delta and elevated neuroticism but 185

lower fluid intelligence. 186

The question remains whether the proxy measures bring any additional value compared 187

to the original target measures that they were derived from. Studying the association of these 188

original target measures with the health-related habits shows similar trends: associations 189

with the same signs as with the proxy measures (Figure 4, B). However, these associations 190

were more noisy or less marked as those seen with the proxy measures. 191

These results demonstrates that the proxy measures capture well health-related habits, 192

potentially better than the original target measures, and in a complementary way across the 193

three measures. 194

Discussion 195

In this study, we have extended the brain-age approach for neuroimaging to the wider notion 196

of empirical proxy measures. Guided by machine learning, we have derived empirical 197

approximations of traditional, extensively validated target measures from psychology. Beyond 198

biological age, we focused on cognitive capacity (accessed by the fluid-intelligence test) and 199

negative emotionality (accessed by the neuroticism questionnaire). Our proxy measures 200

were derived from data not explicitly designed to assess specific latent constructs: brain 201

imaging data and heterogeneous sociodemographic descriptors. We observed that the 202

combination of brain imaging and target-specific sociodemographic inputs often improved 203

approximation performance. On the held-out data that was not used for model construction, 204

we found important associations between all proxy measures and ecological health indicators. 205

These associations were often complementary and useful beyond the information conveyed 206

by the approximated targets. 207

Constructs of mental-health can be accessed from general-purpose data 208

Brain age has served as landmark in this study, both conceptually and empirically. It has 209

been arguably the most discussed candidate for a surrogate biomarker in the neuroimaging 210

literature so far (Cole et al., 2015; Dosenbach et al., 2010; Smith et al., 2019a). With mean 211

absolute errors around 4 years, up to 67% variance explained, and AUC-scores up to 0.93 in 212

the classification setting, our results compare favorably to the recent brain-age literature within 213

the UK Biobank (Cole et al., 2017; Smith et al., 2020) and in other datasets (Engemann et al., 214

2020; Liem et al., 2017), though we relied on non-optimized standard inputs and algorithms 215

and not deep learning (He et al., 2018). Applying the same approach to other behavioral 216

outcomes that probe psychological constructs, namely fluid intelligence and neuroticism, we 217

found that these were considerably harder to approximate from general brain imaging data 218

or sociodemographic descriptors. 219

It is important to recapitulate that approximation quality on the three targets investigated 220

has a different meaning, as these are measured differently. On the one hand, age is a physical 221

variable measured with meaningful units (years) on a ratio scale (Stevens et al., 1946) (Selma 222
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is twice as old as Bob). On the other hand, psychometric scores such as fluid intelligence 223

–measured via socially-administered performance tests– and neuroticism –measured by self- 224

assessment via questionnaires– are unit-free scores resulting from operationalized counting, 225

which provokes ambiguity regarding the level of measurement (Borsboom, 2005). Their 226

implied scales may be considered as interval (the difference between Bob’s and Selma’s 227

intelligence is -0.1 standard deviations) if not rather ordinal (Bob’s intelligence was ranked 228

below Selma’s) (Stevens et al., 1946). In day-to-day psychological practice, these scores 229

are often used via practically-defined thresholds, e.g. school admission or pilot candidate 230

selection in aviation (Carretta, 2011; Carretta and Ree, 1994). Approximations of these 231

measures via empirically-defined proxies should thus be subjected to different standards: 232

Brain-age prediction should be gauged accordingly to its natural continuous scale; we 233

observed more than 50% of the variance explained. Instead, approximation of psychometric 234

scores might be more appropriately gauged via implicit thresholds, hence, discrimination 235

tasks. With the corresponding metrics, the receiver-operator characteristics (ROC) and its 236

AUC-score, all proxy measures approached or exceeded a performance of 0.80 deemed 237

relevant in biomarker development (Perlis, 2011), though to be fair, they approximated 238

established psychometric targets (proxy measures themselves) and not a medical condition. 239

Nevertheless, the out-of-sample associations of the approximated constructs –the proxy 240

measures– with health-related habits (Figure 4) paint a more complete picture of their value. 241

Sleep duration, minutes spent exercising, and the amount of alcoholic drinks or cigarettes 242

consumed were specifically and complementarily associated with all proxy measures on 243

more than 4000 held-out individuals. In other words, we found multiple statistically important 244

associations with proxy measures fluid intelligence and neuroticism that were not accounted 245

for by brain age. Compared to the traditional measures (Figure 4 B), the associations 246

between these proxy measures and ecological behavioral traits were less noisy, hence more 247

consistent, regardless of their approximation quality (Figure 4 A). This may seem surprising 248

at first, but the target measures are themselves noisy and of imperfect ecological validity. 249

Conversely, the proxy measures are assembled via a richer phenotyping than the target 250

measures, drawing from both fine sociodemographics and brain signals, which can help 251

refining them. 252

The benefits offered by brain data depend on the approximated construct 253

All brain-derived approximations were statistically meaningful. Yet, only for age prediction, 254

imaging data by itself led to convincing performance levels. Combining brain-imaging data 255

to sociodemographics led to systematically enhanced performance for predicting age and, 256

less strongly, fluid intelligence (Table 1). On the other hand, for neuroticism, including brain 257

imaging never substantially improved the approximation. Does this mean that brain imaging 258

could be avoided in practice when approximating latent constructs? Such a view is probably 259

misleading as the numerical quality of the approximation is not the only thing that matters in a 260

proxy measure. The interest in building a proxy measure of age from brain imaging is justified 261

by its interpretation as an index of precocious or accelerated biological aging (Cole et al., 262

2015, 2017; Smith et al., 2020). In contrast, it is not yet clear that an age delta built from 263

sociodemographic inputs –along the lines of a “social age”– supports such interpretation. 264

From this point of view one may even prefer purely brain-based assessment of individual 265

aging, though sociodemographics probably provide important context to the brain images. 266

For fluid intelligence and neuroticism the situation seemed more complex. For both targets, 267

the best performing sociodemographic model was based on inputs semantically close to 268

the construct of interest, i.e., education details for fluid intelligence and mood & sentiment 269

for neuroticism. While those results reinforce the construct validity of the measure, they 270
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also come with a certain risk of circularity. In particular, the causal role of those predictors 271

is not necessarily clear as better educational attainment is heritable itself (Krapohl et al., 272

2014) and may reinforce existing cognitive abilities rather than simply resulting from them. 273

Similarly, prolonged emotional stress due to life events may exacerbate existing dispositions 274

to experience negative emotions captured by neuroticism (Colodro-Conde et al., 2018), traits 275

which in turn commonly help accumulate stressful life events (Lahey, 2009). Nevertheless, for 276

fluid intelligence but not neuroticism, brain imaging added incremental value when combined 277

with various sociodemographic predictors. This may suggest that the cues for neuroticism 278

conveyed by brain imaging were already present in various sociodemographic predictors, 279

potentially hinting at common causes. 280

It may be worthwhile to revisit the frequently reported difficulty to predict complex traits 281

from brain imaging– especially fMRI (Dubois et al., 2018a,b; Liem et al., 2017; Maglanoc 282

et al., 2020). This may not be entirely surprising at a theoretical level as it has even been 283

argued that psychometric measures of complex traits may not map to biological mechanisms 284

in simple ways (Yarkoni, 2015). Of course, this does not preclude the investigation of their 285

brain correlates and mechanisms (Cole et al., 2015; Cox et al., 2019a; Kievit et al., 2018a; 286

Shackman et al., 2016). It rather emphasizes the importance of searching for appropriate 287

signals and representations supporting the given modeling goals (Bzdok and Ioannidis, 2019). 288

As a speculation, some traits could be tightly linked to the current predominant behavior that 289

may be poorly reflected by resting-state recordings. To consider an extreme counter example, 290

disorders of consciousness— a stable trait induced by severe brain injuries— manifest 291

themselves in systematically and intensely altered brain activity, hence, can be robustly 292

detected from fMRI- and EEG-signals regardless of the present stimulation (Demertzi et al., 293

2019; Engemann et al., 2018). In this context, the recent turn towards naturalistic stimuli and 294

movies (Hasson et al., 2010; Jääskeläinen et al., 2016; Nummenmaa et al., 2012; Sonkusare 295

et al., 2019; Venkatesh et al., 2020) may be promising as trait-level differences in emotion 296

and cognition may need to be systematically provoked by potent stimuli, e.g., emotionally 297

charging or cognitively demanding cinematic content. 298

Empirically-derived proxy measures: From validity to practical utility 299

The validity of constructs and their measures remains a challenging question (Borsboom, 300

2005; Borsboom et al., 2004; Cronbach and Meehl, 1955). Here, we have demonstrated 301

reasonable out-of-sample generalization for our proxy measures. Yet, generalization per- 302

formance in itself, arguably, only yields an upper bound for validity of the measure for a 303

target construct, comparable internal-consistency checks and re-test reliability in classical 304

psychometrics. Even a perfect approximation may be limited by the quality of the target 305

measure as fluid intelligence and neuroticism are notoriously difficult to measure without 306

noise. In our study, the construct validity of the corresponding proxy measures is supported 307

by the substantial gain in prediction performance brought by related information, namely 308

education history and mental-health variables respectively (Figure 2). Moreover, association 309

with health-relevant habits brings external validity to the proxy (Figure 4). For example, the 310

complementary patterns that emerged can be related to traditional construct semantics: High 311

consumption of cigarettes is typically associated with neuroticism (Terracciano and Costa Jr, 312

2004) and excessive drinking may lead to brain atrophy and cognitive decline (Topiwala et al., 313

2017), both common correlates of brain age (Liem et al., 2017; Wang et al., 2019). 314

This raises the question of the practical utility of such empirically-derived proxy measures: 315

Can these empirically-derived proxy measures substitute specific psychometric instruments? 316

The present study does not claim to give an unequivocal answer to this question as the 317

utility of proxy measures will depend on the practical context. A specialized mental-health 318

11/34

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266536doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266536
http://creativecommons.org/licenses/by-nd/4.0/


professional may prefer an established routine for clinical assessment, relying on scores such 319

as intelligence tests and personality-scales like neuroticism, and potentially applying implicit 320

experience-based thresholds. Based on our findings, inclusion of brain imaging may even 321

seem to yield diminishing returns when approximating high-level psychological traits. Yet, it 322

mays simply be a matter of time until more effective acquisition protocols will be discovered 323

alongside signal representations supporting predictive modeling. While the cost of including 324

brain imaging may seem exorbitant, whenever available, its inclusion seems to be a “safe 325

bet” as machine learning is capable at selecting relevant inputs (Engemann et al., 2020) and 326

costs of MRI-acquisition can be amortized by baseline clinical usage. Moreover, our study 327

shows that the associations of the proxy measures to health habits compare favorably to the 328

original target measures. As such, the proxy measures may open new doors when tailored 329

assessment of latent constructs is not applicable to due lack of specialized mental-health 330

workforce or sheer cost. For instance, they may bring mental-health assessment in research 331

endeavors on large populations, e.g., for etiology, nosology, or typical epidemiology questions 332

such as risk factors or treatment evaluation. In addition, results derived on large populations 333

can be transferred to clinical data with finer mental-health assessment, e.g., smaller cohorts, 334

possibly leveraging dedicated methods (He et al., 2020; Pan and Yang, 2009). Relying on 335

three proxy measures rather than the brain age alone promises a wider array of applications. 336

Limitations 337

This study has validated proxy measures of three target constructs. The selection of these 338

targets was guided by literature review as well as the goal to find representative health-related 339

measures with complementary semantics. Additional constructs and psychometric tools 340

could have been visited. Intelligence can be characterized by multiple facets. The broader 341

construct of intelligence as a general factor –g-factor– is often estimated using latent factor 342

models on multiple correlated tests. While g-factor modeling can be interesting for its own 343

sake, we are less interested in normative assessment of intelligence but rather in capturing 344

inter-individual variance related to cognitive capacity as a situational fitness signal. Such 345

variations have been repeatedly linked to mental-health conditions (Khandaker et al., 2018). 346

Likewise, there is a wealth of questionnaires designed to measure negative emotionality 347

and neuroticism specifically. Yet, we could study only that available in the UK-Biobank 348

data, the EPQ neuroticism scale. A complementary approach, leading to different scientific 349

questions, would be to estimate latent factors by pooling all non-imaging data semantically 350

related to neuroticism (Maglanoc et al., 2020). Rather, we chose to consider established 351

target measures “as is” instead of derivatives to avoid bringing in additional measure-validity 352

considerations. Nevertheless, our framework encourages future studies targeting more 353

sophisticated representations of latent constructs. 354

Second, while the study was clinically motivated, it falls short of directly testing the 355

clinical relevance of estimated proxy measures. Indeed, even in a very large general- 356

population cohort such as the UK Biobank, there are only a few hundred diagnosed cases of 357

mental disorders (ICD-10 mental-health diagnoses from the F chapter) with brain-imaging 358

data available. This challenge highlights the practical importance of studying mental as a 359

continuous, in addition to diagnosed conditions. In this direction, our analysis of health-related 360

habits does provide some clinical relevance. 361

Finally, our study falls short of presenting fine-grained spatial analysis of the imaging data. 362

This work has focused on the approximation quality of proxy measures, relying on methods 363

that are not designed for fine-grained inference on predictors (Bzdok et al., 2018), though 364

future work could explore post-hoc explanations (Biecek, 2018). Our analysis comparing 365

the quality of models helps isolating major explanatory factors, yet does not provide brain 366
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mapping (Cole, 2020; Cox et al., 2019a; Kievit et al., 2018a). 367

Conclusion 368

Empirically-derived proxy measures targeting age, fluid intelligence and neuroticism reveal 369

complementary facets of real-world behavior that contribute to maintaining mental health. As 370

the relative importance of brain imaging and sociodemographics varies with the approximated 371

target, we recommend generously including all available data and approximating as many 372

targets as possible while letting machine learning perform the labor of integration. We believe 373

that further developing and using proxy measures for constructs that are difficult to assess is 374

a promising agenda for mental-health research. Therefore, we have made all data analysis 375

and visualization source code available on Github: https://github.com/KamalakerDadi/ 376

proxy_measures_2020. 377

Materials and Methods 378

Dataset 379

The United Kingdom Biobank (UKBB) database is to date the most extensive large-scale 380

cohort aimed at studying the determinants of the health outcomes in the general adult 381

population. The UKBB is openly accessible and has extensive data acquired on 500 000 382

individuals aged 40-70 years covering rich phenotypes, health-related information, brain- 383

imaging and genetic data (Collins, 2012). Participants were invited for repeated assessments, 384

some of which included MR imaging. For instance, cognitive tests that were administered 385

during an initial assessment were also assessed during the follow-up visits. This has enabled 386

finding for many subjects at least one visit containing all heterogeneous input data needed to 387

develop the proposed proxy measures. The study was conducted using the UKBB Resource 388

Applixaction 23827. 389

Participants 390

All participants gave informed consent. The UKBB study was examined and approved by the 391

North West Multi-centre Research Ethics Committee. We considered participants who have 392

responded to cognitive tests, questionnaires, and have access to their primary demographics 393

and brain images (Sudlow et al., 2015). Out of the total size of UKBB populations, we found 394

11 175 participants who had repeated assessments overlapping with the first brain imaging 395

release (Miller et al., 2016). The demographics are 51.6% female (5 572) and 48.3% male 396

(5 403), and an age range between 40-70 years (with a mean of 55 years and standard 397

deviation of 7.5 years). Out of the complete analysis set, 5 587 individuals were used in 398

the study to train the model and remaining subjects were set aside as a held-out set for 399

generalization testing (see section Model development and generalization testing). 400

To establish specific comparisons between models based on sociodemographics, brain 401

data or their combinations we exclusively considered the cases for which MRI scans were 402

available. The final sample sizes used for model construction and generalization testing 403

then depended on the availability of MRI: For age and fluid intelligence, our random splitting 404

procedure (Model development and generalization testing) yielded 4203 cases for model 405

building and 4157 for generalization. For cases with valid neuroticism assessment, fewer 406

brain images were available, which yielded 3550 cases for model building and 3509 for 407

generalization. 408
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Data acquisition 409

Sociodemographic data (non-imaging) was collected with self-report measures administered 410

through touchscreen questionnaires, complemented by verbal interviews, physical measures, 411

biological sampling and imaging data. MRI data were acquired with the Siemens Skyra 3T 412

using a standard Siemens 32-channel RF receiver head coil (Alfaro-Almagro et al., 2018). 413

We considered three MR imaging modalities as each of them potentially captures unique 414

neurobiological details: structural MRI (sMRI/T1), resting-state functional MRI (rs-fMRI) and 415

diffusion MRI (dMRI). For technical details about the MR acquisition parameters, please 416

refer to Miller et al. (2016). We used image-derived phenotypes (IDPs) of those distinct 417

brain-imaging modalities, as they provide actionable summaries of the brain measurements 418

and encourage comparability across studies. 419

Target measures 420

As our target measures for brain age modelign, we use an individual’s age at baseline 421

recruitment (UKBB code “21022-0.0”). Fluid intelligence, was assessed using a cognitive 422

battery designed to measure an individual’s capacity to solve novel problems that require 423

logic and abstract reasoning. In the UK Biobank, the fluid intelligence test (UKBB code 424

“20016-2.0”) comprises thirteen logic and reasoning questions that were administered via 425

the touchscreen to record a response within two minutes for each question. Therefore, 426

each correct answer is scored as one point with 13 points in total1. Neuroticism (UKBB 427

code “20127-0.0”) was measured using a shorter version of the revised Eysenck Personality 428

Questionnaire (EPQ-N) comprised of 12-items (Eysenck et al., 1985). Neuroticism was 429

assessed during Biobank’s baseline visit. The summary of the individual’s scores ranges 430

from 0 to 12 that assess dispositional tendency to experience negative emotions 2. 431

Sociodemographic data 432

In this work, we refer to non-imaging variables broadly as sociodemographics excluding the 433

candidate targets fluid intelligence and neuroticism. To approximate latent constructs from 434

sociodemographics, we included 86 non-imaging inputs (Table S3) which are the collection 435

of variables reflecting each participant’s demographic and social factors i.e., sex, age, date 436

and month of birth, body mass index, ethnicity, exposures at early life –e.g. breast feeding, 437

maternal smoking around birth, adopted as a child– education, lifestyle-related variables –e.g. 438

occupation, household family income, household people living at the same place, smoking 439

habits–, and mental-health variables. All these data were self-reported. We then assigned 440

these 86 variables to five groups based on their relationships. Based on our conceptual 441

understanding of the variables, we name assigned them to one out of five groups: 1) mood & 442

sentiment, 2) primary demographics as age, sex, 3) lifestyle, 4) education, 5) early life. We 443

then investigated the intercorrelation between all 86 variables to ensure that the proposed 444

grouping is compatible with their empirical correlation structure Figure S1. 445

The sociodemographic groups had varying amounts of missing data. For e.g. the source 446

of missingness is concerned with the participants lifestyle habits such as smoking and mental 447

health issues (Fry et al., 2017). To deal with this missingness in the data using imputation 448

(Little and Rubin, 1986), we used column-wise replacement of missing information with the 449

median value calculated from the known part of the variable. We subsequently included 450

1A complete overview of the 13 individual fluid intelligence items can be seen from this manual https:
//biobank.ctsu.ox.ac.uk/crystal/crystal/docs/Fluidintelligence.pdf

2For a complete list of Neuroticism questionnaires can be seen from this manual https://biobank.ctsu.
ox.ac.uk/crystal/crystal/docs/MentalStatesDerivation.pdf
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an indicator for the presence of imputed for down-stream analysis. Such imputation is well 451

suited to predictive models (Josse et al., 2019). 452

Image processing to derive phenotypes for machine learning 453

MRI data preprocessing were carried out by UKBB imaging team. The full technical details 454

are described elsewhere (Alfaro-Almagro et al., 2018; Miller et al., 2016). Below, we describe 455

briefly the custom processing steps that we used on top of the already preprocessed inputs. 456

Structural MRI 457

This type of data analysis on T1-weighted brain images are concerned with morphometry of 458

the gray matter areas i.e. the quantification of size, volume of brain structures and tissue 459

types and their variations under neuropathologies or behavior (Lerch et al., 2017). For 460

example, volume changes in gray matter areas over lifetime are associated with: brain aging 461

(Ritchie et al., 2015), general intelligence (Cox et al., 2019b) and brain disease (Thompson 462

et al., 2007). Such volumes are calculated within pre-defined ROIs composed of cortical 463

and sub-cortical structures (Desikan et al., 2006) and cerebellar regions (Diedrichsen et al., 464

2009). We included 157 sMRI features consisting of volume of total brain and grey matter 465

along with brain subcortical structures3. All these features are pre-extracted by UKBB brain 466

imaging team (Miller et al., 2016) and are part of data download. We concatenated all inputs 467

alongside custom-built fMRI features for predictive analysis (feature union). 468

Diffusion weighted MRI 469

Diffusion MRI enables to identify white matter tracts along principal diffusive direction of water 470

molecules, as well as the connections between different gray matter areas (Behrens et al., 471

2003; Conturo et al., 1999). The study of these local anatomical connections through white 472

matter are relevant to the understanding of neuropathologies and functional organization 473

(Saygin et al., 2016). We included 432 dMRI skeleton features of FA (fractional anisotropy), 474

MO (tensor mode) and MD (mean diffusivity), ICVF (intra-cellular volume fraction), ISOVF 475

(isotropic volume fraction) and OD (orientation dispersion index) modeled on many brain 476

white matter structures extracted from neuroanatomy4. For extensive technical details, please 477

refer to de Groot et al. (2013). The skeleton features we included were from category134 478

shipped by the UKBB brain-imaging team and we used them without modification. 479

Functional MRI 480

Resting-state functional MR images capture low-frequency fluctuations in blood oxygenation 481

that can reveal ongoing neuronal interactions in time forming distinct brain networks (Biswal 482

et al., 1995). Functional connectivity within these brain network can be linked to clinical status 483

(Greicius et al., 2004), to behavior (Miller et al., 2016), or to psychological traits (Dubois 484

et al., 2018b). We also included resting-state connectivity features based on the time-series 485

extracted from Independent Component Analysis (ICA) with 55 components representing 486

various brain networks extracted on UKBB rfMRI data (Miller et al., 2016). These included 487

the default mode network, extended default mode network and cingulo-opercular network, 488

executive control and attention network, visual network, and sensorimotor network. We 489

3Regional grey matter volumes http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1101 Subcor-
tical volumes http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1102

4Diffusion-MRI skeleton measurements http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=134
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Table 3. Imaging-based models.

Index Name # variables # groups

1 brain volumes (sMRI) 157 1
2 white matter (dMRI) 432 1
3 functional connectivity (fMRI) 1485 1
4 sMRI, dMRI 589 2
5 sMRI, fMRI 1642 2
6 dMRI, fMRI 1917 2
7 sMRI, dMRI, fMRI (full MRI) 2074 3

Table 4. Non-imaging baseline models or sociodemographic models based on single group. Variables
in each group are described at corresponding section: Sociodemographic data.

Index Name # variables

1 Mood & Sentiment (MS) 25
2 Age, Sex (AS) 5
3 Life style (LS) 45
4 Education (EDU) 2
5 Early Life (EL) 9

measured functional connectivity in terms of the between-network covariance. We estimated 490

the covariance matrices using Ledoit-Wolf shrinkage (Ledoit and Wolf, 2004). To account for 491

the fact that covariance matrices live on a particular manifold, i.e., a curved non-Euclidean 492

space, we used the tangent-space embedding to transform the matrices into a Euclidean 493

space (Sabbagh et al., 2019; Varoquaux et al., 2010) following recent recommendations 494

(Dadi et al., 2019; Pervaiz et al., 2020). For predictive modeling, we then vectorized the 495

covariance matrices to 1 485 features by taking the lower triangular part. These steps were 496

performed with NiLearn (Abraham et al., 2014). 497

Comparing predictive models to approximate target measures 498

Imaging-based models 499

First, we focused on purely imaging-based models based on exhaustive combinations of 500

the three types of MRI modalities (see Table 3 for an overview). This allowed us to study 501

potential overlap and complementarity between the MRI-modalities. Preliminary analyses 502

revealed that combining all MRI data gave reasonable results with no evident disadvantage 503

over particular combinations of MRI modalities (Figure 2 – Figure supplement 1), hence, for 504

simplicity, we only focused on the full MRI model in subsequent analyses. 505

Sociodemographic models 506

We composed predictive models based on non-exhaustive combinations of different types 507

of sociodemographic variables. To investigate the relative importance of each class of so- 508

ciodemographic inputs, we performed systematic model comparisons. We were particularly 509

interested in studying the relative contributions of early-life factors as compared to factors 510

related to more recent life events such as education as well as factors related to current cir- 511

cumstances such as mood & sentiment and life-style. The resulting models based on distinct 512

groups of predictors are listed in Table 4 (for additional details see Table S3 and Figure S1). 513
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Table 5. Random forest hyperparameters and tuning with grid search (5 fold cross-validation).

Hyperparameter Values

Impurity criterion Mean squared error
Maximum tree depth 5, 10, 20, 40, full depth
Fraction of features for split 1, 5, “log2”, “sqrt”, “complete”
Number of trees 250

Table 6. Number of samples for classification analysis (N).

# groups Age Fluid intelligence Neuroticism

1 1335 1108 1054
2 1200 898 1020

Combined imaging and sociodemographic models 514

In the next step, we were interested in how brain-related information would interact within 515

each of these sociodemographic models. For example, information such as the age of an 516

individual, or the level of education, may add important contextual information to brain images. 517

We therefore considered an alternative variant for each of the models in Table 4 that included 518

all MRI-related features (2 074 additional features) as described at section Image processing 519

to derive phenotypes for machine learning. 520

Predictive model 521

Linear models are recommended as default choice in neuroimaging research (Dadi et al., 522

2019; Poldrack et al., 2020) especially when datasets include fewer than 1000 data points. 523

In this study approximated targets generated by distinct underlying mechanisms based on 524

multiple classes of heterogenous input data with several thousands of data points. We 525

hence chose the non-parametric random forest algorithm that can be readily applied on 526

data of different units for non-linear regression and classification (Breiman, 2001) with mean 527

squared error as impurity criterion. To improve computation time we fixed tree-depth to 528

250 trees, a hyper-parameter that is not usually not tuned but set to a generous number 529

as performance plateaus beyond a certain number of trees (Hastie et al., 2005, ch. 15). 530

Preliminary analyses suggested that additional trees would not have led to substantial 531

improvements in performance. We used nested cross-validation (5-fold grid search) to tune 532

the depth of the trees as well as the number of variables considered for splitting (see Table 5 533

for a full list of hyper-parameters considered). 534

Classification analysis. We also performed classification analysis on the continuous 535

targets. For this purpose, we discretized the targets into extreme groups based on the 33rd 536

and 66th percentiles (see Table 6 for the number of classification samples per group). We 537

were particularly interested in understanding whether model performance would increase 538

when moving toward classifying extreme groups. For this analysis, we considered all 539

three types of models (full MRI 2074 features from imaging-based models see section 540

Imaging-based models, all sociodemographics variables, total 86 variables see section 541

Sociodemographic models), combination of full MRI and all sociodemographics, a total 2160 542

variables see section Combined imaging and sociodemographic models. When predicting 543

age, we excluded the age & sex sociodemographic block from all sociodemographic variables 544

which then yielded a total of 81 variables. To assess the performance for classification 545

analysis, we used the area under the curve (AUC) of the receiver operator characteristic 546

(ROC) as an evaluation metric (Poldrack et al., 2020). 547
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Model development and generalization testing 548

Before any empirical work, we generated two random partitions of the data, one validation 549

dataset for model construction and one held-out generalization dataset for studying out-of- 550

sample associations using classical statistical analyses. 551

For cross-validation, we then subdivided the validation set into 100 training- and testing 552

splits following the Monte Carlo resampling scheme (also referred to as shuffle-split) with 553

10% of the data used for testing. To compare model performances based on paired tests, we 554

used the same splits across all models. Split-wise testing performance was extracted and 555

carried forward for informal inference using violin plots (Figure 2,Figure 3). For generalization 556

testing, predictions on the held-out data were generated from all 100 models from each 557

cross-validation split. 558

On the held-out set, unique subject-wise predictions were obtained by averaging across 559

folds and occasional duplicate predictions due to Monte Carlo sampling which could produce 560

multiple predictions per subject5. Such strategy is known as CV-bagging (Varoquaux et al., 561

2017b) and can improve both performance and stability of results6. The resulting averages 562

were reported as point estimates in Figures 2,3, and 2 – Figure supplement 1 and used as 563

proxy measures in the analysis of health-related behaviors Figure 4. 564

Statistical analysis 565

Resampling statistics for model comparisons on the held-out data 566

To assess the statistical significance of the observed model performance and the differences 567

in performance between the models, we computed resampling statistics of the performance 568

metrics on the held-out generalization data not used for model construction (Gemein et al., 569

2020). Once unique subject-wise predictions were obtained on the held-out generalization 570

data by averaging the predictions emanating from each fold of the validation set (cv-bagging), 571

we computed null- and bootstrap-distributions of the observed test statistic on the held-out 572

data, i.e., R2 score for regression and AUC score for classification. 573

Baseline comparisons. To obtain a p-value for baseline comparisons (could the predic- 574

tion performance of a given model be explained chance?) on the held-out data, we permuted 575

targets 10 000 times and then recomputed the test statistic in each iteration. P-values were 576

then defined as the probability of the test statistic under null distribution being larger than the 577

observed test statistic. To compute uncertainty intervals, we used bootstrap, recomputing 578

the test statistic after resampling 10 000 times with replacement and reporting the 2.5 and 579

97.5 percentiles of the resulting distribution. 580

Pairwise comparisons between models. For model comparisons, we considered the 581

out-of-sample difference in R2 or AUC between any two models. To obtain a p-value for model 582

comparisons (could the difference in prediction performance between two given models be 583

explained chance?) on the held-out data, we permuted the scores predicted by model A and 584

model B for every single prediction 10 000 times and then recomputed the test statistic in 585

each iteration. We omitted all cases for which only predictions from one of the models under 586

comparison was present. P-values were then defined as the probability of the absolute of the 587

test statistic under null distribution being larger than the absolute observed test statistic. The 588

absolute was considered to account for differences in both directions. Uncertainty intervals 589

were obtained from computing the 2.5 and 97.5 percentiles of the bootstrap distribution 590

5We ensured prior to computation that with 100 CV-splits, predictions were available for all subjects.
6The use of CV-bagging can explain why on figures 2,3, and 2 – Figure supplement 1 the performance was

sometimes slightly better on the held-out set compared to the cross-validation on the validation test.
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Table 7. Extra health variables used for correlation analysis with subject-specific predicted scores.

Family eid Variables

Alcohol∗ 1568-0.0 Average weekly red wine intake
1578-0.0 Average weekly champagne plus white wine intake
1588-0.0 Average weekly beer plus cider intake
1598-0.0 Average weekly spirits intake
1608-0.0 Average weekly fortified wine intake
5364-0.0 Average weekly intake of other alcoholic drinks

Physical activity 22040-0.0 Summed MET minutes per week for all activity
Smoking 20161-0.0 Pack years of smoking
Sleep 1160-0.0 Sleep duration

∗We computed a compound drinking score by summing up all variables from the alcohol family

based on 10 000 iterations. Here, predictions from model A and model B were resampled 591

using identical resampling indices to ensure a meaningful paired difference. 592

Out-of-sample association between proxy measures and health-related habits 593

Computation of brain age delta and de-confounding For association with health-
contributing habits (Table 7), we computed the brain age delta as the difference between
predicted age and actual age:

BrainAge∆ = Agepredicted − Age (1)

As age prediction is rarely perfect, the residuals will still contain age-related variance which
commonly leads to brain age bias when relating the brain age to an outcome of interest,
e.g., sleep duration (Le et al., 2018). To mitigate leakage of age-related information into the
statistical models, we employed a de-confounding procedure in line with Smith et al. (2019b)
and (Engemann et al., 2020, eqs. 6-8) consisting in residualizing a measure of interest (e.g.
sleep duration) with regard to age through multiple regression with quadratic terms for age.
To minimize computation on the held-out data, we first trained a model relating the score of
interest to age on the validation set to then derive a de-confounding predictor for the held-out
generalization data. The resulting de-confounding procedure for variables in the held-out
data amounts to computing an age-residualized predictor measureresid from the measure of
interest (e.g. sleep duration) by applying the following quadratic fit on the validation data:

measurevalidation = agevalidation × βval1 + age2
validation × βval2 + ε (2)

The de-confounding predictor was then obtained by evaluating the weights βval1 and βval2 594

obtained from Equation 2 on the generalization data: 595

measuredeconfounding = agegeneralization × βval1 + age2
generalization × βval2 (3)

We performed this procedure for all target measures, to study associations not driven by the 596

effect of age. 597

Health-related habits regression We then investigated the joint association between 598

proxy measures of interest and health-related habits (Table 7) using multiple linear regres- 599

sion. For simplicity, we combined all brain imaging and all sociodemographics variables 600

(Figure 2, Figure 2 – Figure supplement 1, Figure 2 – Figure supplement 2). The ensuing 601

model can be denoted as 602

measure = measuredeconfounding×β1+BrainAge×∆β2+PredFluidInt×β3+PredNeurot×β4+ε,
(4)
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where outcomeresid is given by Equation 2. Prior to model fitting, rows with missing inputs 603

were omitted. For comparability, we then applied standard scaling on all outcomes and all 604

predictors. 605

The parametric bootstrap was a natural choice for uncertainty estimation, as we used 606

standard multiple linear regression which provides a well defined procedure for mathemat- 607

ically quantifying its implied probabilistic model. Computation was carried out using sim 608

function from the arm package as described in Gelman and Hill (2006, Ch.7,pp.142-143). 609

This procedure can be intuitively regarded as yielding draws from the posterior distribution of 610

the multiple linear regression model under the assumption of a uniform prior. For consistency 611

with previous analyses, we computed 10000 draws. 612

Software 613

Preprocessing and model building were carried out using Python 3.7. The NiLearn library 614

was used for processing MRI inputs (Abraham et al., 2014). We used the scikit-learn library for 615

machine learning (Pedregosa et al., 2011). For statistical modeling and visualization we used 616

the R-language (R Core Team, 2019) (version 3.5.3) and its ecosystem: data.table for high- 617

performance manipulation of tabular data, ggplot (Clarke and Sherrill-Mix, 2017; Wickham, 618

2016) for visualization and the arm package for parametric bootstrapping (Gelman and Su, 619

2020). All data analysis code is shared on GitHub: https://github.com/KamalakerDadi/ 620

proxy_measures_2020. 621
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Figure 2 – Figure supplement 1. Prediction of individual differences in proxy measures from MRI. Approxima-
tion performance using multiple MR modalities on the validation dataset: sMRI, dMRI, rfMRI and their combinations
(see Table 3). Visual conventions as in Figure 2. One can see that prediction of age was markedly stronger than
prediction of fluid intelligence or prediction of neuroticism. As a general trend, models based on multiple MRI
modalities tended to yield better prediction. For simplicity, we based subsequent analyses on the full model based
on all MRI data.
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Figure 2 – Figure supplement 2. Approximation performance using all sociodemographic data. Approxima-
tion performance using all sociodemographic variables with or without brain imaging included on the validation
dataset. Visual conventions as in Figure 2. The performance was highly to the best performing models within each
target Figure 2, i.e., life style for age, education for fluid intelligence and mood & sentiment for neuroticism. This
suggests that for each target those specific blocks of predictors were sufficiently explaining the performance. For
simplicity, we based subsequent analyses in Figure 3 and Figure 4 on all sociodemographic variables.
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Table S1. Regression statistics on the held-out set for purely MRI-based approximation.

Target R2
observed p-value CIlow CIhigh

Age 0.521 1×10−4 0.502 0.538
Fluid intelligence 0.061 1×10−4 0.052 0.070
Neuroticism 0.015 1×10−4 0.005 0.024

Table S2. Classification difference statistics on the held-out set for MRI-based approximation.

Target AUCobserved p-value CIlow CIhigh

Neuroticism 0.590 1×10−4 0.566 0.614
Age 0.916 1×10−4 0.905 0.927
Fluid intelligence 0.667 1×10−4 0.643 0.690
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Figure 4 – Figure supplement 1. Marginal associations between proxy measures and health-related habits. Marginal
(instead of conditional) estimates using univariate regression. Same visual conventions as in Figure 4.
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Table S3. List of variables contained in each block of sociodemographic models: mood & sentiment (MS), Age,
Sex (AS), Education (EDU), Early life (EL).

Group UKBB code Variables

Mood & Sentiment 2040-2.0 Risk taking
4526-2.0 Happiness
4537-2.0 Work/job satisfaction
4548-2.0 Health satisfaction
4559-2.0 Family relationship satisfaction
4570-2.0 Friendships satisfaction
4581-2.0 Financial situation satisfaction
4598-2.0 Ever depressed for a whole week
4609-2.0 Longest period of depression
4620-2.0 Number of depression episodes
4631-2.0 Ever unenthusiastic/disinterested for a whole week
4642-2.0 Ever manic/hyper for 2 days
4653-2.0 Ever highly irritable/argumentative for 2 days
2050-2.0 Frequency of depressed mood in last 2 weeks
2060-2.0 Frequency of unenthusiasm / disinterest in last 2 weeks
2070-2.0 Frequency of tenseness / restlessness in last 2 weeks
2080-2.0 Frequency of tiredness / lethargy in last 2 weeks
2090-2.0 Seen doctor (GP) for nerves, anxiety, tension or depression
2100-1.0 Seen a psychiatrist for nerves, anxiety, tension or depression
5375-2.0 Longest period of unenthusiasm / disinterest
5386-2.0 Number of unenthusiastic/disinterested episodes
5663-2.0 Length of longest manic/irritable episode
5674-2.0 Severity of manic/irritable episode
6145-2.0 Illness, injury, bereavement, stress in last 2 years
6156-2.0 Manic/hyper symptoms

Age, Sex 31-0.0 Sex
34-0.0 Year of birth
52-0.0 Month of birth
21022-0.0 Age at recruitment
21003-2.0 Age when attended assessment centre

Education 6138-2.0 Qualifications
845-2.0 Age completed full time education

Early life

1647-2.0 Country of birth (UK/elsewhere)
1677-2.0 Breastfed as a baby
1687-2.0 Comparative body size at age 10
1697-2.0 Comparative height size at age 10
1707-2.0 Handedness (chirality/laterality)
1767-2.0 Adopted as a child
1777-2.0 Part of a multiple birth
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Table S3 continued

1787-2.0 Maternal smoking around birth

Lifestyle 670-2.0 Type of accommodation lived in
680-2.0 Own or rent accommodation lived in
6139-2.0 Gas or solid-fuel cooking/heating
699-2.0 Length of time at current address
709-2.0 Number in household
6141-2.0 How are people in household related to participant
728-2.0 Number of vehicles in household
738-2.0 Income before tax
796-2.0 Distance between home and job workplace
757-2.0 Time employed in main current job
767-2.0 Length of working week for main job
777-2.0 Freq. of travelling from home to job workplace
6143-2.0 Transport type for commuting to job workplace
6142-2.0 Current employment status
806-2.0 Job involves mainly walking or standing
816-2.0 Job involves heavy manual or physical work
826-2.0 Job involves shift work
3426-2.0 Job involves night shift work
1031-2.0 Freq. of friend/ family visits
6160-2.0 Leisure/social activities
2110-2.0 Able to confide
1239-2.0 Current tobacco smoking
1249-2.0 Past tobacco smoking
1259-2.0 Smoking/smokers in household
1269-2.0 Exposure to tobacco smoke at home
1279-2.0 Exposure to tobacco smoke outside home
2644-2.0 Light smokers, at least 100 smokes in lifetime
2867-2.0 Age started smoking in former smokers
2877-2.0 Type of tobacco previously smoked
2887-2.0 Number of cigarettes previously smoked daily
2897-2.0 Age stopped smoking
2907-2.0 Ever stopped smoking for 6+ months
2926-2.0 Number of unsuccessful stop-smoking attempts
2936-2.0 Likelihood of resuming smoking
3436-2.0 Age started smoking in current smokers
3446-2.0 Type of tobacco currently smoked
3456-2.0 Number of cigarettes currently

smoked daily (current cigarette smokers)
3466-2.0 Time from waking to first cigarette
3476-2.0 Difficulty not smoking for 1 day
3486-2.0 Ever tried to stop smoking
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Table S3 continued

3496-2.0 Wants to stop smoking
3506-2.0 Smoking compared to 10 years previous
5959-2.0 Previously smoked cigarettes on most/all days
6157-2.0 Why stopped smoking
6158-2.0 Why reduced smoking
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Year of birth
Seen doctor (GP) for nerves, anxiety, tension or depression

Ever depressed for a whole week
Ever unenthusiastic/disinterested for a whole week

Ever highly irritable/argumentative for 2 days
Irritability

Tense/ "highly strung"
Nervous feelings

Suffer from 'nerves'
Guilty feelings

Worry too long after embarassment
Sensitivity/ hurt feelings

Neuroticism score
Worrier/ anxious feelings

Mood swings
Miserableness
Fed-up feelings

Loneliness, isolation
Frequency of tenseness / restlessness in last 2 weeks

Frequency of depressed mood in last 2 weeks
Frequency of unenthusiasm / disinterest in last 2 weeks

Frequency of tiredness / lethargy in last 2 weeks
Health satisfaction

Financial situation satisfaction
Happiness

Family relationship satisfaction
Friendships satisfaction

Number of cigarettes currently smoked daily (current cigarette smokers)
Difficulty not smoking for 1 day

Job involve night shift work
Job involves shift work

Job involves heavy manual or physical work
Job involves mainly walking or standing

Income before tax
Number of vehicles in household

Number in household
Able to confide

Likelihood of resuming smoking
Past tobacco smoking
Why stopped smoking

Number of cigarettes previously smoked daily
Number of unsuccessful stop-smoking attempts

Manic/hyper symptoms
Severity of manic/irritable episode

Length of longest manic/irritable episode
Ever manic/hyper for 2 days

Seen a psychiatrist for nerves, anxiety, tension or depression
Age started smoking in current smokers

Why reduced smoking
Gas or solid-fuel cooking/heating
Smoking/smokers in household

Exposure to tobacco smoke at home
Exposure to tobacco smoke outside home

Maternal smoking around birth
Time employed in main current job
Age completed full time education

Qualifications
Comparitive height size at age 10
Comparitive body size at age 10

Breastfed as a baby
Leisure/social activities
Part of a multiple birth
Adopted as a child

Light smokers, at least 100 smokes in lifetime
Month of birth

Country of birth (UK/elsewhere)
Ethnic background

Handedness (chirality/laterality)
Type of accomodation lived in

Previously smoked cigarettes on most/all days
Age started smoking in former smokers

Type of tobacco previously smoked
Age stopped smoking

Ever stopped smoking for 6+ months
Gender

Risk taking
Distance between home and job workplace

Length of working week for main job
Freq. of travelling from home to job workplace

Freq. of friend/ family visits
Transport type for commuting to job workplace

Own or rent accomodation lived in
Illness, injury, bereavement, stress in last 2 years
How are people in household related to participant

Ever tried to stop smoking
Wants to stop smoking

Type of tobacco currently smoked
Current tobacco smoking

Smoking compared to 10 years previous
Longest period of depression

Longest period of unenthusiasm / disinterest
Number of unenthusiastic/disinterested episodes

Number of depression episodes
Time from waking to first cigarette
Length of time at current address

Current employment status
Work/job satisfaction

Age when attended assessment centre
Age at recruitment
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Figure S1. Intercorrelations between sociodemographic inputs. To check the plausibility of the proposed grouping of variables
into blocks, we investigated the inter-correlations among the sociodemographic inputs (Table S3). We first applied Yeo-Johnson power
transform to the variables yield approximately symmetrical distributions. Then we computed Pearson correlations. One can see that
a large majority of variables shows low if any inter-correlations. Strongly inter-correlated blocks emerged, in particular for Mood &
Sentiment and Life Style. Note that within the Life Style category many smaller blocks with strong inter-correlation occurred, some of
which were obviously related to the circumstance of living such as household or employment status.
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